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We propose a feasible scheme to realize nonlinear Ramsey interferometry with a two-component Bose-
Einstein condensate, where the nonlinearity arises from the interaction between coherent atoms. In our scheme,
two Rosen-Zener pulses are separated by an intermediate holding period of variable duration and through
varying the holding period we have observed nice Ramsey interference patterns in the time domain. In contrast
to the standard Ramsey fringes our nonlinear Ramsey patterns display diversiform structures ascribed to the
interplay of the nonlinearity and asymmetry. In particular, we find that the frequency of the nonlinear Ramsey
fringes exactly reflects the strength of nonlinearity as well as the asymmetry of system. Our finding suggests
a potential application of the nonlinear Ramsey interferometry in calibrating the atomic parameters such as
scattering length and energy spectrum.
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I. INTRODUCTION

The technique of Ramsey interferometry with separated
oscillating fields was first proposed to investigate the mo-
lecular beam resonance �1�. The key feature of the observed
Ramsey pattern in the frequency domain is that the width of
the central peak is determined by the inverse of the time
taken by the particle to cross the intermediate drift region
�2�. Indeed, the Ramsey interference experiments can be op-
erated either in the time domain with temporally separated
pulses and fixed particle or in the space domain with spa-
tially separated fields and moving particle �3�. The Ramsey’s
interferometric method provides the basis of atomic fountain
clocks that now serve as time standards �4,5� and stimulates
the rapid advancement in the field of precision measurements
in atomic physics. Since applying the laser cooling tech-
niques to trapped atoms, the atom interferometers with cold
atoms have been used to measure rotation �6�, gravitational
acceleration �7,8�, atomic fine-structure constant �9�, atomic
recoil frequency �10�, and atomic scattering properties �11�,
to name only a few.

On the other hand, the experimental realization of the
Bose-Einstein condensate �BEC� in a dilute atomic gas
�12,13� brings a fascinating opportunity for the purpose of
precision measurement due to the very slow atoms and
changes the prospects of frequency standards entirely. Re-
cently, Ramsey fringes between atoms and molecules in time
domain have been observed by using trapped BEC of 85Rb
atoms �14� in experiment. This offers the possibility of pre-
cise measurement of binding energy of the molecular state in
BEC �15,16�.

With the development of atom interferometry techniques,
researchers are seeking to exploit new interferometric meth-
ods using trapped BEC �17,18�. With the emergence of the
nonlinear interaction between the coherent ultracold atoms,

the BECs show marvelous nonlinear tunneling and interfer-
ence properties that are distinguished from the traditional
quantum systems. Motivated by our recent study on nonlin-
ear Rosen-Zener �RZ� transition �19�, in this paper we con-
struct a nonlinear Ramsey interferometer with applying a
sequence of two identical nonlinear RZ tunneling processes
�i.e., RZ pulses�. The RZ model was first proposed to study
the spin-flip of two-level atoms interacting with a rotating
magnetic field to explain the double Stern-Gerlach experi-
ments �20�. Differing from the Landau-Zener model �21�, RZ
model has set the energy difference between two modes as a
constant whereas the coupling strength is time dependent. In
our interferometry scheme, two RZ pulses are separated by a
intermediate holding period of variable duration and through
varying the holding period we have observed diversiform
Ramsey interference patterns in contrast to the standard
Ramsey fringes. Using a simple nonlinear two-mode model,
we thoroughly investigate the physics underlying the inter-
ference patterns both numerically and analytically. We find
that the frequency of the nonlinear Ramsey fringes exactly
reflects the strength of nonlinearity as well as the asymmetry
of system. This observation suggests a potential application
in calibrating the atom parameters such as scattering length
and energy spectrum via measuring the frequency of Ramsey
fringes.

