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Evolution of the Chern-Simons vortices
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Based on the gauge potential decomposition theory an@th@pping theory, the topological inner struc-
ture of the Chern-Simons-Higg€SH) vortex is discussed in detail. The evolution of CSH vortices is also
studied from the topological properties of the Higgs scalar field. The vortices are found generating or annihi-
lating at the limit points and encountering, splitting, or merging at the bifurcation points of the scalap.field

PACS numbgs): 11.15—-q, 02.40.Pc, 47.32.Cc

I. INTRODUCTION IIl. THE TOPOLOGICAL INNER STRUCTURE
OF CSH VORTEX

In recent years, a great deal of work on the .
(2+1)-dimensional Abelian Chern-Simons-Higg€SH) We know that the_ scalar fielgh (?an be_ regarded as;the
model has been done by many physicfds4]. This model com|?lex2 representation of a two-dimensional vector figld
has been widely used in many fields of physics, such as thg (¢7,¢°) over the base space, and
fractional spin in quantum field theof,5], and the quan- b= pLti? 3)
tum Hall effect in condensed matter physjé€s7]. '

We know that the (2 1)-dimensional Abelian CSH La- \here ¢2(a=1,2) are real function. Let us define the unit

grangian density is often expressed as vector
¢a
1 1 na:W, [¢ll=(pe*)*" 4
Les( ¢ A)=gac™AF,\+5Dd(D¢)* +V(4), ¢
(1) Considering the covariant derivative
=d . €
where ¢ is the designated charged Higgs scalar field and D¢=do—i %A‘b' ®)

iae”™A,F, is the so-called Chern-Simons term. As . .
pointed out by many physicis{4,3], the magnetic flux of As one has showed ii2], theU(1) gauge potential can be

the vortex is decomposed by the Higgs complex scalar figlds
hc ab apnb
AM:?E d,n°n°+d,\, (6)

: 1 . 2mhe
b= éAidXIZJ‘EE”&iA]'dXZZ n, (2)
€ in which \ is only a phase factor. We can introduce a topo-

logical current

wheren is a topological index, characterizing the vortex con- he
figuration. This is common to include the topological prop- J"=§ ety A = % e #"™N e 1pd, N3\ nP. )
erties of the CSH vortex, but the inner structure of the vortex

and its evolution have not been studied. Obviously, the current(7) is conserved. Following the
In this paper, based on thg-mapping theory8-11, we 4 mapping theory, it can be rigorously proved that
study the inner structure of this vortex system in detail. One
¢

shows that the vortex configuration given in Eg) is a 2mhc

multivortex solution and the charge of the vortex is labeled JH= e X
only by the topological indices of the zero points of the

scalar field¢. Furthermore, the evolution of the vortex is where the JacobiaD*(¢/x) is defined as
also investigated. And one sees that the vortices generate or
annihilate at the limit points and encounter, split, or merge at
the bifurcation points of the Higgs scalar fields.

52<<Z>>DM( :
IS abD”(%) =e '“V)‘&,,na&)\nb.

From this expression, we find that* does not vanish
*Email address: Ibfu@263.net only When$=0, i.e.,
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»3(x° x1,x?)=0, a=1,2. (8)

Suppose that the vector fielﬁ(qbl,q‘)z) possesses zeros,
denoted ag; (i=1,... ). According to the implicit func-

tion theorem[15], when the zeros poimﬂ are the regular
points of<Z>, that requires the Jacobians determinant

o8] o

The solutions of Eq(8) can be generally obtained:

#0. 9

Zi

x=z(t), i=1,2,...},
x0=t. (10
From Eq.(8), it is easy to prove that
é d\| dx#
M — = — R
o 2| ~of2)] % m

According to thes-function theory{13] and the¢ -mapping
theory, one can prove that

JH

: 12

Zi

|

2mhc -~ - dx#
_ o 82X — 7. ) ———
T e ;l Bimio°(X—1z) dt

in which the positive integeg; is the Hopf index andy,
=sgr(D(¢/x),)=*1 is the Brouwer degref14,9). Then
the density of topological charge can be expressed as

2mhc - -
p=3=—o— 2 Bimd*(x-2). (13
From Eq.(7), it is easy to see that
1
p(X)= 5 € oA, (14

so, the total charge of the system given in E2). can be
rewritten as

|
Q= f P(X)dzxzq’ozl Bimi, (15)

where® =27 c/e is the unit magnetic flux. And the topo-

logical indexn in Eqg. (2) has the following expression

|
n=i:El Bini - (16)

It is obvious to see that there exiktisolated vortices of
which theith vortex possesses chargen;®,. And the vor-
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Ill. THE GENERATION AND ANNIHILATION
OF VORTICES

