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We propose a time-domain “interferometer” based on double-well ultracold atoms through a so-called
adiabatic Rosen-Zener process, that is, the barrier between two wells is ramped down slowly, held for a while,
and then ramped back. After the adiabatic Rosen-Zener process, we count the particle population in each well.
We find that the final occupation probability shows nice interference fringes. The fringe pattern is sensitive to
the initial state as well as the intrinsic parameters of the system such as interatomic interaction or energy bias
between two wells. The underlying mechanism is revealed and possible applications are discussed.
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I. INTRODUCTION

Quantum interference is one of the most fundamental and
challenging principles in quantum mechanics, and has versa-
tile applications in high-precision measurement and quantum
coherent control �1–3�. With the development of atom inter-
ferometry techniques, researchers are seeking to exploit new
interferometric methods using the Bose-Einstein condensate
�BEC� �4–6�. In the presence of the nonlinear interaction
between the coherent ultracold atoms, the BECs show mar-
velous nonlinear tunneling and interference properties that
are distinguished from the traditional quantum systems. In
particular, newly developed techniques in preparing and ma-
nipulating BECs in the double well brought a new research
surge �7–9�.

In this paper, motivated by our recent study on nonlinear
Rosen-Zener �RZ� transition �10�, we construct an adiabatic
Rosen-Zener interferometer using the BECs in the double
well by manipulating the height of the barrier between two
wells. The Rosen-Zener process was first proposed by Rosen
and Zener to account for the spin flip of two-level atoms
interacting with a rotating magnetic field in Stern-Gerlach
experiments �11�. Here, in our scheme, the RZ process is
performed by lowering the barrier between two wells to a
height, holding it for a while, and then lifting it back to the
original height. We suppose initially that the barrier is very
high so that the ground state �GDS� and first-excited state
�FES� are degenerate. When the barrier is lowered, the tun-
neling between two wells will break the degeneracy. Hence,
the above scheme is a Mach-Zehnder interferometer; lower-
ing and lifting of the barrier just corresponds to beam split-
ting and recombining process, respectively �see Fig. 1 for
details�.

Our paper is organized as follows. In Sec. II, we present
our nonlinear Rosen-Zener interferometer scheme. In Sec.
III, we demonstrate Rosen-Zener interference effect with
BECs in double well and make thoroughly theoretical

analysis on the nonlinear process. In Sec IV we study the
spatial interference effects during Rosen-Zener process.

II. ROSEN-ZENER INTERFEROMETRY WITH BECS
IN A DOUBLE-WELL

We consider a Bose atomic condensate trapped in a
double-well potential with strongly transverse confinement,
the dynamics obeys a one-dimensional model

i�
�

�t
��x,t� = H0��x,t� + ����x,t��2��x,t� , �1�

where H0=−��2 /2m���2 /�x2�+V�x�, �=8N��2�1das /m, m
is the single-atom mass, as is the s-wave scattering length
describing the interatom interaction, N is the total particle
number, and �1d is the compensating coefficient for reducing
transverse freedoms. V�x� is a double-well potential realized

FIG. 1. �Color online� Schematic diagram for an adiabatic RZ
process. Upper panel: the barrier height between two wells in time
sequence. Bottom panel: the energies of the ground state and the
first-excited state in time with varying barrier.
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by superposing a Gaussian barrier to a harmonic trap

V�x� =
1

2
�2x2 + U exp�−

x2

2d2� , �2�

in which � is the trapping frequency of harmonic potential, d
is the barrier width, and U is the barrier height. In the Rosen-
Zener process we control the barrier height as follows:

U = �U0 − 	t for 0 
 t 
 t1,

Uh for t1 
 t 
 t2,

Uh + 	t for t2 
 t 
 tf ,
	 �3�

where 	 is the ramping rate, t1= �U0−Uh� /	, t2= t1+T,
tf =2t1+T, and T is the holding time �see Fig. 1�.

During the whole process above, the barrier is changed
very slowly so that the excitation to high eigenstates is very
small. We assume that the system only occupies the ground
and first-excited states during the adiabatic process, i.e.,
��x , t�=c0�t��g�x ,U�+c1�t��e�x ,U� where �g�x ,U� and
�e�x ,U� are the GDS and FES for Gross-Pitaevskii �GP�
equation �1� with the barrier height U, which obeys
Ej� j =H0� j +�� j

3, where Ej is the chemical potential for
� j �j=e ,g�. When the barrier is very high, the two
wells are almost independent and no atoms exchange be-
tween wells, so we can have two stable local modes,
��L
= 1

�2
���g
− ��e
� and ��R
= 1

�2
���g
+ ��e
�, for which

almost all the atoms are localized in one well. Because the
excitations to high eigenstates are very small, the atoms will
still occupy only on the ground state and the first-excited
state at final, �� f
=c0��g
+c1��e
, i.e., �� f
=a��L
+b��R

with a= 1

�2
�c0−c1� and b= 1

�2
�c0+c1�, in which �c0�2+ �c1�2=1.

