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We study the Rosen-Zener transition �RZT� in a nonlinear two-level system in which the level energies
depend on the occupation of the levels, representing a mean-field type of interaction between the particles. We
find that the nonlinearity could affect the quantum transition dramatically. At certain nonlinearity the 100%
population transfer between two levels is observed and found to be robust over a very wide range of external
parameters. On the other hand, the quantum transition could be completely blocked by a strong nonlinearity. In
the sudden and adiabatic limits we have derived analytical expressions for the transition probability. Numerical
explorations are made for a wide range of parameters of the general case. Possible applications of our theory
to Bose-Einstein condensates �BECs� and solid-state physics are discussed.
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I. INTRODUCTION

The Rosen-Zener model was first proposed to study the
spin-flip of two-level �hyperfine Zeeman energy level� atoms
interacting with a rotating magnetic field by Rosen and Zener
to account for the double Stern-Gerlach experiments �1�. In
contrast to the well-known Landau-Zener model that depicts
the tunneling dynamics between two avoided-crossing en-
ergy levels �2�, in the Rosen-Zener model the energy bias
between two levels is fixed and the coupling between two
modes is time dependent described by a rectangular �3�,
Gaussian �4�, exponential �5�, or hyperbolic-secant function
�1�. This model constantly attracts much attention not only
because it has an exact analytic solution providing a way to
understand complicated multimode systems �6� but also due
to its versatile applications in nonresonant charge exchange
of ion-atom collision �7�, laser-induced excitation �8�,
nuclear magnetic resonance technique �9�, and quantum
computation �10�, to name only a few.

In the present paper, we extend the Rosen-Zener model to
the nonlinear case and examine how nonlinearity affects the
quantum transition dynamics in this system. Our work is
motivated by the recent increase of Bose Einstein conden-
sates �BECs�, where nonlinearity naturally arises from a
mean-field treatment of the interaction between particles. In
fact, nonlinear effects constantly emerge in the BEC system,
such as self-trapping �11–14�, superfluidity �15�, instability
�16�, and nonlinear Landau-Zener tunneling �17,18�. Extend-
ing the famous Rosen-Zener model to the nonlinear case is
of great interest.

Our paper is organized as follows. In Sec. II, we introduce
the nonlinear Rosen-Zener model. In Sec. III, for the degen-
erate case where the energy bias between two levels is zero,
our numerical calculations reveal the significant effects of
nonlinearity on RZT. We then derive analytic expressions for
RZT in sudden and adiabatic limits. In Sec. IV, our discus-
sions are extended to the nondegenerate case. Numerical ex-

plorations for a wide range of parameters are made. Interest-
ing phenomena are presented and discussed. Finally, in Sec.
V, a possible experimental realization of our model predic-
tions in Bose-Einstern condensates �BECs� and solid-state
physics are discussed.

II. NONLINEAR ROSEN-ZENER MODEL

The nonlinear two-mode system we consider is described
by the following dimensionless Schrödinger equation

i
�

�t
�a

b
� = H�t��a

b
� , �1�

with the Hamiltonian given by

H�t� = ��

2
+

c

2
��b�2 − �a�2�	�̂z +

v
2

�̂x, �2�

where �̂x and �̂z are Pauli matrices and � and v are the
energy bias and coupling strength between two modes, re-
spectively. c is the nonlinear parameter describing the inter-
atomic interaction. The total probability �a�2+ �b�2 is con-
served and set to be 1 without losing generality.

In contrast to the Landau-Zener–type model where the
coupling strength keeps constant and the energy bias varies
in time linearly �2,17,18�, in this model, the energy bias �
and nonlinear parameter c are set to be constant whereas the
coupling strength v is time dependent governed by an exter-
nal pulse field of the form �19�

v = 
0, t � 0, t � T ,

v0 sin2��t

T
�, t � �0,T� , � �3�

where T is the scanning period of the external field.
In our following study, we assume the quantum state is

prepared on one mode initially. With the external field turned
on, quantum transition between different modes emerges.
What we concern is the population dynamics in the presence
of the external field. The transition probability � is defined as*liu_jie@iapcm.ac.cn
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the probability of the particle occupying the other mode after
the coupling field have been turned off.