Our paper is organized as follows. In Sec. II, we present
our nonlinear Ramsey interferometer and demonstrate diver-
siform interference patterns. In Sec. III, we make detailed
theoretical analysis on the nonlinear Ramsey interferometry.
In the sudden limit and adiabatic limit, we have derived ana-
lytically the frequencies of the fringes in time domain and
their dependence of the atomic parameters. Section IV is our
discussions and applications, where we also extend our dis-
cussions to the double-well BEC systems.
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II. NONLINEAR RAMSEY INTERFEROMETRY

A. Interferometer scheme

We consider that a condensate, for example, 87Rb atoms
in a magnetic trap are driven by a microwave coupling into a
linear superposition of two different hyperfine states. Since
the microwave source injects very large numbers of photons,
the electromagnetic field can be treated as a completely clas-
sical object. Then we can identify the two basis states �1� and
�2� of F=1, mF=−1 and F=2, mF= +1 hyperfine states, re-
spectively. We denote the corresponding boson creation �an-

nihilation� operators â†�â� and b̂†�b̂�. Considering that the
laser fields are time dependent, we treat the Hamiltonian in
the rotating frame, that is the frame in which the laser field is
constant over the time of the pulse. Under this condition, the

operators Ĵx= �â†b̂†+ b̂†â� /2, Ĵy = i�â†b̂†− b̂†â� /2, and Ĵz

= �â†â†− b̂†b̂� /2 can form a complete set of number-
conserving Hermitian operators for the system and the
Hamiltonian can be expressed as a function of them. Within
the standard rotating-wave approximation, the Hamiltonian
describing the transition between the two internal states can
be read �22� as

Ĥ = −
�

2
�â†â − b̂†b̂� −

c

4
�â†â − b̂†b̂�2 +

v
2

�â†b̂ + b̂†â� , �1�

where �=−�+ �4N��2 /m��a11−a22�� is the energy differ-
ence between two states characterizing the asymmetry of the
system, c= �2��2 /m��a11+a22−2a12�� is the nonlinear
strength describing atomic interactions, and v denotes the
coupling strength which is proportional to the intensity of
near-resonant laser field. � is the detuning of lasers from
resonance, aij is the s-wave scattering amplitude of hyperfine
species i and j, � is a constant of order 1 independent of the
hyperfine index, relating to an integral of equilibrium con-
densate wave function, N is the atom number, and m is the
mass of atom.

To obtain the model �1�, the single mode approximation
�SMA� is applied, that is, the density profiles of two compo-
nent condensates are supposed to be identical and keep con-
stant during temporal evolution. The validity of the SMA for
the spinor-1 atomic condensate such as 87Rb has been inves-
tigated �23�. It showed that under current experimental con-
ditions for 87Rb atoms the SMA works well.

In the limit of large particle number, the operators in the
above field equations could be replaced by the complex num-
bers, we thus obtain following mean-field equations that de-
scribe the evolution of the above two-component BEC sys-
tem effectively ��=1�,

i
d

dt
�a

b
� = H�v��a

b
� , �2�

with the Hamiltonian

H�v� =	
�

2
+

c

2
��b�2 − �a�2�

v
2

v
2

−
�

2
−

c

2
��b�2 − �a�2� 
 , �3�

where a and b denote the amplitudes of probabilities for two
components and the total probability �a�2+ �b�2=1.

Using the above two-component BEC system we are ca-
pable to realize a nonlinear Ramsey interferometer, in which
the nonlinearity represents the interparticle interaction. The
main structure of our nonlinear Ramsey interferometer is il-
lustrated by Fig. 1, in which the variation of the coupling
strength is governed by two Rosen-Zener pulses of the form

v�t� =�
0, t � 0,

v0 sin2��t

T
� , t � �0,T� ,

0, t � �T,T + �� ,

v0 sin2���t − T − ��
T


 , t � �T + �,2T + �� ,

0, t 	 2T + � .

�
�4�

The above RZ pulses are characterized by following param-
eters: v0 is the maximum strength of the coupling, T is the
scanning period of RZ pulse, and � is an alterable time in-
terval between two pulses.

This scheme is analogous to a normal Ramsey interferom-
eter while the Ramsey pulses at the beginning and the end of
the sequence that couple the two components and redistrib-
ute the populations on each component are replaced by so-
called nonlinear RZ tunneling process �19�. The two tunnel-
ing processes are separated by a holding period. During the
holding period, there is no coupling between the two com-
ponents and the BEC on each component will evolve inde-
pendently and only acquire different additional phases. In the
course of the simulative experiments, the system is prepared
in one internal state initially, the final populations of atoms in
each state are recorded when the second pulse turns off. The
measurements are repeated with variable time interval �. The
final populations are sensitive to the phase difference built up
between two components during the intermediate period, as a
result, the Ramsey fringes pattern is expected to emerge in
time domain.

