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Abstract. We investigate the Feshbach conversion of fermionic atom pairs
to condensed bosonic molecules with a microscopic model that accounts for
the repulsive interactions among all the particles involved. We find that the
conversion efficiency is enhanced by the interaction between bosonic molecules,
while it is suppressed by the interactions between fermionic atoms and between
atoms and molecules. In the adiabatic limit, the combined effect of these
interactions can lead to a ceiling of less than 100% on the conversion efficiency
for a narrow Feshbach resonance. Our theory agrees with the recent Rice
experiment on 6Li.
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1. Introduction

Feshbach resonance has now become a focal point of the research activities in the field of cold
atom physics [1]–[4] after its first experimental observation in atomic gases [5]. Among these
research activities, the production of diatomic molecules from Fermi atoms with Feshbach
resonance is of special interest and has attracted a great deal of attention. Firstly, it is an
interesting phenomenon by itself [6]; secondly, it provides unique experimental access to
the Bardeen–Cooper–Schrieffer (BCS)–Bose–Einstein condensate (BEC) crossover physics
[7]–[9]. So far, by slowly sweeping the magnetic field through the Feshbach resonance, samples
of over 105 weakly bound molecules at temperatures of a few tens of nanokelvins have been
produced from quantum degenerate Fermi gas [10]–[12].

The Feshbach conversion is a complicated process involving many fermionic atoms and
bosonic molecules in a sweeping magnetic field that crosses a resonance. The theoretical
description of the conversion efficiency as a function of sweep rate, atom mass, atomic density
and temperature is still under development. The existing theories include the Landau–Zener
(LZ) model of two-body molecular production [13, 14] and its many-body extension at zero
temperature [15]–[17], the phase-space density model [18], the equilibration model [19] and
the quantum statistics model [20] at finite temperatures.

In the present paper, we study a microscopic model of the Feshbach conversion that
accounts for all the two-body interactions, including atom–atom, molecule–molecule and atom–
molecule interactions. These interactions are ignored in previous theoretical studies [14]–[17].
We find that these interactions can affect the Feshbach conversion efficiency: the repulsive
interaction between molecules tends to enhance the conversion efficiency, whereas the other two
repulsive interactions between atoms and between atoms and molecules suppress the efficiency.
The role of the particle interactions is more significant for a narrow Feshbach resonance, where,
in the adiabatic limit, the combined effect of these interactions can yield a ceiling of less than
100% on the conversion efficiency. This interaction-suppressed conversion efficiency is in spirit
the same as the broken adiabaticity by interaction in nonlinear LZ tunneling [21, 22]. Our theory
has been compared with experiments and is in good agreement with experimental results on
6Li [11] for the whole range of sweeping rates.
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2. Model

To include all particle interactions, we extend the two-channel model in [20], [23]–[25] and
write the Hamiltonian as

H =

∑
k,σ

εka†
k,σ ak,σ +

(
γ +

εb

2

)
b†b

+
Ua

Va

∑
k,k′

a†
k,↑a†

−k,↓a−k′,↓ak′,↑

+
Uab

Va

∑
k,σ

a†
k,σ ak,σ b†b +

Ub

Vb
b†b†bb

+
gVb

V 3/2
a

∑
k

(
b†a−k,↓ak,↑ + a†

k,↑a†
−k,↓b

)
. (1)

Here, εk = h̄2k2/2ma is the kinetic energy of the atom, σ = ↑, ↓ denotes the two hyperfine
states of the atom, and εb/2 is the molecular energy. Ub = 4π h̄2abb/mb is the interaction
between molecules. Other parameters are associated with atoms and are renormalized. With
the renormalization factor 3, these parameters are related to a set of bare parameters, U0, U1,
g0 and γ0, via the standard renormalization relations [3],

Ua = 3U0, Uab = 3U1, (2)

g = 3g0, γ = γ0 − (3g2
0/Uc). (3)

The renormalization factor is given by

3 ≡ (1 + (U0/Uc))
−1 , U−1

c = −

∑
k

exp(−k2/k2
c )

2εk
(4)

with the cutoff momentum kc representing the inverse range of interactions [25]–[27]. The bare
parameters are