We start our analysis with the simplest case, i.e., both the
energy bias and nonlinear parameter vanish ��=0 and c=0�.
In this case, the Schrödinger equation denoted by Eq. �1� is
solvable analytically. Setting �a ,b�= �1,0� as the initial con-
dition, we readily obtain the probability of the particle popu-
lated on the other mode as a function of time

p�t� = �b�t��2 = sin2�v0

2�t − T sin
2�t

T

8�
 . �4�

Then the total transition probability is obtained by substitut-
ing t=T into the above equation,

� = p�T� = sin2�v0T

4
� . �5�

The above expression demonstrates a perfect Rabi-like oscil-
lation of the transition probability versus the pulse duration
or scanning period T of the external field. The oscillation
frequency is proportional to the maximum coupling strength
v0.

III. NONLINEAR RZT FOR DEGENERATE CASE „�=0…

A. General Properties

With the emergence of nonlinearity, the transition dynam-
ics dramatically changes. In this case, the Schrödinger Eq.
�1� is no longer analytically solvable �20�. We therefore ex-
ploit a 4–5th-order Runge-Kutta algorithm to trace the quan-
tum evolution numerically and calculate the transition prob-
ability. In our calculation, we choose the maximum coupling
strength v0 as the energy scale, thus the weak nonlinearity
and strong nonlinearity refer to c /v0�1 and c /v0�1, re-
spectively.

Our numerical results are presented in Fig. 1, where the
transition probability as the function of the scanning period
are plotted against the nonlinear parameters that range from
weak nonlinearity to strong nonlinearity. In Fig. 1�a� we see
a regular oscillating pattern, agreeing with the analytic pre-
diction of formula �5�. This regular periodic pattern is de-
stroyed with the emergence of nonlinearity. For the weak
nonlinear case c /v0�1, the periodicity is lost only in the
short pulse regime, i.e., 0�T�50 at c /v0=0.9. Whereas in
the regime of large scanning period, a rectangular periodic
pattern emerges instead. The period of the rectangular oscil-
lation increases with the enhancement of nonlinearity. The
above rectangular pattern is of particular interest in practice
because it represents a 100% population transfer between
two modes robustly in a wide parameter regime.

For the case of strong nonlinearity, i.e., c /v0�1 �see Fig.
1�d��, the quantum transition between two modes is even
more affected by the nonlinearity: The oscillation pattern is
completely broken, and when the scanning period T�15 the
quantum transition is totally blocked.

The above phenomena are interesting and intriguing and
need detailed investigation. Our further analysis includes two

limit cases, namely, the adiabatic and sudden limits. The
adiabatic limit means that the external field varies slowly
compared with the intrinsic motion of the system. From the
formula �5� we see the period of intrinsic motion is charac-
terized by 4� /v0 while the external field is characterized by
T. Thus, the adiabatic limit means T�4� /v0 or v0T�4�,
whereas the sudden limit corresponds to v0T�4�. In the
following sections, we will further derive some analytical
formulas for the transition probability and explain the above
phenomena.

B. Analytic results for the sudden limit case „v0T�4�…

In the sudden limit that the scanning period of the external
field is small enough, it is clearly seen that nonlinearity al-
ways suppress the transition from one mode to another mode
�see Fig. 2�. This is because of the competition between the
on-site energy characterized by the nonlinear term and the
hopping energy characterized by the coupling strength. For a
certain coupling strength v, the larger the nonlinear interac-
tion c, the larger the on-site energy, therefore it will block the
population transfer between two modes more strongly and
the oscillation between two modes becomes slower.

Now we derive some analytic results supporting the above
argument. Because the transition probability is small, an ex-
plicit analytic expression can be obtained using perturbation
theory. We begin with the variable transformation

a = a� exp�− i�
0

t c

2
��b��2 − �a��2�dt	 , �6�

FIG. 1. �Color online� Numerical results for the transition prob-
ability versus the scanning period under different nonlinear param-
eters c /v0 �b� 0.6, �c� 0.9, �d� 1.3. For comparison, we also include
the result of linear case in �a�, which reproduces the results pre-
dicted by formula �5� well.
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b = b� exp�i�
0

t c

2
��b��2 − �a��2�dt	 . �7�

As a result, the diagonal terms in the Hamiltonian are trans-
formed away, and we have