FIG. 1. �Color online� Schematic plot of nonlinear Ramsey in-
terferometer with two-component trapped BEC in time domain,
starting with a RZ pulse, addition of a holding period, ending with
another RZ pulse.
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B. Ramsey fringe patterns

The nonlinear Schrödinger equations �2� that govern the
temporal evolution of the two-component BEC system are
solved numerically using standard Runge-Kutta 4–5th algo-
rithm. We set the initial condition �a ,b�= �1,0�, and take the
maximum coupling strength as the energy scale, namely, v0
=1. The Ramsey fringe patterns have been obtained by re-
cording the final transition probability �b�2 versus the holding
time �.

We begin our numerical simulations with the linear case
of c=0 for T=20. Figures 2�a� and 2�d� shows the variation
of the transition probability for symmetric case ��=0� and
asymmetric case ��=0.1�, respectively. Actually Eq. �2� can
be solved analytically for the symmetric case, the solution is
sin2�v0T /2� which depends on the scanning period T only.
The numerical result in Fig. 2�a� coincides with the analytic
prediction that the transition probability keeps a constant
0.295 96. For the asymmetric system the standard Ramsey
fringes pattern of typical sinusoidal is shown as Fig. 2�d�.

With the emergence of nonlinearity, the Ramsey fringes
pattern distinctly deviates from that of the linear case due to
the dramatic changes of the transition dynamics. In this case
the system �2� is no longer analytically solvable. Our nu-
merical simulations for different nonlinear parameters and
various scanning periods of the RZ pulse have been dis-
played in Figs. 2 and 3, respectively. Figure 2 show that both
nonlinearity and symmetry can affect the pattern and the fre-
quency of Ramsey fringes significantly. By analyzing the
results in Figs. 2 and 3 we find that the Ramsey fringes
pattern includes perfect sinusoidal or cosinoidal oscillation
�see Figs. 2�d�, 3�a�, and 3�d��, trigonometric oscillation with
multiple period �see Figs. 2�b�, 2�c�, 2�e�, 2�f�, 3�b�, and
3�e��, and rectangular oscillation �see Figs. 3�c� and 3�f��.
Furthermore, we also find that the sinusoidal Ramsey pattern
only exists in the linear case �c=0� and the rapid scanning
case �T=0.1� while the rectangular oscillation only emerges
in the very slow scanning case �T=1500�. These diversiform
interference patterns are distinguished from the normal Ram-
sey fringes of sinusoidal or cosinoidal forms and are obvi-

FIG. 2. �Color online� Ramsey fringe patterns
for symmetric case �left-hand column� and asym-
metric case �right-hand column� under different
nonlinear parameters with T=20. �a� and �d� c
=0, �b� and �e� c=0.4, �c� and �f� c=0.8.

FIG. 3. �Color online� Ramsey fringe patterns
for symmetric case �left-hand column� and asym-
metric case �right-hand column� under different
scanning periods with c=0.6. �a� and �d� T=0.1,
�b� and �e� T=20, �c� and �f� T=1500.
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ously evoked by the nonlinear atomic interaction.

III. THEORETICAL ANALYSIS AND EXTENDED
NUMERICAL SIMULATION

In this section we will present thorough analysis on these
striking interference patterns. In practical experiments, in
contrast to the oscillating amplitudes and shapes of the fringe
patterns, the frequencies of the patterns are of more interest
and could be recorded with relatively high resolution and
contrast, therefore we focus our theoretical analysis on the
frequency property extracted from the Ramsey interference
patterns through the Fourier transformation �FT�. We find
that the frequencies of patterns that are dramatically modu-
lated by the interplay of nonlinearity and symmetry and con-
tain many information about the intrinsic properties of the
BEC system.

Through investigating the nonlinear Ramsey patterns pre-
sented above we see the time scale of the period of the RZ
pulse plays an important role in forming the striking patterns.
So our following discussions are divided into two limit
cases, i.e., sudden limit and adiabatic limit. In the former
case, the time scale of the RZ pulse is fast compared to the
intrinsic motion of the system that is characterized by the
frequency v0, while the adiabatic limit refers to the case that
the RZ pulse is much slower than intrinsic motion of the
system.