As discussed before, the zeros of the vector figlglay
an important role in describing the topological structure of
the vortices. Now we begin investigating the properties of
the zero points. As we knew before, if the Jacobian

Do(f)qéo,
X

(17)

we will have the isolated zeros of the vector fie}d How-
ever, when the condition fails, the above discussion will
change in some way and lead to the branch process. We

denote one of the zero points a$ (z,). If the Jacobian

_E

we can use the Jacobi@n'(¢/x) instead ofD°(¢/x) for the
purpose of using the implicit function theorditb]. Then we
have a unique solution of Eg8) in the neighborhood of the

limit point (t*,z;)

#0,

(t*.,z)

(18

t=t(x}), x2=x3(x}) (19
with t* =t(z). We call the critical pointst¢,z;) the limit

points. In the present case, we know that

dxt DY( /%)
dt (t*,ii):m (t*’ii)zoo’ (20)
ie.,
ﬂ =0. 21)
dxt

(t*.z)

Then, the Taylor expansion daf=t(x}) at the limit point
(t*,z) is [8]

1 d%
*

_ :E(dx—l)z (Xl_Xil)z,

(t*.z)

(22)

which is a parabola in!-t plane. From Eq(22) we can
obtain two solution(t) andx; (t), which give two branch
solutions(world lines of vortices If
d?t
(dxh)?

>0,

(t*.z)

we have the branch solutions fort* [see Fig. 1a)]; oth-
erwise, we have the branch solutions fort* [see Fig.

tex corresponds tg; = + 1, while the antivortex corresponds 1(b)]. These two cases are related to the origin and annihila-
to »;=—1. One can conclude that the vortex configurationtion of the vortices.

given in Eq.(2) is a multivortex solution which possesses the

inner structure described by expressias).

One of the results of Eq20), that the velocity of vortices
are infinite when they are annihilating, agrees with the fact

045004-2



EVOLUTION OF THE CHERN-SIMONS VORTICES PHYSICAL REVIEW B1 045004
¢ ¢
—|l =0, D!

X .

x
ZI
which leads to an important fact that the function relation-
ship betweert andx! is not unique in the neighborhood of

the bifurcation point {* ,fi). It is easy to see that

X! D -0, (24)

Z

_dxl B DY(¢/x)
T dt D(¢/x)

1

: (25

Z

t which under Eq(24) directly shows that the direction of the
integral curve of Eq(25) is indefinite at (*,Ei), i.e., the
velocity field of vortices is indefinite at the point*(,fi).
This is why the very point t¢,z) is called a bifurcation
point.

_______________ Assume that the bifurcation point(,z;) has been found
from Egs. (8) and (24). We know that, at the bifurcation

point (t* ,Zi), the rank of the Jacobian matii¥ ¢/ dx] is 1.
In addition, according to the>-mapping theory, the Taylor
expansion of the solution of E@8) in the neighborhood of

the bifurcation point {*,z) can be expressed §8]

(b) t* t A(Xr—x1)2+2B(x—xH) (t—t*) + C(t—t*)?=0 (26)
FIG. 1. Projecting the world lines of vortices onte' ¢ t) plane. which leads to
(a) The branch solutions for Eq22) when d?t/(dx")?|( ;)>0,

i.e., a pair of vortices with opposite charges generate at the limit dxt\ 2 dxt

point, i.e., the origin of vorticesb) The branch solutions for Eq. A(W +ZBW+C=0 (27
(22) whend?t/(dx")?| i« z)<0, i.e., a pair of vortices with opposite

charges annihilate at the limit point. and

obtained by Bray16] who has a scaling argument associated 2

with the point defects final annihilation which leads to a C ﬂ +ZBﬂ +A=0 (28
large velocity tail. From Eq(20), we also obtain a new result dxt dxt '

that the velocity of vortices is infinite when they are gener-
ating, which is gained only from the topology of the scalarwhereA, B, andC are three constants. The solutions of Eq.
fields. (27) or Eq.(28) give different directions of the branch curves
Since the topological current is identically conserved, theworld lines of vortice$ at the bifurcation point. There are
topological charge of these two generated or annihilated vorg ¢ possible cases, which will show the physical meanings
tices must be opposite at the limit point, i.e., of the bifurcation points.
B =—Bim, 23) Case 1(A+#0). ForA=4(B>— AC)>0 from Eq.(27) we
1 272 get two different directions of the velocity field of vortices

which shows thaBilz,Bi2 and 7,= = i, One can see that

1 R2
the fact the Brouwer degreg is indefinite at the limit points d_x — B+ VB™~AC (29)
implies that it can change discontinuously at limit points dt 12 A '
along the world lines of vorticedrom =1 to = 1). Itis easy '
to see from Fig. 1: whex!>z", m,=*1; whenx!<z',  which is shown in Fig. 2, where two world lines of two
7i,=F1. vortices intersect with different directions at the bifurcation

point. This shows that two vortices encounter and then de-
part at the bifurcation point.