Therefore, the final probabilities on the left and right wells
are

�a�2 =
1

2
− �c0��c1�cos �, �b�2 =

1

2
+ �c0��c1�cos � , �4�

where �=arg�c1�−arg�c0�. The final occupation of one well
serves as the interferometer “output ports,” which is the in-
terference between the ground state and the first-excited
state.

III. INTERFERENCE BETWEEN DEGENERATED
EIGENSTATES AND PHASE LOCKING EFFECT

In this section, we discuss the dynamics of the nonlinear
Rosen-Zener process with a simple model. Defining
z= �c1�2− �c0�2 and �=arg�c1�−arg�c0�, the total energy of the
system, H=���†�x�H0��x�+ �

2 ���x��4�dx, can be expressed
in terms of z and � as

H = �z +
�

2
z2 + 
�1 − z2�cos2 � , �5�

in which �=Ee−Eg+ 1
2 ��gg−�ee�, �= 1

2 ��ee+�gg−2�eg�,

=�eg, and �ij =���i

2� j
2dx �i , j=e ,g�. In the above deduc-

tions, the integrals with odd powers of �e and �g are nearly
zero and have been omitted �12�. In the upper panel of Fig. 2,
we plot Ee−Eg, �ij as functions of the barrier height U.

The total energy serves as a classical Hamiltonian with
the canonically conjugate variables z and �. The equations
for z and � are

ż = −
�H

��
, �̇ =

�H

�z
�6�

�the two equations can be also directly obtained from
GP equation �1��. This classical Hamiltonian system
has two axial fixed points at z= �1 independent of the rela-
tive phase, in which z=−1 corresponds to the ground state of
GP equation �1� and z=+1 corresponds to the first-excited
state. The other fixed points of the above classical
Hamiltonian can be obtained by solving the equation ż=0

and �̇=0. For �
 �
−��, we obtain �z� ,���= � �

−� ,0� and

�z� ,���= � �

−� ,��. These two fixed points just correspond to

the so-called self-trapping states in double-well systems
�13–17�. If the barrier is low enough, �� �
−��, the two
fixed points will merge into the first-excited states, i.e.,
z=1. In the bottom row of Fig. 2, we show the phase spaces
of classical Hamiltonian �5� for three typical values of barrier
heights.

Using these equations with the barrier U varying, the pa-
rameters depending on U read from Fig. 2; we simulate evo-
lution of the system numerically by fourth to fifth order
Runge-Kutta algorithm. In the following we choose
dimensionless parameters as: the trapping frequency �
=0.2�, the barrier width d=1 /�2, the initial and final heights
U0=Uf =10, the lowest height Uh=1.5, and the ramping rate
	=0.01.

We consider when the BECs are initially localized in one
well �e.g., the right one� and the barrier between two wells is
sufficiently high. In Fig. 3, we plot two typical probability
evolutions in the left column, and the final probabilities and
relative phase � versus holding time T in the right column.
The left column shows the density �the upper� and relative
phase � �the bottom� evolution during the RZ process for the
holding time T=110 and T=120, respectively. From the cal-

FIG. 2. �Color online� The upper panel is for �gg, �eg, �ee, and
Ee−Eg for different barrier heights with the same parameters for
Fig. 2. The bottom row shows three phase spaces of classical
Hamiltonian �5� for U=10,3 ,1.5, respectively.
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culations we see that, as the barrier lowers, the tunneling
between two wells occurs, and the macroscopic quantum
tunneling �Josephson oscillation� is clearly visible. At this
stage, the phase locking is destroyed by the tunneling. It is
interesting that the phase locking state will be revived when
the barrier is increased back. Finally, all atoms completely
localize in one well again; however, it does not always come
back to the initial well. Which well will be occupied depends
on the holding time, and the final occupation probabilities
form a rectangle function of T �see the right panel of Fig. 3�.

The above results can be well understood with adiabatic
approximation. The system is initially fully localized in the
right well, i.e., initially at the fixed point �z� ,���= �0,0�. As
the barrier height decreases slowly, the system evolves along
the fixed point �z� ,���= � �


−� ,0� until the barrier height is so
low that ��
−�. At this time, we hold the barrier un-
changed for time T. During the holding stage, the state
evolves close to the first-excited state with relative phase �
running. Also, one can see the Josephson oscillation during
this stage. As the barrier height is raised up again, the run-
ning phase orbit will drop into phase locking orbit around
one of the two fixed points. On the other hand, since the
initial state is a fixed point, the adiabatic evolution guarantee
the final state should be close to one of the two fixed points
�0,0� or �0,�� �18�. Because of the symmetry, the probability
for dropping into these two phase locking regions is the
same. The period of the rectangular function is determined
by the period of the running phase orbit when the barrier is
held. From the classical model, the period can be calculated
theoretically, which is 2�

���−��2−
2 �in which the parameters are
chosen as the values for the holding stage�, and for the above
case it is about 35, which consists of the above calculation
very well. Obviously, the period can be controlled by the
interatom interaction �s-wave scattering length� and the bar-
rier height.