A. Sudden limit case, i.e., T™2� Õv0

In our simulation, we choose the scanning period of the
RZ pulse T as 0.1 that is much smaller than the intrinsic
period of the system 2� /v0. For both symmetric and asym-
metric cases we extract the angular frequency information of
the Ramsey fringes through making the FT analysis on the
data. The results have been demonstrated in Fig. 4�a�. A
perfect linear increase relation between the angular frequen-
cies of Ramsey fringes and nonlinear parameters is shown
for the symmetric case �see the solid squares in Fig. 4�a��.
For the asymmetric case, the frequency decreases linearly
and then increases linearly as the nonlinear strength increases
�see the solid triangles in Fig. 4�a��. The dip to zero at c
=�=0.1 is clearly seen in the asymmetric system.

Now we explain the above numerical results through
some analytic deduction. Considering that the transition
probability from one state to the other state is small enough
in the sudden limit, thus we can use the perturbation method
to analyze the system �2�. We introduce the following vari-
able transformation:

a = a� exp�− i�
0

t ��

2
+

c

2
��b�2 − �a�2��dt
 , �5�

b = b� exp�i�
0

t ��

2
+

c

2
��b�2 − �a�2��dt
 . �6�

Following this transformation, we transform the diagonal
terms in the Hamiltonian �3� away and obtain the first-order
amplitude of b�T� which yields b�T�

= ��0
t v0

2 sin2� �t
T �ei�c−��tdt�t=T. Finally, the transition probability

after the first RZ pulse is given by

�b�T��2 =
2�4v0

2�1 − cos�
T��

2�4�2 − 
2T2�2 , �7�

where 
=c−�. For convenience, we introduce a phase shift
���� to describe the different phase accumulations between
two components during the holding period. Considering that
two components evolve independently during this period, we
get ����= ��+cs �� from Eq. �2�, where s= �b�T��2− �a�T��2
denotes the population difference between two components
when the first pulse has been turned off. This phase shift is
proportional to the holding time. Obviously, the angular fre-
quency of the Ramsey fringes is expected to be

� = �� + cs� . �8�

This result implies that the frequency of Ramsey fringes is
entirely determined by the population difference s and the
parameters � and c. Substituting Eq. �7� into the above for-
mula, we obtain the angular frequency of Ramsey fringes in
the form

FIG. 4. �Color online� Angular frequency � of Ramsey fringes
as a function of the nonlinear strength c. The numerical results well
agree with analytic predictions. �a� Sudden limit case, the inset
displays the frequency spectrum of Ramsey fringes obtained from
Fourier transformation for different c with �=0 �red arrows refer to
the numerical results plotted in the main plot�. �b� Adiabatic limit
case, the inset demonstrates the details for �=0.1 with c from 0.05
to 0.2. �c� General situation.
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� = �4cv0
2�4�1 − cos�
T��


2�4�2 − �
T�2�2 − 
� . �9�

The above analytical predictions are compared with our nu-
merical results in Fig. 4�a� and a perfect agreement is shown.
Indeed, under the sudden limit assumption, the term 
T in
Eq. �9� is a small quantity, the numerator of the first term on
the right-hand side of Eq. �9� is close to zero due to
cos�
T�→1. When T→0, one can safely neglect the first
term on the right-hand side of Eq. �9�, then the frequency is
proportional to the parameter �
�.

B. Adiabatic limit case, i.e., Tš2� Õv0

In order to ensure the scanning period long enough, we
set T as 1500 in calculation. In contrast to the linear case and
the sudden limit case, an important phenomenon in this case
is found that the FT on Ramsey fringes reveals multiple fre-
quency components, namely, �=n�0, where �0 is the funda-
mental frequency �i.e., basic or first frequency� of the
fringes, n is a positive integer. We interpret this in terms of
the interplay between nonlinearity ascribed to the interatomic
interaction and the coupling energy from the external laser
field. Figure 4�b� only illustrates the fundamental frequencies
of Ramsey fringes for different nonlinear parameters.

