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Evolution of the Chern-Simons vortices
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Based on the gauge potential decomposition theory and thef-mapping theory, the topological inner struc-
ture of the Chern-Simons-Higgs~CSH! vortex is discussed in detail. The evolution of CSH vortices is also
studied from the topological properties of the Higgs scalar field. The vortices are found generating or annihi-
lating at the limit points and encountering, splitting, or merging at the bifurcation points of the scalar fieldf.

PACS number~s!: 11.15.2q, 02.40.Pc, 47.32.Cc
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I. INTRODUCTION

In recent years, a great deal of work on t
(211)-dimensional Abelian Chern-Simons-Higgs~CSH!
model has been done by many physicists@1–4#. This model
has been widely used in many fields of physics, such as
fractional spin in quantum field theory@3,5#, and the quan-
tum Hall effect in condensed matter physics@6,7#.

We know that the (211)-dimensional Abelian CSH La
grangian density is often expressed as

LCSH~f, A!5
1

4
aPmnlAmFyl1

1

2
Df~Df!* 1V~f!,

~1!

where f is the designated charged Higgs scalar field a
1
4 aPmnlAmFyl is the so-called Chern-Simons term. A
pointed out by many physicists@1,3#, the magnetic flux of
the vortex is

F5 R Aidxi5E 1

2
P i j ] iAjdx25

2p\c

e
n, ~2!

wheren is a topological index, characterizing the vortex co
figuration. This is common to include the topological pro
erties of the CSH vortex, but the inner structure of the vor
and its evolution have not been studied.

In this paper, based on thef-mapping theory@8–11#, we
study the inner structure of this vortex system in detail. O
shows that the vortex configuration given in Eq.~2! is a
multivortex solution and the charge of the vortex is labe
only by the topological indices of the zero points of t
scalar fieldf. Furthermore, the evolution of the vortex
also investigated. And one sees that the vortices genera
annihilate at the limit points and encounter, split, or merge
the bifurcation points of the Higgs scalar fields.
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II. THE TOPOLOGICAL INNER STRUCTURE
OF CSH VORTEX

We know that the scalar fieldf can be regarded as th
complex representation of a two-dimensional vector fieldfW
5(f1,f2) over the base space, and

f5f11 if2, ~3!

wherefa(a51,2) are real function. Let us define the un
vector

na5
fa

uufuu
, uufuu5~ff* !1/2. ~4!

Considering the covariant derivative

Df5df2 i
e

\c
Af. ~5!

As one has showed in@12#, theU(1) gauge potential can b
decomposed by the Higgs complex scalar fieldf as

Am5
\c

e
Pab]mnanb1]ml, ~6!

in which l is only a phase factor. We can introduce a top
logical current

Jm5
1

2
Pmnl]nAl5

\c

2e
PmnlPab]nna]lnb. ~7!

Obviously, the current~7! is conserved. Following the
f-mapping theory, it can be rigorously proved that

Jm5
2p\c

e
d2~fW !DmS f

x D ,

where the JacobianDm(f/x) is defined as

PabDmS f

x D5Pmnl]nna]lnb.

From this expression, we find thatJm does not vanish
only whenfW 50, i.e.,
©2000 The American Physical Society04-1
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fa~x0,x1,x2!50, a51,2. ~8!

Suppose that the vector fieldfW (f1,f2) possessesl zeros,
denoted aszi ( i 51, . . . ,l ). According to the implicit func-
tion theorem@15#, when the zeros pointszW i are the regular
points offW , that requires the Jacobians determinant

DS fW

x
D U

zi

5D0S fW

x
D U

zi

Þ0. ~9!

The solutions of Eq.~8! can be generally obtained:

xW5zW i~ t !, i 51,2, . . . ,l ,

x05t. ~10!

From Eq.~8!, it is easy to prove that

DmS fW

x
D U

zi

5DS fW

x
D U

zi

dxm

dt
. ~11!

According to thed-function theory@13# and thef -mapping
theory, one can prove that

Jm5
2p\c

e (
i 51

l

b ih id
2~xW2zW i !

dxm

dt U
zi

, ~12!

in which the positive integerb i is the Hopf index andh i

5sgn„D(fW /xW )zi
…561 is the Brouwer degree@14,9#. Then

the density of topological charge can be expressed as

r5J05
2p\c

e (
i 51

l

b ih id
2~xW2zW i !. ~13!

From Eq.~7!, it is easy to see that

r~x!5
1

2
P i j ] iAj , ~14!

so, the total charge of the system given in Eq.~2! can be
rewritten as

Q5E r~x!d2x5F0(
i 51

l

b ih i , ~15!

whereF052p\c/e is the unit magnetic flux. And the topo
logical indexn in Eq. ~2! has the following expression

n5(
i 51

l

b ih i . ~16!

