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By generalizing the definition of fidelity for the nonlinear system, we investigate the dynamics and adiaba-
ticity of the population transfer for atom-molecule three-level � system on a stimulated Raman adiabatic
passage �STIRAP�. We find that the adiabatic fidelity for the coherent population trapping state or dark state,
as the function of the adiabatic parameter, approaches to unit in a power law. The power exponent, however,
is much less than the prediction of the linear adiabatic theorem. We further discuss how to achieve higher
adiabatic fidelity for the dark state through optimizing the external parameters of the STIRAP.
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In the field of ultracold atomic physics, conversion of an
atomic pair to a molecule by means of photoassociation �1�
or magnetic Feshbach resonances �2,3� is a hot topic both in
experiment and in theory. Photoassociation creates molecules
in the excited electronic level, while magnetoassociation cre-
ates molecules in a high vibrational quantum state. For fer-
mionic atoms with a feshbach resonance, the resulting mol-
ecules can be long lived, while for bosonic atoms, the
molecules are energetically unstable and suffer from large
inelastic loss rate.

One possible scheme to overcome this difficulty is to em-
ploy the stimulated Raman adiabatic passage �STIRAP�
�4–6�, whose success relies on the existence of the coherent
population trapping �CPT� state or dark state �4–6�. For the
dark state, the population on the excited electronic level is
zero, hence the adiabatic evolution will reduce the spontane-
ous emission losses in the excited electronic level and create
ultracold stable molecules with high conversion efficiency.
Therefore the STIRAP scheme is a possible way to achieve
the ground molecular Bose-Einstein condensates from its
atomic counterpart �7� or extremely weakly bound molecular
gases �8� in experiments.

Many recent theoretical works �6,9–11� have been de-
voted to studying the dynamics, proving the adiabatic condi-
tion and improving the conversion efficiency of the atom-
molecule coupling model. Indeed, the adiabatic evolution of
a system can be thoroughly studied quantitatively by em-
ploying adiabatic fidelity which describes the distance be-
tween the actual evolution state and the adiabatic state �dark
state�. However, different from the traditional STIRAP in an
atomic system, the atom-molecule STIRAP contains nolin-
earity. Creating more difficulties, the system is no longer
invariant under U�1�-transformation. Hence the definition of
the adiabatic fidelity, which is based on the a U�1� invari-
ance, is no longer suitable for the atom-molecule coupling
system.

In the present paper, we properly define an adiabatic fi-
delity in the nonlinear � system. Using this function, we
study the adiabatic evolution in the atom-molecule conver-

sion system quantitatively. We find that the adiabatic fidelity
for the dark state, as the function of the adiabatic parameter,
approaches to unit in a power law. However, the power ex-
ponents are much less than the prediction from the linear
adiabatic theorem. Then, we further discuss how to optimize
the external parameters of the STIRAP process to achieve
higher adiabatic fidelity for the dark state.

Our model is schematically sketched in Fig. 1�a�. The
initial state �a� �atomic state� and the intermediate state �e�
�excited molecular state� are coupled by pump laser with
Rabi frequency �2, while state �e� and the target state �g�
�ground molecular state� are coupled by stokes laser with
Rabi frequency �1. The frequencies of the applied lasers are
expressed in terms of the single- and two-photon detunings �
and �, respectively. Without loss of generality, we assume
that the Rabi frequencies �1,2 are real and positive. Under
the two-photon resonance condition ��=0�, the Hamiltonian
in second quantized form reads �9,11�,