The results in this case are very similar to that in sudden
limit case. However, a phenomenon is that there is a irregular
fluctuation in near c=� region �see the inset in Fig. 4�b��. We
guess the adiabatic assumption is violated in this region. To
confirm this argument, we trace the population difference s
after the first RZ pulse with nonlinear parameter increasing.
The results are presented in Fig. 5, we see that a irregular
oscillation of s occurs in the region where ��−c� is very
small as well. With the nonlinear parameter increasing from
0.25 to 1, s will jump between two points +1 and −1 in the
symmetric case. However, for the asymmetric system, when
c	0.35, the value of s will jump between −1 and another
unknown point. This is a more intriguing quantum phenom-
enon and more essentially physical reasons need further de-
tailed study.

In order to explain the above peculiar phenomena, under
the mean-field approximation, following Ref. �24�, we intro-
duce the relative phase 
=
b−
a and the population differ-
ence s= �b�2− �a�2 as two canonical conjugate variables, then
we can obtain an effective classical Hamiltonian

H = − �� +
c

2
s�s + v�1 − s2 cos 
 . �10�

This classical Hamiltonian can describe completely the dy-
namic properties of system �2� �24�. The adiabatic evolution
of the quantum eigenstates can be evaluated by tracing the
shift of the classical fixed points in phase space when the
parameter v varies in time slowly �25�. According to Refs.
�19,26�, for the symmetric system we get the classical fixed
points on line 
*=�,

s* = �0, c/v � 1,

0, � �1 − �v/c�2, c/v 	 1.
� �11�

We show the evolution of fixed point s*=−1 �P2� in Fig.
6. The three fixed points in Eq. �11� are characterized by P3,
P4, and P2, respectively. One saddle point P3 �s*=0� and two
elliptic points P2 and P4 correspond to one unstable state and
two stable states. For c=0.8, a good agreement between dy-
namical evolution and adiabatic trajectory of P2 is shown
both for T=1500 and T=20 000. However, for c=0.03, the
evolution of fixed point P2 shows a clear deviation from the
adiabatic trajectory given by Eq. �11� at T=1500 �see Fig.
6�a�� while the fixed point can follow the adiabatic evolution
at T=20 000 �see Fig. 6�b��. The phenomena indicate that the
adiabatic condition cannot be satisfied for c=0.03 where oc-
curs the irregular fluctuation at T=1500 in Fig. 5. Therefore,
we give the adiabatic condition as follows:

T � Max� 2�

�� − c�
,
2�

v0

 . �12�

FIG. 5. �Color online� The population difference s versus non-
linear parameters from 0 to 1 for symmetric case �red circles� and
asymmetric case �blue triangles� with T=1500. The dotted and
dashed lines refer to theoretical prediction from Eq. �14�.

FIG. 6. �Color online� Comparison between the dynamical evo-
lution �solid line� and the adiabatic evolution �dotted line� of fixed
points for symmetric case with different T: �a� 1500, �b� 20 000.
Blue line and black line refer to c=0.03 and c=0.8, respectively.
Blue dotted line and red dotted line show the corresponding adia-
batic evolution obtained from Eq. �11�.
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Under this condition, so long as ��c, the system will
evolve adiabatically if the scanning period is long enough
even for the small nonlinear parameters �26�. This can suc-
cessfully explain the fluctuation in Figs. 4�b� and 5. Accord-
ingly, we trace the fixed point P2 in asymmetric case �see
Fig. 7� using same parameter T as in Fig. 6. The similar
feature that good adiabatic evolution for c=0.8 and nonadia-
batic evolution for c=0.18 is in the close vicinity of the
zero-energy resonance ��=c� with T=1500 is observed. In
the asymmetric case, another interesting phenomenon is that
the destination of the evolution of the fixed point is not defi-
nite, i.e., there are two different target states �see Fig. 7�b�
and Fig. 5�b�, respectively�. We will interpret it by some
deeply physical analysis below.