b��t� = �
0

t v0

2
sin2�t

T
e−i�0

t c��b��2−�a��2�dta�dt . �8�

The first-order amplitude of b��t� can be obtained by assum-
ing a�=1, b�=0 on the right-hand side of the above equation.
This yields b��t�=�0

t v0

2 sin2 �t
T eictdt, and the transition prob-

ability equals

� =
2�4v0

2�1 − cos�cT��
c2�4�2 − c2T2�2 . �9�

For linear case of c=0, the above formula reduces to
�b�T��2= � v0T

4
�2

, which is the first-order expansion of the exact
solution of transition probability of Eq. �5�. For the nonlinear
cases, this analytical approximation is compared with our
numerical results in Fig. 2 and good agreement is shown.
Expanding Eq. �9� using c as the small parameter gives

� = �v0T

4
�2�1 −

c2T2

12
� , �10�

which indicates that the quantitative decrease of transition
probability is proportional to the square of nonlinear param-
eter c.

C. Analytic results for adiabatic limit case „v0T�4�…

According to the adiabatic theory of nonlinear quantum
mechanics �22�, the characters of quantum transition in the
adiabatic limit should be entirely determined by the structure
of the energy levels and the properties of corresponding
eigenstates. The eigenstates of the system satisfy that

� c

2
��b�2 − �a�2��̂z +

v
2

�̂x	�a

b
� = ��a

b
� . �11�

Solving the above nonlinear equations together with total
particle conservation condition �a�2+ �b�2=1, we readily ob-
tain the chemical potential � and the eigenstate �a ,b�. The
eigenenergies can be derived according to the relationship
�=�−c /2��a�4+ �b�4�. Their dependence on the parameters is
plotted in Fig. 3 for the cases of linearity, weak nonlinearity,
and strong nonlinearity, respectively. Striking phenomena are
induced by the nonlinearity: First, the structure of the energy
levels change dramatically. In the linear case, there are two
energy levels that are symmetric about a horizontal axis �see
Fig. 3�a��. However, the symmetry breaks down in the pres-
ence of nonlinearity and a new branch of eigenenergies
emerges. For the weak nonlinearity �i.e., Fig. 3�b��, at two
ends and near the peak of the field pulse there exists two
levels, in other regime there are three energy levels. When
the nonlinearity is strong �i.e., Fig. 3�c��, apart from the two
ends, the number of the energy levels are three. Second, the
eigenstates of the midlevel �e.g., denoted by the dashed line
in Fig. 3� are unstable. This is evaluated by investigating the
Hamiltonian-Jacobi matrix obtained by linearizing the non-
linear Eq. �11� around the eigenstates. The eigenvalues of the
Hamiltonian-Jacobi matrix can be real, complex or pure
imaginary. Only pure imaginary eigenvalues correspond to
stable states, others indicate the unstable ones �21�.

The above changes of the energy level in the presence of
nonlinearity is expected to affect the quantum transition be-
tween levels greatly. However, because of the degeneracy of
our concerned states of �1, 0� and �0, 1�, from the above
diagram of the energy levels we cannot draw a definite con-
clusion about the adiabatic evolution of the initial state �1,
0�. In the following, we study an equivalent classical Hamil-
tonian instead, and by analyzing its phase space we achieve
insight into the adiabatic evolution of the above nonlinear
quantum system.

Following the theoretical methodology proposed in Ref.
�22� we construct the effective classical Hamiltonian intro-
ducing two quantities p= �b�t��2 as the probability of particles
staying in the �0, 1� mode and 	=	a−	b as the relative phase
of the two modes. They form a pair of canonical variables of
the following classical Hamiltonian and satisfy the canonical
equations, i.e., d	 /dt=�H /�s, ds /dt=−�H /�	,

H = v�p�1 − p� cos 	 −
c

4
�2p − 1�2. �12�

The above classical system is capable of totally describing
the dynamic properties of nonlinear quantum Rosen-Zener

FIG. 2. �Color online� Transition probability in the sudden limit
for varied nonlinear parameters. The scatters are obtained by di-
rectly integrating Eq. �1�. The solid lines demonstrate the analytical
results based on Eq. �9�. They are in good agreement.