γ0 = µco(B − B0) , g0 =

√
4π h̄2abg1Bµco

ma
, (5)

U0 =
4π h̄2abg

ma
, U1 =

4π h̄2aab

mab
. (6)

In the above, B is the applied magnetic field, which changes linearly with time at a rate of αr,
i.e., B = −αrt in our study. B0 and 1B are the position and width, respectively, of the Feshbach
resonance. ma and mb = 2ma are the masses of the atoms and molecules, and mab =

2
3ma is the

reduced mass of the atom–molecule interaction. In addition, µco is the difference in magnetic
moment between the two channels, and we have assumed that the s-wave scattering length near
resonance has the form as = abg(1 − (1B/(B − B0))) with abg being the background atomic
scattering length. The scattering length of atom–molecule and molecule–molecule interactions
is denoted by aab and abb, respectively.

Due to the trapping potential in experiments, the molecular bosons are more tightly
confined in space than the fermionic atoms due to their different statistics [28]. To show this,
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we use Va for the volume of fermionic atoms and Vb for bosonic molecules. We assume the
zero-temperature limit, where we can consider only one bosonic mode and ignore all possible
dissipations in the system, such as the loss of atoms by three-body collisions.

Due to the presence of an external magnetic field, the ‘spin-up’ and ‘spin-down’ states
actually have a Zeeman component (h) to their energy, i.e. εk↑ = εk + h, εk↓ = εk − h. However,
the total energy of the non-interacting atoms

∑
k,σ εk,σ a†

k,σ ak,σ can be rewritten as∑
k

[
εk(a

†
k↑

ak↑ + a†
k↓

ak↓) + h(a†
k↑

ak↑ − a†
k↓

ak↓)
]
. (7)

In our study, the numbers of ‘spin-up’ atoms and ‘spin-down’ atoms are the same. Therefore,
the second term in the above expression vanishes, and we have not written down the Zeeman
energy term in equation (1).

In the current experiments, the intrinsic energy width of a Feshbach resonance is larger
than the Fermi energy EF [29]; it is therefore reasonable to assume εk = ε. This approximation is
called the degenerate model in [15, 16, 24] and has been verified by exact numerical calculations
in [15, 16]. In the present study, we will use this degenerate approximation.

We proceed by introducing the following operators [15, 16]:

L x =

∑
k(a

†
k,↑a†

−k,↓b + b†a−k,↓ak,↑)

(N/2)3/2
, (8)

L y =

∑
k(a

†
k,↑a†

−k,↓b − b†a−k,↓ak,↑)

i(N/2)3/2
, (9)

L z =

∑
k,σ a†

k,σ ak,σ − 2b†b

N
, (10)

where N = 2b†b +
∑

k,σ a†
k,σ ak,σ is the total number of atoms. The Hamiltonian in equation (1)

becomes6

H =
N

4

[
2ε −

(
γ +

εb

2

)
−

NUa

2Va
−

NUab

Va

]
L z

−
N 2

16

(
Ua

Va
+

2Uab

Va
−

Ub

Vb

)
(1 − L z)

2

+
gVb

V 3/2
a

(
N

2

)3/2

L x . (11)

With the commutators

[L z, L x ] =
4i

N
L y, [L z, L y] = −

4i

N
L x , (12)

[L x , L y] =
i

N
(1 − L z)(1 + 3L z) + O

(
1

N 2

)
, (13)

6 In deducing the atom–atom scattering term, we need to introduce the collective pseudo-spin operators
Ŝ+

=
∑

k a†
k↑

a†
−k↓

, Ŝ−
=

∑
k a−k↓ak↑ and Ŝz =

∑
k

1
2 (a†

k↑
ak↑ + a†

−k↓
a−k↓ − 1). It is easy to prove that Ŝ2

= Ŝ2
z −

Ŝz + Ŝ+ Ŝ− is a conservation and S = N/4. Combining the conserved relation of the total paticles, N/4 = b̂†b̂ + Ŝz ,
we can rewrite the atom–atom scattering term as Ŝ+ Ŝ−