It is obvious to see that there existl isolated vortices of
which thei th vortex possesses chargeb ih iF0. And the vor-
tex corresponds toh i511, while the antivortex correspond
to h i521. One can conclude that the vortex configurati
given in Eq.~2! is a multivortex solution which possesses t
inner structure described by expression~15!.
04500
III. THE GENERATION AND ANNIHILATION
OF VORTICES

As discussed before, the zeros of the vector fieldfW play
an important role in describing the topological structure
the vortices. Now we begin investigating the properties
the zero points. As we knew before, if the Jacobian

D0S f

x DÞ0, ~17!

we will have the isolated zeros of the vector fieldfW . How-
ever, when the condition fails, the above discussion w
change in some way and lead to the branch process.
denote one of the zero points as (t* ,zW i). If the Jacobian

D1S f

x D U
(t* ,zW i )

Þ0, ~18!

we can use the JacobianD1(f/x) instead ofD0(f/x) for the
purpose of using the implicit function theorem@15#. Then we
have a unique solution of Eqs.~8! in the neighborhood of the
limit point (t* ,zW i)

t5t~x1!, x25x2~x1! ~19!

with t* 5t(zi
1). We call the critical points (t* ,zW i) the limit

points. In the present case, we know that

dx1

dt U
(t* ,zW i )

5
D1~f/x!

D~f/x!
U

(t* ,zW i )

5`, ~20!

i.e.,

dt

dx1U
(t* ,zW i )

50. ~21!

Then, the Taylor expansion oft5t(x1) at the limit point
(t* ,zW i) is @8#

t2t* 5
1

2

d2t

~dx1!2U
(t* ,zW i )

~x12xi
1!2, ~22!

which is a parabola inx1-t plane. From Eq.~22! we can
obtain two solutionsx1

1(t) andx2
1 (t), which give two branch

solutions~world lines of vortices!. If

d2t

~dx1!2U
(t* ,zW i )

.0,

we have the branch solutions fort.t* @see Fig. 1~a!#; oth-
erwise, we have the branch solutions fort,t* @see Fig.
1~b!#. These two cases are related to the origin and annih
tion of the vortices.

One of the results of Eq.~20!, that the velocity of vortices
are infinite when they are annihilating, agrees with the f
4-2
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EVOLUTION OF THE CHERN-SIMONS VORTICES PHYSICAL REVIEW D61 045004
obtained by Bray@16# who has a scaling argument associa
with the point defects final annihilation which leads to
large velocity tail. From Eq.~20!, we also obtain a new resu
that the velocity of vortices is infinite when they are gen
ating, which is gained only from the topology of the sca
fields.

Since the topological current is identically conserved,
topological charge of these two generated or annihilated
tices must be opposite at the limit point, i.e.,

b i 1
h i 1

52b i 2
h i 2

, ~23!

which shows thatb i 1
5b i 2

andh i 1
52h i 2

. One can see tha
the fact the Brouwer degreeh is indefinite at the limit points
implies that it can change discontinuously at limit poin
along the world lines of vortices~from 61 to 71). It is easy
to see from Fig. 1: whenx1.zi

1 , h i 1
561; whenx1,zi

1 ,
h i 2

571.
For a limit point it is required thatD1(f/x)u(t* ,zW i )

Þ0. As
to a bifurcation point@17#, it must satisfy a more comple
condition. This case will be discussed in the following se
tion.

IV. THE BIFURCATION OF VORTICES VELOCITY
FIELD

In this section we have the restrictions of Eq.~8! at the
bifurcation points (t* ,zW i),

FIG. 1. Projecting the world lines of vortices onto (x12t) plane.
~a! The branch solutions for Eq.~22! when d2t/(dx1)2u(t* ,zW i )

.0,
i.e., a pair of vortices with opposite charges generate at the l
point, i.e., the origin of vortices.~b! The branch solutions for Eq
~22! whend2t/(dx1)2u(t* ,zW i )

,0, i.e., a pair of vortices with opposit
charges annihilate at the limit point.
04500
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DS f

x D U
zi

50, D1S f

x D U
zi

50, ~24!

which leads to an important fact that the function relatio
ship betweent andx1 is not unique in the neighborhood o
the bifurcation point (t* ,zW i). It is easy to see that

V15
dx1

dt
5

D1~f/x!

D~f/x!
U

zi

, ~25!

which under Eq.~24! directly shows that the direction of th
integral curve of Eq.~25! is indefinite at (t* ,zW i), i.e., the
velocity field of vortices is indefinite at the point (t* ,zW i).
This is why the very point (t* ,zW i) is called a bifurcation
point.

Assume that the bifurcation point (t* ,zW i) has been found
from Eqs. ~8! and ~24!. We know that, at the bifurcation
point (t* ,zW i), the rank of the Jacobian matrix@]f/]x# is 1.
In addition, according to thef-mapping theory, the Taylor
expansion of the solution of Eq.~8! in the neighborhood of
the bifurcation point (t* ,zW i) can be expressed as@8#

A~x12xi
1!212B~x12xi

1!~ t2t* !1C~ t2t* !250 ~26!

which leads to

AS dx1

dt D 2

12B
dx1

dt
1C50 ~27!

and

CS dt

dx1D 2

12B
dt

dx1
1A50, ~28!

whereA, B, andC are three constants. The solutions of E
~27! or Eq.~28! give different directions of the branch curve
~world lines of vortices! at the bifurcation point. There ar
four possible cases, which will show the physical meanin
of the bifurcation points.