For the adiabatic limit case, the energy of the system both
for symmetric and asymmetric cases is no longer conserva-
tive during the entire evolution process, however at the be-
ginning and end of the evolution the corresponding energies
of the system keep the same value,

H�s = − 1,t = 0� = H�s*,t = T� . �13�

In our scheme, both for t=0 and t=T, the coupling parameter
v=0. Thus, we can get the final state of system from Eqs.
�10� and �13�,

s* = �− 1, � 	 c ,

− 1, 1 − 2�/c , 0 � � � c .
� �14�

This result implies that at the end of the adiabatic evolu-
tion, the system has two states to choose from when c	� for
this case, one choice is back to the initial state s*=−1 and the
other choice is located on another state of the identical en-
ergy with the initial state s*=1−2� /c. However, the latter
choice restricts the population to �b�2=� /c, in other words,
the quantum tunneling for asymmetric case require the atom
number on another state must be not more than N� /c �N is
the total number of atoms�. We use the above analysis to
check our numerical results in Fig. 5�b� and a good agree-
ment is shown. According to this analytic prediction, in adia-
batic limit case, the final value of s should be −0.11 or −1 for
c=0.18 and 0.75 or −1 for c=0.8 in Fig. 7, these results
strongly support our numerical results.

In order to provide a simple intuitive understanding of
this adiabatic evolution process, we study the evolution of
fixed points in phase space as shown in Fig. 8. P1, P2, and P4
in the upper panel of Fig. 8 are all elliptic points correspond-
ing to the local maximum �P1� and minimum �P2 and P4� of
the classical Hamiltonian indicated in the lower panel of Fig.
8, respectively. We see the quantum transition between two
states can be explained by a collision between two fixed
points. When c /v decreases from 10 to 1, the fixed point P2
will collide with the unstable saddle point P3 at Pc and dis-
appear subsequently, as shown in Figs. 8�a�–8�d�. The con-
dition of the collision is given by Ref. �25�, namely,

v = �c2/3 − �2/3�3/2. �15�

For the case with �=0.5, the collision occurs at c /v
=2.0897 �see Fig. 8�c��. However, when c /v increases from
1 to 10 again, the state of the system will choose either a
stable fixed point P2 or a stable trajectory Pt which is of
identical energy with P2 to follow after the dynamical bifur-
cation at Pc �see Figs. 8�a�–8�c��. This is a peculiar and
intriguing phenomenon that only emerges in the asymmetric
system. Following the above analysis, we can obtain the ana-
lytic expression of fundamental frequency of Ramsey fringes
in the adiabatic limit from Eqs. �9� and �14�,

FIG. 7. �Color online� Evolution of fixed points for the asym-
metric case under different T: �a� 1500, �b� 20 000.

FIG. 8. �Color online� Evolu-
tion of the phase space motions as
c /v changes adiabatically �upper
panel� with �=0.5. �a� c /v=10,
�b� c /v=3, �c� c /v=2.0897, �d�
c /v=1. The lower panel is the
corresponding energy curve for 

=0 �black thin line� and � �black
heavy line�.
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� = �� − c� . �16�

The results show a perfect linear relation both for symmetric
and asymmetric cases and are consistent with our numerical
results �see Fig. 4�b��.

C. General situation

In this section, we turn to study the general case where the
scanning period of RZ pulse is of the same order with 2� /v0,
i.e., T=20. We will show the population difference s can
greatly affect the frequency of Ramsey fringes in this case.
Similarly, we show the fundamental frequencies of Ramsey
fringes in Fig. 4�c�. The comparison between numerical re-
sults and theoretical prediction ��+cs� show a good agree-
ment. In Fig. 4�c�, the perfect linear relation has been com-
pletely broken, and three zero-frequency points emerge: One
in the asymmetric case and two in the symmetric case. The
physics behind this is that the balance between energy dif-
ference characterized by � and the interatomic interaction
energy controlled by the nonlinear term cs. When the non-
linear parameters satisfy the balance condition �=−cs, there
will occur zero-energy resonance or the zero-frequency
points.

To confirm this argument, we trace the population differ-
ence with the nonlinear parameter increasing. The results
show that for the symmetric case when two components are
of identical populations, the Ramsey fringes vanish and the
zero-frequency points emerge. The concrete process of evo-
lution of a system in the general case is not clear due to the
complex quantum transition behaviors.

D. Dependence of frequency of �

In this section, we briefly investigate the case which sets
the nonlinear parameter as a constant and takes � as an al-
terable quantity.

Following the previous analysis, the fundamental fre-
quency of Ramsey fringes is also expected to be �= ��+cs�.
Figure 9 shows the fundamental frequencies of Ramsey
fringes versus energy difference � for different scanning pe-
riods. We have used the same parameter T as in Fig. 4, and
Figs. 9�a�–9�c� refer to the sudden limit, the adiabatic limit,
and the general case, respectively.