Ham = − ���̂e
†�̂e +

�

2
�− �2�̂e

†�̂a�̂a + �1�̂e
†�̂g + H.c.� ,

�1�

where �̂i and �̂i
† are the annihilation and creation operators

for state �i�, respectively. Under the mean-field approxima-
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FIG. 1. �a� Three-level system coupled by two lasers. �1 ,�2 are
the Rabi frequencies for the pump and Stokes laser, � and � are one
and two-photon detunings, respectively. �b� Time dependence of
�1 ,�2. t1 , t2 are the centers of the two pulses, respectively, and �t
is the time delay between the two pulses.
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tion, i.e., �̂i and �̂i
† are replaced by c number �i and �

i
*, the

Schrödinger equations �with �=1� are

i�̇a = − �2�
a
*�e, �2a�

i�̇e = − ��e −
�2

2
�a

2 +
�1

2
�g, �2b�

i�̇g =
�1

2
�e. �2c�

In the above model, the nonlinear collisions between par-
ticles are neglected, so the only nonlinearity comes from the
fact that it takes two atoms to form a molecule. Mathemati-
cally, the Hamiltonian in the above Schrödinger equations is
a functional of the instantaneous wave function as well as its
conjugate.

The adiabatic theory for nonlinear quantum systems has
been set up recently in Ref. �12�, where new adiabatic con-
ditions and adiabatic invariants are given. However, these
discussions are restricted to systems that have U�1� invari-
ance. For the atom-molecule � system, because the Hamil-
tonian is a functional of both the wave function and its con-
jugate, the U�1� invariance is broken. Instead, the system is
invariant under the following transformation:

U��� = ei����, ���� = �� 0 0

0 2� 0

0 0 2�
� . �3�

Under this transformation, ���= ��a ,�e ,�g�T→ ����
=U������= ��aei� ,�ee

i2� ,�gei2��T. In fact, when the diago-
nal terms in the above matrix are identical, the transforma-
tion U��� degenerates to the U�1� transformation.

This new kind of symmetry allows the following station-
ary states with chemical potential 	:

�a = ��a�ei
ae−i	t, �e,g = ��e,g�ei
e,ge−i2	t, �4�

where

2
a − 
e = const, 
g − 
e = const. �5�

Under the normalized condition ���a�2+2��e�2+2��g�2=1�,
we can show, as in the atomic counterpart, the atom-
molecule � system supports a CPT eigenstate �9,10� with
zero eigenvalue;

�CPT� = 	 ��1�ef f
nl − �1

2�1/2

2�2
,0,

�ef f
nl − �1

4�2

T

, �6�

where �ef f
nl =��1

2+8�2
2.

When the Rabi laser pulses are ramped up adiabatically,
i.e., �1,2 vary in time slowly, the state that is initially pre-
pared as the CPT state is expected to remain close to the
instantaneous CPT state throughout the entire process. The
problem is how close is the above adiabatic approximation?
To clarify the above question and formulate it quantitatively,
we introduce two physical quantities, namely the adiabatic
fidelity and the adiabatic parameter.

For the linear system, adiabatic fidelity is introduced as

Fad= ����t� ��ad��2, where ��ad� is the adiabatic approximation
solution, i.e., the instantaneous eigenstate of the Hamiltonian
and ���t�� is the real solution which has evolved under the
Hamiltonian from ���0��. The adiabatic fidelity approaches
to unit in a power law of the adiabatic parameter �13�, i.e.,
1−Fad�2. Here, the adiabatic parameter � is the ratio be-
tween the rate of the energy change and the level spacing.
For linear quantum systems, evaluating the adiabatic fidelity
gives a good estimation on how close the adiabatic solution
is to the real solution �14�.

For the nonlinear atom-molecule conversion system, the
traditional definition of fidelity is no longer suitable because
the system is not invariant under the U�1�-transformation.
We need to define new fidelity for such systems. For conve-
nience, we denote the fidelity of two states ��1� and ��2� as
Fam���1� , ��2��. This definition should not only satisfy
Fam���� , ����=1 for any ��� but also fulfill
Fam���� ,U�������=1 for any � �15�. With this consideration,
we define the adiabatic fidelity as Fam���1� , ��2��
= ���1 ��2��2, where ��̄�= ��a

2 / ��a� ,�2�e ,�2�g�T is the rescaled
wave function of ���= ��a ,�e ,�g�T. For any wave function
���, it is readily proved that Fam���� , ����= ��a�2+2��e�2

