
Role of particle interactions in a many-body model of Feshbach-molecule formation
in bosonic systems

Jing Li,1,2,3 Di-Fa Ye,3,4 Chao Ma,1 Li-Bin Fu,3 and Jie Liu1,2,3,*
1College of Physics and Information, Beijing Institute of Technology, Beijing 100081, China

2Center for Applied Physics and Technology, Peking University, Beijing 100084, China
3Institute of Applied Physics and Computational Mathematics, P.O. Box 8009 (28), Beijing 100088, China

4Graduate School, China Academy of Engineering Physics, Beijing 100088, China
�Received 17 July 2008; revised manuscript received 15 September 2008; published 24 February 2009�

We investigate a generalized many-body model of Feshbach molecule formation that includes the atom-
atom, atom-molecule, and molecule-molecule interactions. We show that the picture of two-body molecule
production depicted by the Landau-Zener model is significantly altered by the particle interactions. In the
adiabatic limit, we work out a formula for the ceiling of conversion efficiency when the interaction strength is
larger than a critical value. In the sudden limit, we derive a closed equation for the conversion efficiency using
stationary phase approximation. Our theory predicts a significant role of the particle interactions in atom-
molecule conversion when the atom density is high and the Feshbach resonance width is narrow.
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The production of ultracold diatomic molecules in
bosonic systems is an exciting area of research with impor-
tant applications ranging from the production of molecular
Bose-Einstein condensates �BECs� �1� to the study of chemi-
cal reaction dynamics �2�. A widely used production tech-
nique involves the association of ultracold atoms into very
weakly bound diatomic molecules by applying a time vary-
ing magnetic field in the vicinity of a Feshbach resonance
�3,4�. The underlying conversion dynamics is usually de-
scribed by the Landau-Zener �LZ� model �5�. In this model,
the Feshbach molecule production is discussed under a two-
body configuration where a single pair of atoms is converted
to a molecule at an avoided crossing between atomic energy
level and molecular energy level while the molecular energy
is lifted by an applied linearly sweeping magnetic field.
Thus, the molecule production efficiency is expected to be an
exponential Landau-Zener type �6,7�.

In the above two-body model �6,7� and its some many-
body extensions �8–10�, however, the interactions between
particles such as the atom-atom, atom-molecule, and
molecule-molecule interactions, were totally ignored. In this
Brief Report, we want to examine the role of particle inter-
actions in the atom-molecule conversion. Our calculations
show that the energy levels are significantly distorted and the
conversion efficiency is influenced dramatically by these par-
ticle interactions. In the adiabatic limit, we work out an ex-
plicit formula for the upper bound of conversion efficiency
when the interaction strength is larger than a critical value. In
the sudden limit, we derive a closed equation for the conver-
sion efficiency using stationary phase approximation. We fur-
ther point out that these effects might potentially be observ-
able in current experiments.

The two-channel model Hamiltonian that includes the
atom-atom, atom-molecule, and molecule-molecule interac-
tions takes the following form �11�:

Ĥ =
uaa

V
â†â†ââ +

ubb

V
b̂†b̂†b̂b̂ +

uab

V
â†âb̂†b̂ + �aâ†â + �bb̂†b̂

+
�

�V
�â†â†b̂ + b̂†ââ� . �1�

This model has been proposed by Santos et al. �11� to inves-
tigate the Josephson oscillation and self-trapping phenomena
of atom-molecule conversion systems.

In Eq. �1�, â† �b̂†� and �a ��b� are the creation operator and
chemical potential for an atomic �molecular� mode, respec-
tively. In experiments, the magnetic field is linearly swept

B�t�= Ḃt and crosses the Feshbach resonance at B0, thus
2�a−�b=�co�B�t�−B0�. Here, �co is the difference between
the magnetic moments of a molecule and a pair of separated
atoms. �=�4��2abg�B�co /m denotes the amplitude for the
interconversion of atoms and molecules due to the Feshbach
resonance, in which m is the mass of a bosonic atom, abg is
the background scattering length, and �B is the width of the
resonance. ui=2��2ai /mi �i=aa ,bb ,ab� are the particle in-
teractions between atom-atom, molecule-molecule, and
atom-molecule. Here ai and mi denotes the background scat-
tering length and the reduced mass, respectively, i.e., aaa
=abg, aab�1.2abg, abb�0.6abg �12�, maa=m /2, mab=2m /3,
and mbb=m. We introduce N and V to denote the initial atom
number and the quantized volume, therefore n=N /V is the
mean density of the initial bosonic atoms.