=
1
2

∑
k,σ a†

k,σ ak,σ b̂†b̂ + (N/2) − b̂†b̂.
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we obtain the Heisenberg equations for the system

h̄
dL x

dt
= −

[
2ε −

(
γ +

εb

2

)
−

NUa

2Va
−

NUab

Va

]
L y

−
N

4

(
Ua

Va
+

2Uab

Va
−

Ub

Vb

)
[(1 − L z)L y + L y(1 − L z)], (14)

h̄
dL y

dt
=

[
2ε −

(
γ +

εb

2

)
−

NUa

2Va
−

NUab

Va

]
L x

+
N

4

(
Ua

Va
+

2Uab

Va
−

Ub

Vb

)
[(1 − L z)L x + L x(1 − L z)]

−

√
2gVb

√
N

4V 3/2
a

(1 − L z)(1 + 3L z) + O

(
1

√
N

)
, (15)

h̄
dL z

dt
=

√
2gVb

√
N

V 3/2
a

L y. (16)

In the mean-field approximation, we need to replace the operators in the above equations
with their expectations, such as using 〈L x〉 for L x . However, these equations show that the
expectation values of the single operators, e.g. 〈L x〉, depend not only on themselves, but also
on the second-order moments, e.g. 〈L x L y〉. Similarly, the time evolution of the second-order
moments depends on the third-order moments, and so on. Consequently, we obtain a hierarchy
of equations of motion for the expectation values. In order to obtain a closed set of equations
of motion, the hierarchy must be truncated at some stage by approximating the N th order
moments in terms of lower-order moments [16, 30]. The lowest-order truncation is achieved
by approximating the second-order moments with the products of the expectation values of
the corresponding single operators, such as 〈L x L y〉 with 〈L x〉 · 〈L y〉. This truncation is further
justified by the following fact. In our study, the total number of atoms N is large. We notice
that the commutators in equations (12) and (13) vanish and L x , L y and L z commute with each
other, in the limit of large N. In this case, one usually expects factorization relations such as
〈L x L y〉 = 〈L x〉 · 〈L y〉 [31].

With the introduction of three real numbers u, v and w for the expectation values of the
three operators L x , L y and L z and ignoring the O(1/

√
N ) term, the above Heisenberg equations

become a set of mean-field equations,
du

dτ
= −δv − 2χv(1 − w),

dw

dτ
=

√
2v, (17)

dv

dτ
=

3
√

2

4
(w − 1)

(
w +

1

3

)
+ δu + 2χu(1 − w), (18)

where

τ =
gVb

√
N

h̄V 3/2
a

t,

δ =

[
2ε −

(
γ +

εb

2

)
−

NUa

2Va
−

NUab

Va

]
V 3/2

a

gVb

√
N

, (19)

χ =

(
Ua + 2Uab −

UbVa

Vb

) √
N Va

4gVb
.
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Because of the identity u2 + v2
=

1
2(w − 1)2(w + 1), there are only two independent variables.

By introducing the variable θ = arctan(v/u), which is canonically conjugate to w, we have a
classical Hamiltonian,

H= δw − χ(1 − w)2 +
√

(w − 1)2(w + 1) cos θ. (20)

The above equations show that all the experimental parameters affect the system via only two
dimensionless parameters, δ and χ . By a trivial shift of the time origin, we can set δ = ατ with

αr

α
=

4π h̄nabg1B

ma
32 V 2

b

V 2
a

, (21)

where n = N/Va is the mean atomic density, α is the scaled sweeping rate, and τ is the scaled
time. The nonlinear parameter χ is given by

χ =
1

2

(
1 +

3aab

abg
−

abbVa

2abg3Vb

)
Va

Vb

√
π h̄2abgn

maµco1B
. (22)

The Hamiltonian (20) has the energy unit of 4V 3/2
a

gVb N 3/2 . The variable w measures the imbalance
between atom pairs and molecules and varies in the range of [ − 1, 1] with w = −1
corresponding to a pure molecular gas and w = 1 to a pure atomic gas. We are interested in how
many atomic pairs are converted to molecules after the magnetic field crosses the resonance.
We use wf to denote the value of w long after the magnetic field has passed the resonance.
The molecular conversion efficiency is defined as T = 1 − 0 =

1−wf
2 , while the fraction of

unconverted atoms is defined as 0 =
1+wf

2 .