FIG. 3. �Color online� Typical eigenenergy level structure in �a�
linear case, �b� weak nonlinear case, �c� strong nonlinear case. The
dashed lines correspond to unstable eigenstates �21�.
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system �1� on a projective Hilbert space �22�. Its fixed points,
i.e., energy extrema of the classical Hamiltonian, correspond
to the quantum eigenstates. For example, in Fig. 4, the stable
elliptic fixed point P1 corresponds to the upper level of Fig.
3; the energy of P2 and P4 are identical, therefore they cor-
respond to the same energy level, i.e., the lower one in Fig.
3; the saddle point P3 is unstable, corresponding to the mid
level denoted by a dashed curve in Fig. 3. The adiabatic
evolution of the quantum eigenstates can therefore be evalu-
ated by tracing the shift of the classical fixed points in the
phase space when the parameter v varies in time slowly �18�.

The analytic expressions of the fixed points are obtained

from ṗ=0 and 	̇=0:

	� = 0,� , �13�

v�1 − 2p��
2�p��1 − p��

cos 	� + c�1 − 2p�� = 0. �14�

The number of fixed points depends on the instantaneous
coupling strength v and the nonlinear parameter c. If c /v
�1, there exists only two fixed points �	� , p��= �0,1 /2�,
�� ,1 /2�. However, when c /v�1, there exists four fixed
points �P1, P2, P3, and P4 in Figs. 4�a� and 4�b��: �	� , p��
= �0,1 /2�, �� ,1 /2�, �� , 1

2
�1±�1− v2

c2
��. One of them �P3� is

a saddle point, while the other three �P1, P2, and P4� are all
elliptic points corresponding to the local maximum �P1� and
minimum �P2 and P4� of the classical Hamiltonian.

When we increase v, P2, P3, and P4 will merge into a new
stable fixed point P234 in a regime satisfying the condition
v /c�1, as can be seen from Figs. 4�a� → 4�b� → 4�c�
→ 4�d�. An interesting question arises when the parameter v
decreases to below c again: Which point will the state choose
to follow when P234 bifurcates into P2, P3, and P4 �Figs. 4�d�
→ 4�c� → 4�b� → 4�a��. The state that totally follows P2 will
give a zero of the adiabatic transition probability, whereas
the state that totally follows the P4 will correspond a com-
plete population transfer. This classical picture could explain
why we see a rectangular pattern in Fig. 1.

The above scenario is further supported by directly trac-
ing the evolution of particles as shown in Fig. 5, where we
also demonstrate the temporal evolution of the fixed points.
In the early stage, we see that the state firmly follows the
fixed point P2. It starts to show a small oscillation when the
fixed points P2, P3, and P4 merge. After that, the state either
follows the fixed point P2 or P4. The interesting thing is that,
at a certain parameter, a slight change on the period T could
thoroughly change the final transition probability, a signature
of the appearance of bistable state �Figs. 4�c��→4�b���.

Our study shows that whether the state follows P2 or P4 is
determined by the total dynamical phase accumulated during
the oscillation motion around P234, i.e., from t� to t��. Here,
t� is the time when P2, P3, and P4 merge into P234, and t�� is
the moment when P234 bifurcates into P2, P3 and P4. They
are obtained by setting c=v�t��=v�t���:

t� =
T

�
sin−1� c

v0
,
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FIG. 4. Evolution of the phase space motions as c /v changes

adiabatically �a� 10, �b� 2, �c� 1, �d� 0.5. The second column is the
corresponding energy curve at 	=0 �thin line� and � �heavy line�.
The arrows indicate the shifting direction of the fixed points as v
increases.