In the mean-field limit where N→�, the quantum fluctua-
tion is negligible. It is appropriate to replace all the quantum
operators with c numbers, thus the Heisenberg equations for

operators â and b̂ are casted into the following nonlinear
Schrödinger equation:

i
d

dt
�a

b
� = H�a

b
� , �2�
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H = 	2U�2
b
2 − 
a
2� + � 4�a�

2�a − 4U�2
b
2 − 
a
2� − 2�
� ,

�3�

with U= n
4 � 1

2uab−uaa− 1
4ubb�, �= 1

4 �2�a−�b+2nuaa− 1
2nubb�,

and �=
�n�

2 . The total population is normalized to a unit, i.e.,

a
2+2
b
2=1.

We first show how the nonlinear interactions lead to the
deformation of the eigenenergy levels. The eigenstates of the
system satisfy that

H�a

b
� = �� 0

0 2�
��a

b
� . �4�

Notice that a diatomic molecule is composed of two atoms,
thus there is a factor 2 before the chemical potential
for the molecular mode. Solving the above nonlinear equa-
tions together with 
a
2+2
b
2=1, we readily obtain the
chemical potential � and the eigenstate �a ,b�. The eigenen-
ergies can be derived according to the relationship
�=� /2+�
b
2+�
a
2 /2+4U
b
4−2U
a
2
b
2. Their depen-
dence on the parameters is plotted in Fig. 1. In the linear case
�U=0, Fig. 1�a��, the energy levels have a symmetry that
they are invariant under a rotation about zero point by 180°.
There are only two eigenstates when 
�
 is large enough, one
for atomic mode and the other for molecular mode. When

�
 /�	�2, there is an additional eigenstate with S=−1 rep-
resented by the dotted line in Fig. 1. This eigenstate is dy-
namically unstable. With the appearance of nonlinear inter-
action, the symmetry of the energy levels breaks down. For
the weak nonlinear case U /�	�2 /4 �see Fig. 1�b��, the
energy level structure is very similar to that of the linear case
except for a slight shift. However, when U /�
�2 /4, a loop
structure appears at the lower energy level. The loop expands
as U increases, and the gap between the upper and lower

energy level becomes narrower and narrower. Such deforma-
tion of energy levels consequently leads to very different
conversion dynamics.

Consider the adiabatic evolution of the system starting
from the atomic mode at the left side of the lower energy
level. When U is small, e.g., in Fig. 1�a�, the evolution of the
system follows the solid line, converting all atoms into mol-
ecules. However, when U /�
�2 /4 as in Fig. 1�c�, the sys-
tem moves steadily from the left side to the critical point C.
After that, there is no way to go further except to jump to the
upper and lower levels. As that fraction of atoms tunnels to
the upper level, they are not converted into molecules. The
situation becomes even worse when U is very large: the criti-
cal point is much closer to the upper level and far away from
the lower one, thus the system will jump to the upper level
more easily, see Fig. 1�d�. As a result, almost all atoms can-
not be converted into molecules.

The above simple analysis is confirmed by our numerical
results, which are plotted in Fig. 2. In our calculations, the
4–5th Runge-Kutta step-adaptive algorithm is used to solve
the nonlinear Schrödinger Eq. �2�. The conversion efficiency
as a function of the sweep rate � is plotted and shows a
monotonous decrease as the sweep rate increases. Even in
absence of the particle interactions, i.e., U /�=0, the conver-
sion efficiency calculated from our many-body model is
quite different from the two-body Landau-Zener theory. For
example, in the sudden limit of � /�2�1, the former is al-
most twice that of the latter. In the presence of the particle
interactions, the atom-molecule conversion efficiency is fur-
ther altered. When the dimensionless interaction parameter is
positive the atom-molecule conversion is suppressed com-
pared to that of U /�=0, while, when this dimensionless
parameter is negative, the conversion efficiency turns to be
enhanced. From the explicit expression of the effective inter-
action parameter, we see that the repulsive atomic interaction
leads to a negative parameter U /� while the attractive
atomic interaction corresponds to a positive parameter. For
the large positive interaction parameters, even in the adia-
batic limit of � /�2→0, the atoms cannot be totally con-