3. Main results

3.1. Theoretical analysis

To understand the dynamics of the Hamiltonian (20), we first look at the fixed points of this
system. They can be found by setting ẇ = u̇ = v̇ = 0 in equations (17) and (18). The energies
for these fixed points make up energy levels of the system as shown in figure 1. One can see that
the structure of these energy levels changes dramatically as the nonlinear parameter χ increases.
Specifically, we observe the following. (i) There are two fixed points P1 and P2 when |δ| is large
enough: one for the bosonic molecule (BM) and the other for the fermionic atom (FA). (ii)
When |δ| < δc =

√
2, there is an additional fixed point with w = 1, which is represented by MQ

in figure 1. However, this fixed point is dynamically unstable [22]. (iii) For χ > χc =
√

2/4,
there appears one more fixed point denoted by P3 and, consequently, a loop in the energy levels.
As we shall see, this loop has highly nontrivial physical consequences. The fixed point P3 is
also unstable.

Consider the adiabatic evolution of the system starting from a high negative value of δ with
w = 1. This corresponds to the experiments where the magnetic field sweeps slowly across the
Feshbach resonance with initially no bosonic molecules. When χ is small, as in figure 1(a), the
evolution of the system follows the solid line, converting all fermionic atoms into molecules.
However, when χ is beyond χc, as in figure 1(c), the system will find no stable energy level to
follow at a single point M. As a result, only a fraction of fermionic atoms are converted into
bosonic molecules.
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Figure 1. Adiabatic energy levels for different interaction strengths. (a) χ = 0;
(b) χ = χc =

√
2/4; (c) χ = 1.5. The unstable states are indicated by dashed

lines (MQ and DM).

Figure 2. The conversion efficiency T as a function of the sweeping rate α for
various interactions.

This simple analysis is confirmed by our numerical results, which are plotted in figure 2.
In our calculations, the fourth to fifth Runge–Kutta step-adaptive algorithm is used for solving
the differential equations (17) and (18). Because w = 1 is a fixed point when δ < −

√
2, we start

from (w, u, v) ≈ (1, 0, 0) and sweep the field from δ = −
√

2 to 200. Then wf is recorded and
the conversion efficiency T is obtained by using the relation T =

1−wf
2 . In figure 2, the conversion

efficiency T, i.e. the fraction of the converted fermionic atom pairs, is drawn as a function of α.
Evidently, T approaches 1 as α → 0 when χ < χc, indicating that all atomic pairs are converted
into molecules. In contrast, when χ > χc, T does not increase to 1 in the adiabatic limit α → 0.
This means that there is a ceiling Tad (<100%) on the conversion efficiency. Moreover, figure 2
demonstrates that positive χ suppresses the conversion efficiency, whereas negative χ enhances
it. Because the repulsive interaction between bosonic molecules enters χ as a negative value, it
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0 π 2 π
θ

1

0

1

ω

a 0.6, 1.6

P1 P1P2

P3

0 π 2 π
θ

1

0

1
b 0.6, 2

P1 P1
P2

P3

0 π 2 π
θ

1

0

1
c 0.6, 0

P1 P1

P2

Figure 3. Phase spaces of the Hamiltonian (20). The dark line in (a) is for the
fixed point w = 1, u = 0, v = 0. It is a line because θ is not defined at u = v = 0.
The two fixed points on line w = 1 in (c) are in fact the same fixed point; they
are an artefact caused by the definition θ = arctan(v/u).

enhances the conversion efficiency; the repulsive fermionic atom interaction and atom–molecule
interaction contribute positively to χ , so they suppress the conversion.

The ceiling Tad on the atom–molecule conversion efficiency depends on χ . This
dependence can be found by examining the phase-space diagrams of our system shown in
figure 3. As δ ramps up slowly from a large negative value, the fixed point P3 will move up until
it hits the fixed point w = 1, u = 0, v = 0, represented by a dark straight line in figure 3(a). This
collision occurs at δ = −

√
2. Immediately after the collision, the hyperbolic fixed point P3 is no

longer a fixed point and becomes a solution that evolves along the dark line in figure 3(b). The
dark line is given by