FIG. 5. Evolution of the particles and the fixed points at c /v0

=0.9. Entirely different transition probabilities are observed for a
slight variation of the scanning period: �a� T=2024, �b� T=2025.
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t�� = T − t�. �15�

To obtain the total phase, we need to calculate the instanta-
neous frequency that characterize the oscillations around the
fixed point at first. To this end, we expand the classical
Hamiltonian around the fixed point with p=1 /2+
p, 	=�
+
	, leading to


H =
1

4
�v − c�
p

2 +
1

4
v
	

2, �16�

ignoring the higher order terms. The instantaneous frequency
is then derived as

��t� =
1

2
�v�t��v�t� − c� . �17�

Integrating ��t� from t� to t�� gives the total phase

� = �
t�

t��

��t�dt =
v0 − c

4
T . �18�

This expression indicates that the total phase increases lin-
early with the scanning period. A �-value change on the
phase will change the choice of the state that either follows
fixed point P2 or P4. Thus the period of rectangular oscilla-
tion observed in Fig. 1 under adiabatic limit can be expressed
as

Trectangular = 4�/�v0 − c� . �19�

To check the above theory, we have numerically solve the
nonlinear Schrödinger equation for a wide range of the pa-
rameters. The comparison between the analytical result and
the numerical data shows a good agreement in Fig. 6.

The complete suppression of quantum transition under
adiabatic limit in Fig. 1�d� can also be explained from the
above picture. We briefly state it as follows. For the strong
nonlinearity that c /v0�1, the phase space evolution only
undergoes Figs. 4�a� → 4�b� → 4�a� as v increases and de-
creases. During the process, no collision between the fixed
points occurs. Thus the state initially populated on P2 can
safely remain on the fixed point, and finally come back to the
original state smoothly. Thus no transition is observed.

IV. NONLINEAR RZT FOR NONDEGENERATE
CASES „�Å0…

In this section, we extend our discussions to the nonde-
generate case ���0�. The transition probability is contour
plotted with respect to the energy bias and scanning period
for different nonlinear parameters ranging from weak nonlin-
earity to strong nonlinearity in Fig. 7.

These plots reveal main features of the RZT in the non-
degenerate case. �i� Overlooking the first panel of Fig. 7, the
contour plot shows fringe structure: the bright zones corre-

FIG. 6. Periods of rectangular oscillation as shown in Fig. 1
under adiabatic limit. Numerical results are obtained by directly
observing Fig. 1 while the analytical curve is the plot of function
4� / �v0−c�, where v0=1. They agree well with each other.

FIG. 7. Contour plots of RZT probability as the function of
energy bias and scanning period at different nonlinear parameters
�upper panel� and their adiabatic counterpart �lower panel�. Initially,
all the particles are prepared in the high-energy mode �1, 0� �left
column� or low-energy mode �0, 1� �right column�, respectively,
before the external field is turned on.
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spond to high transition probability whereas dark areas indi-
cate low transition probability. The fringe pattern is formed
because of the periodic behavior of the RZT with respect to
the scanning period. For linear �i.e., Fig. 7�a�� and weak
nonlinear cases �i.e., Fig. 7�c��, this periodicity is broken by
a larger energy bias; For strong nonlinear case �i.e., Fig.
7�e��, the periodicity is absent both for larger and smaller
energy bias. �ii�The nonzero energy bias leads to the asym-
metry of RZT plottings for the initial states of �1, 0� and �0,
1�. This is clearly seen by comparing the right column with
the left column of Fig. 6. �iii� The second panel of Fig. 6
shows the contour plot of transition probability in the adia-
batic limit, i.e., very large scanning period T. In this situa-
tion, the fringe structure is confined in a zonary region. This
zonary region is of particular interest in practice because
only in this region a robust population transfer between two
modes is possible. Outside the zonary region, the transition
probability almost equals to zero. Interestingly, the area of
the zonary region broaden with increasing the nonlinear pa-
rameter �Figs. 7�a��→7�c�� →7�e���. When the nonlinearity
is strong �i.e., Fig. 6�e���, the zonary region shift away from
the origin. That is to say, to realize robust population transfer
for the highly nonlinear case, it requires a large energy bias
between two modes to compensate the difference of the on-
site energy caused by the nonlinearity. �iv� In the zonary
region, for a fixed �, the transition probability oscillates rect-
angularly versus the scanning period similar to the behavior
shown in Fig. 1. But the amplitude of the oscillation de-
creases monotonously with increasing the energy bias �.
This is indicated by the gradual darkness from the left to
right side in the figures. The correspondence between oscil-
lating amplitude and energy bias suggests that the probability
of the population transferred to the other mode can be de-
signed at will by tuning the energy bias.