FIG. 1. Adiabatic energy levels for different nonlinear interac-
tion strength: �a� U=0, �b� U=0.2, �c� U=2, and �d� U=30. In all
cases, �=1, the solid lines represent stable eigenstates, and the
dotted lines between �1=U−�2 and �2=U+�2 correspond to un-
stable states. When U
�2 /4, a loop structure appears at the lower
energy level. The loop expands as U increases.

FIG. 2. �Color online� Conversion efficiency as a function
of the sweep rate � /�2 for various interaction parameters. For
comparison, we also plot the Landau-Zener-type formula
=1−�lz=1−exp�− 2��2

� � �5,9�; here the sweeping rate is defined as

�= �̇=�coḂ /4.
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verted into molecules. The saturation of conversion effi-
ciency has already been discussed qualitatively in Ref. �13�
without, however, presenting a quantitative analysis. Below,
following the methodology of Ref. �14�, we give some ana-
lytical calculations in two limit cases, namely, the adiabatic
limit and sudden limit, corresponding to � /�2�1 and
� /�2�1.

With introducing the canonical transformation
S= 
a
2−2
b
2 and �=2�a−�b, where �a=arg a is the phase of
the atomic mode and �b=arg b is the phase of the molecular
mode, the quantum system is equivalent to the following
classical Hamiltonian:

H = − 2US2 + 2�S + 2��1 + S��1 − Scos � . �5�

The canonical variables satisfy dS
dt =− �H

�� and d�
dt = �H

�S . The
above Hamiltonian is the same as that obtained in �11�. As
pointed out by Ref. �13�, it contains some properties distin-
guished from the “standard” nonlinear Landau-Zener Hamil-
tonian of Ref. �14�. First, the nonlinearity in Hamiltonian �3�
is not only caused by the particle interactions but also from
the fact that two atoms are needed to form a molecule. In
addition, the mean-field motion is restricted on a “tear-drop”
shaped surface �13,15�, rather than the surface of a Bloch
sphere. As we will show later, the interplay of these features
leads to a very different conversion dynamics.

In the adiabatic limit where the external field varies
slowly compared with the intrinsic motion of the system, the
conversion dynamics is entirely determined by the phase-
space structure evolution of the classical Hamiltonian �5�,
see, for example Refs. �11,13�. The fixed points �i.e., the
energy extrema of the classical Hamiltonian� on the phase
space correspond to the quantum eigenstates. According to
the adiabatic theory �16,17�, when the energy bias � changes
adiabatically, a closed orbit in the phase space remains
closed and the action I= 1

2��Sd� stays invariant in time. The
action equals the phase-space area enclosed by the closed
orbit and is zero when the orbit shrinks to a fixed point.

For the case of U /�	�2 /4, the initial state is prepared at
an elliptical point on the phase space. It evolves, following
the elliptical point, from the boundary line of S=1 to S=−1
as � increases. This means all the atoms are converted into
molecules, i.e., the conversion efficiency is =1.

However, for the case of U /�
�2 /4, the elliptical point
will collide with a saddle point when �=�c. After this col-
lision, the system enters a new orbit with H=Hc, and
evolves adiabatically for �
�c according to the rule of con-
stant action, which is now nonzero. This orbit eventually
evolves into a straight line of constant S. With these consid-
erations, we can obtain the conversion efficiency in the adia-
batic limit, =1− 1

2 Ic.
To work out the explicit expression of , we first need to

determine the critical point C. For this purpose, we notice

that point C �with �=�� is a double root of �̇=0, thus
��̇
�S 
Sc

=−4U+�
5−3Sc

2�1−Sc�3/2 =0. Once Sc is obtained, the critical
energy bias �c and orbit energy Hc can also be easily deter-
mined through their explicit expressions given in the forego-
ing paragraphs. The whole orbit passing through the critical

point is given by cos �= f�S�=
Hc+2US2−2�cS

2��1+S��1−S
. Thus

Ic =
1

�


Smin

Sc 	� − arccos�Hc + 2US2 − 2�cS

2��1 + S��1 − S
��dS + 1 + Smin.