By analyzing these plots, we see that, there is a common
property for three cases, zero-frequency points emerge when
the nonlinear parameter is equal to the energy difference for
the large nonlinear parameter c=0.6. However, for small
nonlinear parameter c=0.15, there does not occur zero-
frequency points in the general case while zero-frequency
points emerge in the sudden limit and the adiabatic limit
cases. Here, we restrict our consideration to �	0 and c	0.
In fact, we find the zero-frequency point in the general case
occurs at �=−0.118 for c=0.15, and the zero-frequency
point in the general case is more than 1.

In particular, the similar irregular fluctuation in the region
around �=c has been found in Fig. 9�b�. The smaller the
nonlinear parameter is, the larger the amplitude of irregular
oscillation shows. This implies that in the region around
� /c=1, the system does not satisfy the adiabatic condition

�12�. If the scanning period is long enough, the fluctuation in
Fig. 9�b� will become smooth �26�.

IV. DISCUSSIONS AND APPLICATIONS

In summary, based on the quantum Rosen-Zener tunnel-
ing process, we propose a feasible scheme to realize nonlin-
ear Ramsey interferometry with a two-component Bose-
Einstein condensate, where the nonlinearity arises from the
interaction between coherent atoms. In our scheme, two RZ
pulses are separated by an intermediate holding period of
variable duration and through varying the holding period we
have observed nice Ramsey fringe patterns in the time do-
main. In contrast to the standard Ramsey fringes our nonlin-
ear Ramsey patterns display diversiform structures due to the
interplay of the nonlinearity and asymmetry. In particular, we
find that the frequency of the nonlinear Ramsey fringes ex-
actly reflects the strength of nonlinearity as well as the asym-
metry of the system. Our study suggests that our interferom-
etry scheme can be used to measure the atomic parameters
such as scattering length, atom number and energy spectrum
through measuring the frequency of nonlinear Ramsey inter-
ference fringe patterns.

Our nonlinear Ramsey interferometer scheme can also be
realized using the BECs with a double-well potential. This
BEC system, under the mean-field approximation, is de-

FIG. 9. �Color online� The angular frequency of Ramsey fringes
versus the energy difference � for different cases. �a� Sudden limit;
�b� adiabatic limit; �c� general situation.
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scribed by following the Gross-Pitaevskii equation �GPE�:

i�
���r,t�

�t
= �−

�2

2m
�2 + V�r� + U0���r,t��2���r,t� ,

�17�

where U0=4��2asN /m with m the atomic mass and as the
s-wave scattering length of the atoms. The wave function can
be described by a superposition of two states that localize in
each well separately as �27� ��r , t�=�1�t��1�r�+�2�t��2�r�.
The spatial wave function �i�r� �i=1,2� which describe the
condensate in each well can be expressed in terms of sym-
metric and antisymmetric stationary eigenstates of GPE, and
these two wave functions satisfy the orthogonality condition
��1�r��2�r�dr=0 and normalized condition ���i�r��2dr=1.
Consider the weakly linked BEC, the dynamic behavior of
the system can be described by the Schrödinger equation
with the Hamiltonian as follows:

H = ��1
0 + c1��1�2 K

K �2
0 + c2��2�2

� , �18�

where �i
0=�� �2

2m ���i�2+ ��i�2V�r��dr �i=1,2� is the zero-point
energy in each well. ��=�1−�2 is the energy bias. ci

=U0� ��i�4dr denotes the atomic self-interaction. K
=�� �2

2m ���1��2�+�1V�r��2�dr stands for the the amplitude
of the coupling between two wells.

For example, consider the one-dimensional case, we can
express the potential of our system as V�x�= 1

2m�x2

+v0e−x2/2d+ fx, d is the double-well separation in the x direc-
tion. This optical double-well potential can be created by
superimposing a blue-detuned laser beam upon the center of
the magnetic trap �28�, the difference of the zero-point en-
ergy between two wells or trap asymmetry characterized by f
can be found by a magnetic field, a gravity field or light
shifts �29�. The atomic interaction c can be adjusted flexibly
by Feshbach resonance, and the barrier height K can be ef-
fectively controlled by adjusting the intensity of the blue-
detuned laser beam.
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