√
2 = χ(1 − w) −

√
1 + w cos θ , which is found by taking E = δ = −

√
2

in the Hamiltonian (20). As the action of this trajectory is nonzero, whereas a fixed point has
zero action, this collision of the two fixed points represents a sudden jump in action. It is this
sudden jump that has caused the nonzero fraction of remnant atoms. As δ ramps up further
slowly, the trajectory will change its shape as witnessed in figure 3(c); however, its action stays
constant as demanded by the classical adiabatic theorem [32, 33]. The action is

I =


1

2π

∮ cos θ

√
8χ2 − 4

√
2χ + cos2 θ

2χ2
dθ,

√
2

4
< χ <

√
2

2
;

1

2π

∫ 2π

0

4χ2
− 2

√
2χ + cos2 θ

2χ2
dθ, χ >

√
2

2
.

(23)

According to the definition of the action, we have the relation I = wf + 1. Using the relation
between the conversion efficiency and the variable wf, we obtain a ceiling on the efficiency in
the adiabatic limit,

Tad =


4
√

2χ − 1

8χ2
, χ >

√
2

4
;

1, χ <

√
2

4
.

(24)
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3.2. Comparison with experiments

Now we compare our theory with the existing experiments. For the experiment with 6Li [11], the
mean density is n = 4 × 1012 cm−3 with N = 6 × 105 atoms. The scattering length is abg = 59aB

and the magnetic moment difference is µco ∼ 2µB, where aB and µB are the Bohr radius and the
Bohr magneton, respectively. The Feshbach resonance is at B0 = 543.8 G with a width of 1B =

0.1 G. The Fermi energy EF in the combined harmonic and box-like trapping potential of [11] is
given by EF =

[
15π Nh̄3ω2

r /
(
8
√

2maL
)]2/5

, where ωr = 2π × 800 s−1 is the angular frequency
of the radial harmonic trap and L = 480 µm is the size of the axial potential. The ground-
state energy of molecular bosons is EG = h̄ωr + h̄2π2/

(
2mbL2

)
. In the axial (z) direction, the

distribution of the cold particles is extended over the whole box of length L and is independent
of particle energy, whereas in the radial direction of the harmonic trap (r =

√
x2 + y2), the

spatial extension of particles is proportional to the square root of their energy. Because bosonic
molecules populate only the ground state while fermionic atoms have an energy distribution
of up to EF, our estimation shows that the ratio between spatial confinement of bosonic
molecules and fermionic atoms is Va/Vb = EF/EG = 36. We set 3 = 391 with a momentum
cutoff Kc = 96kF

7. According to equation (21), the sweeping rate is αr/α = 20 G ms−1.
The scattering lengths of atom–molecule and molecule–molecule interactions are related

to the atom–atom scattering length as aab ≈ 1.2abg and abb ≈ 0.6abg [34, 35]. Substituting these
two relations into equation (22), we obtain an explicit expression for the nonlinear parameter,

χ =

(
2.3 −

0.15Va

3Vb

)
Va

Vb

√
π h̄2abgn

maµco1B
. (25)

The second term in the above parentheses accounts for the repulsive interaction between bosonic
molecules and is small. So, the above expression can be approximately reduced to

χ ' 2.3
Va

Vb

√
π h̄2abgn

maµco1B
. (26)

For the experimental parameters of 6Li, the interaction parameter is χ = 1.26. This strong
interaction (>χc) leads to a ceiling of Tad = 0.48 via equation (24). This is in good agreement
with experiments (see figure 4(a)).

For 40K, the Feshbach resonance at B0 = 202.1 G has a large width of 1B = 7.8 G and the
mass of 40K is 7 times that of 6Li. In [18], the fermions are confined in a dipole trap characterized
by a radial frequency νr between 312 and 630 Hz, i.e. an aspect ratio of νr/νz = 70. The
Fermi energy is EF = h̄

(
3Nω2

r ωz

)1/3
and the ground-state energy of condensed bosons is EG =

h̄ωr + (h̄ωz/2). For the dipole trap and N = 2.5 × 105 [18], the ratio Va/Vb = (EF/EG)3/2
= 102.

With abg = 174aB, µco ∼ 2µB, and the mean density n = 2 × 1012 cm−3, we obtain χ = 0.19,
which is less than the threshold χc =

√
2/4. Therefore, 40K atom pairs can be completely

converted to bosonic molecules in the adiabatic limit. Indeed, a conversion efficiency of up
to 90% has been observed [18].