Case 2A+0). ForA=4(B>— AC)=0 from Eq.(27) we
obtain only one direction of the velocity field of vortices

For a limit point it is required thaﬁ)l((i)/x)l(t*'gi)aﬁo. As
to a bifurcation poinf17], it must satisfy a more complex
condition. This case will be discussed in the following sec-
tion.
dxt B
IV. THE BIFURCATION OF VORTICES VELOCITY —_— ==, (30)
FIELD atf,, A

In this section we have the restrictions of Ef) at the  which includes three important casés) Two world lines
bifurcation points {*,z), tangentially contact, i.e., two vortices tangentially encounter
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x! X}

t

FIG. 2. Projecting the world lines of vortices onte' - t) plane.
Two world lines intersect with different directions at the bifurcation x!
point, i.e., two vortices encounter at the bifurcation point.

at the bifurcation poinfsee Fig. 8a)]. (b) Two world lines
merge into one world line, i.e., two vortices merge into one
vortex at the bifurcation poirisee Fig. 8)]. (c) One world
line resolves into two world lines, i.e., one vortex splits into /
two vortices at the bifurcation poifisee Fig. &)].

Case 3(A=0,C+#0). ForA=4(B>—AC)=0 from Eq.
(28) we have

dt —-B=*=+B°-AC 2B
— =———— =0, ——. (31)
dxt L C

[ of

There are two important cases) One world line resolves
into three world lines, i.e., one vortex splits into three vorti- | .. ______.
ces at the bifurcation poirjsee Fig. 4a)]. (b) Three world -
lines merge into one world line, i.e., three vortices merge /
into one vortex at the bifurcation poifisee Fig. 4b)].

Case 4(A=C=0). Equation(27) and Eq.(28) give re-
spectively

dxt dt (© * t
G =0 = 0. (32
dt dx FIG. 3. (a) Two world lines tangentially contact, i.e., two vorti-

ces tangentially encounter at the bifurcation poib). Two world

This case is obvious, see Fig. 5, and is similar to case 3. lines merge into one world line, i.e., two vortices merge into one

The above solutions reveal the evolution of the vorticesVortex at the bifurcation pointc) One world line resolves into two
Besides the encountering of the vortices, i.e., two Vorticeg_\/orld Ii_nes, i.e., one vortex splits into two vortices at the bifurca-
encounter and then depart at the bifurcation point along diffo" POINt
ferent branch curvepsee Fig. 2 and Fig. (8], it also in-
cludes Sp||tt|ng and merging of vortices. When a multi- for fixed . Furthermore, from the above Studies, we see that
charged vortex moves through the bifurcation point, it maythe generation, annihilation, and bifurcation of vortices are
split into several vortices along different branch curjmse ~ not gradually changed, but suddenly changed at the critical
Fig. 3(c), Fig. 4(a), and Fig. %b)]. On the contrary, several POINts.
vortices can merge into one vortex at the bifurcation point
[see Fig. &) and Fig. 4b)]. _ V. CONCLUSION

The identical conversation of the topological charge
shows the sum of the topological charge of these final vorti-

ces must be equal to that of the original vortices at the bifur- First, we obtain the inner topolog|cal structure of the
cation point, i.e., Chern-Simons vortex. The multicharged vortex has been

found at the every zero point of the Higgs scalar figid
under the condition that the Jacobian determiriafeb/x)
= 33 #0. One also shows that the charge of the vortex is deter-
Ei Bim, 2f B, 33 mined by Hopf indices and Brouwer degrees. Second, we
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FIG. 4. Two important cases of E¢31). (a) One world line FIG. 5. Two world lines intersect normally at the bifurcation
resolves into three world lines, i.e., one vortex splits into threepoint. This case is similar to Fig. 4a) Three vortices merge into
vortices at the bifurcation pointb) Three world lines merge into one vortex at the bifurcation poinfb) One vortex splits into three
one world line, i.e., three vortices merge into one vortex at thevortices at the bifurcation point.
bifurcation point.

* t (b) * t

must point out that there exist two restrictions of the evolu-
tion of vortices. One restriction is the conservation of the
conclude that there exist crucial cases of branch processes topological charge of the vortices during the branch process
the evolution of the vortices wheB (¢/x)=0, i.e., »; is [see Eqs(23) and(33)], the other restriction is the number of
indefinite. This means that the vortices generate or annihilatdifferent directions of the world lines of vortices is at most
at the limit points and encounter, split, or merge at the bifurfour at the bifurcation pointgsee Eqs(27) and (28)]. Per-
cation points of the Higgs scalar fields, which shows that thénaps the former was known before, but the latter is pointed
vortices system is unstable at these branch points. Here waut for the first time.
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