Case 1(AÞ0). ForD54(B22AC).0 from Eq.~27! we
get two different directions of the velocity field of vortices

dx1

dt U
1,2

5
2B6AB22AC

A
, ~29!

which is shown in Fig. 2, where two world lines of tw
vortices intersect with different directions at the bifurcati
point. This shows that two vortices encounter and then
part at the bifurcation point.

Case 2(AÞ0). ForD54(B22AC)50 from Eq.~27! we
obtain only one direction of the velocity field of vortices

dx1

dt U
1,2

52
B

A
, ~30!

which includes three important cases.~a! Two world lines
tangentially contact, i.e., two vortices tangentially encoun

it
4-3
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at the bifurcation point@see Fig. 3~a!#. ~b! Two world lines
merge into one world line, i.e., two vortices merge into o
vortex at the bifurcation point@see Fig. 3~b!#. ~c! One world
line resolves into two world lines, i.e., one vortex splits in
two vortices at the bifurcation point@see Fig. 3~c!#.

Case 3(A50,CÞ0). For D54(B22AC)50 from Eq.
~28! we have

dt

dx1U
1,2

5
2B6AB22AC

C
50, 2

2B

C
. ~31!

There are two important cases:~a! One world line resolves
into three world lines, i.e., one vortex splits into three vor
ces at the bifurcation point@see Fig. 4~a!#. ~b! Three world
lines merge into one world line, i.e., three vortices me
into one vortex at the bifurcation point@see Fig. 4~b!#.

Case 4(A5C50). Equation~27! and Eq.~28! give re-
spectively

dx1

dt
50,

dt

dx1
50. ~32!

This case is obvious, see Fig. 5, and is similar to case 3
The above solutions reveal the evolution of the vortic

Besides the encountering of the vortices, i.e., two vorti
encounter and then depart at the bifurcation point along
ferent branch curves@see Fig. 2 and Fig. 3~a!#, it also in-
cludes splitting and merging of vortices. When a mu
charged vortex moves through the bifurcation point, it m
split into several vortices along different branch curves@see
Fig. 3~c!, Fig. 4~a!, and Fig. 5~b!#. On the contrary, severa
vortices can merge into one vortex at the bifurcation po
@see Fig. 3~b! and Fig. 4~b!#.

The identical conversation of the topological char
shows the sum of the topological charge of these final vo
ces must be equal to that of the original vortices at the bi
cation point, i.e.,

(
i

b l i
h l i

5(
f

b l f
h l f

~33!

FIG. 2. Projecting the world lines of vortices onto (x12t) plane.
Two world lines intersect with different directions at the bifurcati
point, i.e., two vortices encounter at the bifurcation point.
04500
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for fixed l. Furthermore, from the above studies, we see t
the generation, annihilation, and bifurcation of vortices a
not gradually changed, but suddenly changed at the crit
points.

V. CONCLUSION

First, we obtain the inner topological structure of th
Chern-Simons vortex. The multicharged vortex has be
found at the every zero point of the Higgs scalar fieldf
under the condition that the Jacobian determinateD(f/x)
Þ0. One also shows that the charge of the vortex is de
mined by Hopf indices and Brouwer degrees. Second,

FIG. 3. ~a! Two world lines tangentially contact, i.e., two vort
ces tangentially encounter at the bifurcation point.~b! Two world
lines merge into one world line, i.e., two vortices merge into o
vortex at the bifurcation point.~c! One world line resolves into two
world lines, i.e., one vortex splits into two vortices at the bifurc
tion point.
4-4
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EVOLUTION OF THE CHERN-SIMONS VORTICES PHYSICAL REVIEW D61 045004
conclude that there exist crucial cases of branch process
the evolution of the vortices whenD(f/x)50, i.e., h i is
indefinite. This means that the vortices generate or annih
at the limit points and encounter, split, or merge at the bif
cation points of the Higgs scalar fields, which shows that
vortices system is unstable at these branch points. Here

FIG. 4. Two important cases of Eq.~31!. ~a! One world line
resolves into three world lines, i.e., one vortex splits into th
vortices at the bifurcation point.~b! Three world lines merge into
one world line, i.e., three vortices merge into one vortex at
bifurcation point.
ev

h.

cl
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must point out that there exist two restrictions of the evo
tion of vortices. One restriction is the conservation of t
topological charge of the vortices during the branch proc
@see Eqs.~23! and~33!#, the other restriction is the number o
different directions of the world lines of vortices is at mo
four at the bifurcation points@see Eqs.~27! and ~28!#. Per-
haps the former was known before, but the latter is poin
out for the first time.

e

e

FIG. 5. Two world lines intersect normally at the bifurcatio
point. This case is similar to Fig. 4.~a! Three vortices merge into
one vortex at the bifurcation point.~b! One vortex splits into three
vortices at the bifurcation point.
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