�6�

Here, Smin can be determined by f�Smin�=1. The above for-
mula can be further simplified at the critical point of
U /�→

�2
4 and in the asymptotic regime of U /�→� as fol-

lowing,

 = �1 − 2.4�U

�
−

�2

4
�2

,
U

�
→

�2

4

1.2�U

�
�−2/3

,
U

�
� 1 � �7�

Notice that in the nonlinear Landau-Zener model which
describes the tunneling of BEC in a double-well potential
�14�, the expressions of the tunneling rate at the critical point
and in the asymptotic regime are different. At the critical
point, the exponent of the power law is 3/2. While in the
asymptotic regime, the prefactor of the power law is 3/2 and
the exponent stays the same.

The sudden limit corresponds to nonadiabatic conversion.
The conversion efficiency is not strongly related to the struc-
ture of the energy levels. In this limit, we can derive the
analytical expression of the conversion efficiency using the
stationary phase approximation �SPA� �14�. With the variable
transformation,

a = a� exp�− i
0

t

�� + 2U�2
b
2 − 
a
2��dt� , �8�

b = b� exp�i
0

t

�2� + 4U�2
b
2 − 
a
2��dt� , �9�

we get

b� = − 2i�
−�

t

dt exp�− i
0

t

�4� + 8U�4
b
2 − 1��dt� .

�10�

The dominant contribution to the integral comes from the
stationary point t0 of the phase around which we have

4� + 8U�4
b
2 − 1� = �̄�t − t0� . �11�

Substitute Eq. �11� into Eq. �10� and calculate the integral
self-consistently, we finally get

1


=

�

4��2 +
2U

��
� , �12�

where =2
b
+�
2 . We have used Eq. �12� to calculate the con-

version efficiencies and compared them with the numerical
results obtained by directly integrating the Schrödinger Eq.
�2�, and find a good agreement between them. Interestingly,
when � /�2�1, the second term on the right-hand side of
Eq. �12� can be neglected, thus we get =4��2 /�. This
result from our many-body mean-field theory is twice that
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obtained from the standard two-body Landau-Zener formula.
This many-body effect is consistent with the theoretical
analysis based on a renormalized Landau-Zener formula in
Ref. �9� that has been used to explain the experimental data
�18�.

Our above discussions are restricted to the attractive in-
teraction case. Nevertheless, it is easy to extend the above
discussion to the repulsive interaction case. In the latter case,
the adiabatic energy levels are the 180° angular rotation of
the levels presented in Fig. 1, accordingly, the conversion
from atoms to molecules started from the upper level at the
right side in the repulsive case is equivalent to the atom-
molecule conversion started from the lower level at the left
side in the attractive case while the sweeping direction of the
magnetic field is reversed. Our calculation in Fig. 2 already
showed that for both repulsive and attractive cases, the atom-
molecule conversion efficiency is significantly affected by
the particle interactions when 
U /�
 is comparable with or
larger than the critical value of �2 /4.

The effects of particle interactions discussed in our Brief
Report for bosonic systems are not observed until now. Such
effects might potentially be observable in current experi-
ments suppose the atom density is high and the Feshbach

resonance is narrow. That is because the effective interaction
parameter U /� is related to the physical quantities of the
Feshbach resonance and the atom cloud through following

explicit expression, 
 U
� 
�0.3�


4��2nabg

m�B�co

. It is proportional to

the square root of the density and inversely proportional to
the square root of the resonance width. So, the effects of the
particle interactions are expected to be observable in the ex-
periments with high atom density and narrow Feshbach reso-
nance width. As an example, we consider the MIT experi-
ment parameters with 23Na condensate �19�, where the mean
density of the condensate is n�1015 cm−3, and the param-
eters for the Feshbach resonance at B0=853 G are �B
=0.0025 G, abg=3.38 nm, and �co=3.47�10−23 J T−1

�4,6�, which gives U /�=0.36. The interaction parameter is
beyond the critical value, therefore, it offers a good ground
to test our theoretical predictions.
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