+2��g�2=1 and Fam���� ,U�������= ���� ,U�������2= ���
a
*2 / ��

a
*� ,

�2�
e
* , �2�

g
*�T��a

2e2i� / ��a� ,�2�ee
2i� ,�2�ge2i���2= ��a�2+2��e�2

+2��g�2=1. Hence the above two conditions are satisfied.
On the other hand, this definition also fulfills
Fam���1� ,U�����2��=Fam�U�����1� , ��2��, which means the
phase transformation given in Eq. �3� does not vary the mag-
nitude of fidelity. Because we are only concerned with the
adiabatic evolution of the CPT state throughout, we denote
the adiabatic fidelity as Fam= ����t� �CPT��2 where ���t��
= ��a ,�e ,�g�T is the exact solution of the Schrödinger equa-

tion. ��̄� and �CPT� are the rescaled wave functions of the ���
and CPT state respectively.

For the atom-molecule conversion system, owing to the
invalidation of the concept of an orthogonal set of energy
eigenstates and the linear superposition principle involving
these states, the adiabatic parameter is not related to the en-
ergy level spacing �12�. Moreover, since the eigenstates cor-
respond to extremum points or fixed points of the system
energy, the fundamental frequencies of periodic orbits
around the fixed points serves as the adiabatic parameter.
These frequencies can be evaluated by linearizing Eq. �2�
about the fixed points and are identical to the Bogoliubov
excitation spectrum of the corresponding eigenstate, as is
demonstrated in �9,12�, the adiabatic parameter is

�am = � �̇1�2 − �1�̇2

�1 + �ef f
nl � 1

�ef f
nl �1/2

. �7�

For the atom-molecule � system, STIRAP can be imple-
mented as usual by using two laser pulses applied in coun-
terintuitive order. We choose Gaussian pulses of the form

�1,2 = �1,2� e−�t − t1,2�2/2
, �8�

where the pulse width  has been taken as units for time in
the following discussions.
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First, for convenience, we consider the case when the two
pulses have equal amplitudes, i.e., �1�=�2�=�0. Substituting
Eq. �8� into Eq. �7�, we obtain the adiabatic parameter of the
atom-molecule conversion system:

�am 
1

�0
. �9�

In the STIRAP, it is required that t1� t2 and only level �a�
is populated initially, then the system evolves under Ham. In
our calculation, we solve the nonlinear Schrödinger equation
using the fourth-fifth order Runge-Kutta adaptive-step algo-
rithm.

To demonstrate the dynamics of the population transfer, in
Fig. 2, we show a typical change of the adiabatic fidelity
with time for the three-level atom-molecule conversion sys-
tem. We focus on two quantities to describe dynamics of the
atom-molecule conversion system: the smallest adiabatic fi-
delity Fs

am and the final adiabatic fidelity Ff
am. The former

�Fs
am� can be used to depict the adiabaticity of motion, since

Ff
am denotes the maximal deviation of ���t�� from the CPT

state during the evolution, and the closer Ff
am to 1 is, the

better the adiabaticity is. The latter is used to indicate the
conversion efficiency because Ff

am is the final value of adia-
batic fidelity F�t� in the process of evolution, and the larger
Ff

am is, the higher the conversion efficiency is. These two
points are labeled � in Fig. 2. For this case, Fs

am=Ff
am which

can be found in this figure. In addition, this figure also dem-
onstrates that Fs

am��0=100��Fs
am��0=10�. Then the rela-

tionship between the smallest adiabatic fidelity Fs
am and the

amplitude �0 becomes interesting because it denotes the re-
lation between the adiabaticity and the amplitude. In this
way, we can further find whether there is an analogous rela-
tion between the adiabatic fidelity and the adiabatic param-
eter as in the linear system.