By directly solving GP equation �1� using the operator-
splitting approach, we reproduce the above results. In Fig. 4,
we plot two typical probability evolutions in the upper panel

column, and the final probabilities versus T in the bottom.
These figures show that the phenomena predicted above can
be well verified by the GP equation.

The nonlinearity plays an important role in the above in-
teresting processes. If there is no nonlinearity, i.e., 
=�=0,
the system will become very simple with the Hamiltonian as
H=�z. The solution of such linear case can be obtained eas-
ily: z=z�0�, �=�0

t ��t�dt. Then from Eq. �4� we can get the
final probabilities of both wells. In Fig. 5, we plot two typi-
cal probability evolutions in the left column, and the final
probabilities and relative phase � versus holding time T in
the right column, the parameters are the same as in Fig. 3
except for 
=�=0. From these figures we see that for the
interaction-free case the final probabilities of one well are
oscillating between zero and one during the Rosen-Zener
process. On the other hand, there is a critical value of the
interaction for which one has �max�
−�, where �max is the
maximal value of � during the Rosen-Zener process. Only
this condition is satisfied; the transition between the phase

FIG. 3. �Color online� Numerical results for
the transfer probability and relative phase ob-
tained by classical system �5�. The left column
shows the time evolutions for T=110,120. The
right column exhibits the dependence of final oc-
cupations and phases on T.

FIG. 4. �Color online� Coherent transition of atoms by the RZ
process. The upper figures give two example of such a process. For
the holding time T=100 �left figure�, atoms are still in the initial
well; however, for T=112 �right one� almost all atoms are trans-
ferred to another well. The lower panel shows the probabilities of
occupation on the left well for different holding times T �all atoms
in right well initially�
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locking state and running phase state will occur, then the
final occupation probabilities will be a rectangle function of
T.

IV. INTERFERENCE OF SPATIAL MODES

Another interesting case is for the atoms populating
evenly in two wells �e.g., ground state�. These states are for
the atoms populating evenly in two wells, i.e., ��0

= 1

�2
���L
+ei���R
�. For such a case, the population imbal-

ance after the RZ process is determined by both the holding
time T and the initial phase difference �, the latter can be
controlled with the “phase-imprinting” technique of shining
two laser beams with different intensity �19�. Figure 6, cal-
culated by Hamiltonian system �5�, exhibits the final popu-
lations in the left well versus the holding time T for different
� �the top row�, and the populations versus � for T=100 and
150 �the second row�. These figures show that, after carrying
out the RZ scheme, the final population occupations of the
two wells depend on the relative phase � as well as the hold-
ing time T. In particular, for a fixed �, the final occupations
vary with the holding time T, showing a nice interference
pattern in the time domain. The interference pattern depends
on the nonlinear interaction and reduces to a sinusoidal func-
tion in the absence of interatom interaction.

Time-resolved interferometry is a conventional method to
measure the relative phase �20�. From the above simulations,
we find that the final occupations on the two wells sensi-
tively depend on the initial conditions. Hence, we should
extract the initial information from the final occupations.
However, from Fig. 6 one sees that for a given holding time
T the final occupations are not single valued about initial
phases. Therefore, to extract initial phase we need to carry it
out at least twice with different holding times. On the other
hand, in designing a RZ scheme, one could realize the
double-well BECs with definite population imbalance and
relative phase serving as coherent matter wave source used
for other practical purpose.

The numerical results also show that the final occupations
are sensitive to the phase �, especially around �=�. Thus

around the first-excited state, the evolution is very sensitive
to the initial condition. These results are supported by di-
rectly solving the GP equation. The bottom two rows of Fig.
6 are the density evolutions for �=1.01� and 1.02�, respec-

FIG. 5. �Color online� The RZ processes for
interaction-free case. The left column shows the
time evolutions for T=110,120. The right col-
umn exhibits the dependence of final occupations
and phases on T.

(b)

(a)

FIG. 6. �Color online� The upper panel plots the final transfer
probabilities of different initial relative phase � vs the holding time
T calculated with the classical model. The second row plots the final
transfer probabilities vs different initial relative phase � for
T=100 and 150. The dotted line is the envelope for the extreme
values of every � when changing the holding time T. The next two
rows are two examples obtained by directly solving the GP equation
for �=1.01� and 1.02�, respectively.
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tively, obtained by the GP equation, from which this sensi-
tivity can be found.

V. DISCUSSIONS

In summary, a scheme for an interferometer with the mat-
ter wave in a double-well potential serving as coherent
sources is proposed. This scheme is realizable with present
experimental techniques. With it, the population imbalance
of the atoms in two wells shows interesting interference pat-
terns in the time domain. The fringe pattern is sensitive to the
initial state, the interatomic interaction, and the external
forces such as gravity, which can change the shape of the
double well. In this sense, this interferometric scheme has
the potentials for precision measurements with ultracold at-
oms.
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