For 6Li, with equations (17) and (18) we have also calculated numerically the conversion
efficiency as a function of sweeping rates. Comparison between our theory and the experimental

7 The cutoff kc is chosen such that the tunnelling window 2δc for converting atomic fermions to molecular bosons
is consistent with the Feshbach resonance width µco1B of 6Li.
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Figure 4. (a) Comparison between our theory and the experimental data of
6Li [11] for the conversion efficiency T as a function of field sweep rates.
(b) The dependence of T on the mean atomic density.

data is shown in figure 4(a). They are in good agreement. In addition, our model predicts a non-
monotonic dependence of the conversion rate on the mean atomic density (see figure 4(b)). This
can be understood with equations (21) and (22). In equation (21), we see that the effective
sweeping rate α is inversely proportional to the atomic density. So, increasing the density
will reduce the effective sweeping rate and therefore enhance the conversion rate. On the
other hand, higher density means larger nonlinearity χ as indicated in equation (22), which
in turn suppresses the atom–molecule conversion. These two factors compete with each other,
giving rise to the non-monotonic curves in figure 4(b). Therefore, to design experiments of high
conversion efficiencies, one needs to carefully choose the initial fermionic atom density so that
it falls into the optimal parameter regime.

The relation between the background scattering lengths used in the above discussion
is derived in the zero-range approximation and may be corrected due to the finite range
of interatomic potential. This correction can modify the factor of 2.3 appearing in the
nonlinear parameter in equation (26). The correction is estimated to be of the order of
r0/abg, where r0 is the potential range. For example, for the dimer–dimer interaction abb,
the factor of 0.6 is corrected by approximately 0.24(r0/abg) [36]. The range r0 is given by

r0 =
1

√
8

0(3/4)

0(5/4)

(
mC6

h̄2

)1/4
[37]. For 6Li, we have r0/abg = 0.5. So, the correction to the factor of

2.3 in the nonlinear parameter is about 20%. For 40K, r0/abg = 0.3 and the high-order correction
to the factor of 2.3 is about 12%.

4. Discussion and conclusion

The Feshbach conversion of fermionic atoms into bosonic molecules in a sweeping magnetic
field that crosses a resonance is currently a topic of great interest and is under intense
investigation both theoretically and in experiments. The molecule formation process has been
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widely studied based on a variety of classical and quantum models. The existing theories include
the LZ model of two-body molecular production [13, 14] and its many-body extension at
zero temperature [15]–[17], the classical phase-space density model [18], and the equilibrium
isentropic model at finite temperatures [19]. However, there is still inconsistency between the
theories and experimental data. For example, the LZ-type theories [13]–[17] predict a 100%
molecular conversion for sufficiently slow sweeps, which is obviously overoptimistic compared
with experimental observation [10]–[12]. And the theories [38, 39], which consider only one
potential partner for each atom and give a ceiling of 50% for the fermionic conversion [38, 39],
are found to be inconsistent with more recent data [18]. The classical equilibrium isentropic
model [19] has covered almost all existing experimental data including those in [18], but it finds
the data of the Rice experiment [11] far below its prediction. Note that the uniqueness of the
Rice experiment compared with all others is its very narrow Feshbach resonance.

Our present work has discussed the role of the interactions between particles in the
Feshbach conversion of fermionic atom pairs into molecular bosons, which is ignored in
previous quantum models. We show that for the narrow Feshbach resonance the role of particles
is significant and can lead to a ceiling of less than 100% on the conversion efficiency. Our
main point is that, in the Feshbach conversion process, the molecular conversion efficiency is
suppressed by the particle interactions, which serve as an effective internal field appended to
the uniform external sweeping magnetic field. The magnitude of this effect is determined by the
ratio between the particle-interaction strength and the Feshbach resonance width. In the Rice
experiment, the resonance is very narrow so that the conversion efficiency can be dramatically
suppressed by the particle interactions. Our theory is consistent with existing experiments. Our
model also predicts a non-monotonic dependence of the conversion rate on the mean atomic
density, which is important for the optimal choice of parameters in future Feshbach experiments.
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