Figure 3 shows the smallest adiabatic fidelity Fs
am as a

function of �0 for the three-level atom-molecule conversion
system. This figure indicates that the smallest adiabatic fidel-
ity grows with the increasing amplitude accompanied by
small oscillation, and we can obtain the asymptotic behaviors
of the lower bounds of Fs

am which can be expressed as

1 − Fs
am = 0.326	 1

�0

0.6

 ��am�0.6. �10�

As in the linear system where the adiabatic fidelity as a func-
tion of the adiabatic parameter approaches to unit in a power
law, i.e., 1−F�2, there also exists a power law relationship
between the adiabatic fidelity and the adiabatic parameter in
the atom-molecule conversion system, but the exponent is
0.6 rather than 2. Here the power exponent is not universal,
but depends on the time delay �t. For example, when �t
=0.8, it is 0.5, and when �t=1.2, it is 1.3.

We have discussed the case when the two pulses have
equal amplitudes �0 with �t=1.0, and find that the larger the
amplitude �0 is, the better the adiabaticity is, and hence the
higher the conversion efficiency is. Now we consider how
the adiabatic fidelity changes with the time delay. In Fig.
4�a�, the smallest adiabatic fidelity Fs

am is plotted as a func-
tion of the pulse delay �t for several different values of �0
in the atom-molecule three-level system. This figure shows
that, as the delay �t increases, the smallest adiabatic fidelity
first increases, then reaches a steady stage depending on the
amplitude �0, and finally decreases beyond certain values of

FIG. 2. �Color online� Time evolution of the adiabatic fidelity
for the atom-molecule three-level system with �=0, t1=5.0, t2

=6.0, �t=1.0, �0=10,100.

FIG. 3. �Color online� Smallest adiabatic fidelity for the atom-
molecule three-level system as a function of the amplitude �0 with
�=0, t1=5.0, t2=6.0, �t=1.0.

FIG. 4. �Color online� �a� Smallest adiabatic fidelity of atom-
molecule three-level system plotted against the pulse delay �t for
different �0. �b� Final adiabatic fidelity of atom-molecule three-
level system plotted against the pulse delay �t for different �2� at
�1�=10.
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�t. So, for the atom-molecule �-coupling system, there is an
ideal length for time delay �t, which increases as the ampli-
tude �0 grows, optimizing the adiabaticity and hence the
conversion efficiency.

Second, we consider a more complicated case, i.e., the
two pulses having different amplitudes, and study the adia-
batic property and the conversion efficiency of the system.
Now, the smallest adiabatic fidelity Fs

am is no longer equal to
the final adiabatic fidelity Ff

am. In the following discussions,
we are concerned with these two quantities because the
former can be used to describe the adiabaticity of the system
and the latter can be used to investigate the conversion effi-
ciency.

Figure 5 shows Fs
am and Ff

am as a function of �2� /�1� and
�1� /�2� with �t=1.0. In Fig. 5�a�, as �2� increases, both Fs

am

and Ff
am increase until reaching a critical point, Fs

am begins to
decrease while Ff

am stays close to 1. This means the adiaba-
ticity of the system becomes worse, but the process still re-
alizes complete population transfer. The physics behind this
is that the effective coupling between �a� and �e� scaled as
�2�a is weakened by the decreasing atom population on �a�,
hence a higher pump Rabi frequency can remedy this kind of
weakening and enhance the two-photon process. However,
this case is different in Fig. 5�b� where both Fs

am and Ff
am

decrease after the critical points as �1� increases. The adia-
baticity and conversion efficiency are both poor. This case is
not considered below.

The high conversion efficiency with increasing �2� /�1�
drives us to study whether there is a segment or points opti-
mizing the conversion efficiency for different �2� /�1�. In Fig.
4�b�, the final adiabatic fidelity Ff

am is plotted as a function of
the pulse delay �t for several different values of �2� with
�1�=10. We find that, for the case of equal amplitudes, there
is also a segment of time delay �t making the conversion
efficiency of the atom-molecule system optimal. Moreover,
the segment increases as the amplitude of the pump laser �2�
grows.

In conclusion, we investigated the adiabatic fidelity for
the CPT state in a nonlinear system on the STIRAP quanti-
tatively, and discuss how to achieve higher adiabatic fidelity
for the dark state through optimizing the external parameters
of STIRAP.
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