We can achieve insight into the above findings by analyz-
ing the evolution of the fixed points corresponding to energy
extrema. The energy curve in Fig. 8 is tilted by the energy
bias �for comparison one can recall Fig. 4�, directly leading
to the asymmetry on the diagram of transition probability.
The reason is stated as follows. Based on our pictures in Sec.
III C, in the adiabatic limit, the transition between two
modes is always accompanied by a collision between fixed
points. However, with increasing v, the fixed point corre-
sponding to the low-energy mode �P2� do not collide with
any other fixed points, thus there is no transition from the

low-energy mode to the higher one in the adiabatic limit. The
situation is quite different for the high-energy mode �P4�,
which collides with the unstable state �P3� and disappear
subsequently as shown in Fig. 8�b�. The condition for the
occurrence of the collision is given by Ref. �18�

v = �c2/3 − �2/3�3/2. �20�

Considering v can only varies in the interval �0,v0�, we
therefore analytically determine the boundaries of the zonary
regions as �0,c� if c�v0 and ��c2/3−v0

2/3�3/2 ,c� if c�v0.
These two analysis is in a good agreement with the numeri-
cal results �see Figs. 8�c�� and 8�e���.

Our above discussions assume that the nonlinear param-
eters are positive that corresponds to the repulsive interaction
between particles. For the attractive interaction, the transition
from �1, 0� mode to �0, 1� mode is equivalent to that transi-
tion from �0, 1� mode to �1, 0� mode for the repulsive inter-
action. Therefore, our discussions can be readily extended to
the negative-nonlinearity case that corresponds to attractive
interaction between particles. The detailed discussion is not
repeated.

V. APPLICATIONS AND DISCUSSIONS

Our model is applicable to describe the quantum transi-
tion of two-mode BECs. One example is the BECs in a
double well. In such a system, the wave function can be
described by a superposition of two states that localize in
each well separately. Then, the transition dynamics of BECs
between the two wells is well described by Eq. �1� �12�. The
optical double-well can be created, for example, by superim-
posing a blue-detuned laser beam upon the center of the
magnetic trap �23�. In this case, � denotes the difference of
the zero-point energy between two wells, c is the interaction
between BEC atoms that can be adjusted flexibly by Fesh-
bach resonance, v represents the height of the barrier that
separate the two wells. The barrier height can be effectively
controlled by adjusting the intensity of the blue-detuned laser
beam. Initially, we upload BECs atoms into one well, then
ramp up and down the barrier slowly, the nonlinear Rosen-
Zener transition should be observed.

Another promising candidate to observe nonlinear Rosen-
Zener transition is a spinor BEC in an optical trap. In such
case, a near-resonant field is applied to the condensates to
couple two hyperfine states of 87Rb, e.g., �F=1,mF=−1� and
�F=2,mF= +1� as in Ref. �24�. Within the standard rotating
wave approximation, the system Hamiltonian can be cast
into the similar form of Eq. �2� �25�, where � denotes the
frequency detuning, c comes from the contributions of both
the homospecies and interspecies s-wave scattering, v is pro-
portional to the intensity of the near-resonant laser field. Af-
ter preparing the BEC atoms in one internal state, a sin2

enveloped laser pulse is shined on the condensates, the non-
linear Rosen-Zener transition is expected to emerge.

Other possible applications of our model include the pulse
propagation effects in solids. In this case, the band structure
�parallel insulating bands here� constant depends on the field
intensity because hoping integral depends on the populations

FIG. 8. Energy curve of H �Eq. �12�� at c=1, �=0.1, 	=0 �thin
line�, or � �heavy line�, v= �a� 0.1, �b� 0.5, �c� 1.0. With the in-
crease of v, P3, and P4 collide with each other and disappear sub-
sequently, while P2 maintains during the whole process.
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within nonequilibrium density functional theory. In quantum
optics such as free induction decay and photon echo, the
Hamiltonian can be readily extended to the nonlinear form
having the meaning of energy-level renormalization due to
electron-electron interaction in solids �26�.

In conclusion, we have investigated the Rosen-Zener tran-
sition in a nonlinear two-level system and show that the non-
linearity could dramatically affect the transition dynamics
leading to many interesting phenomena. The nonlinear RZT
is suggested to be observed in the two-mode BEC systems

and our model may have a lot of prospective applications in
other branches of physics such as solid-state physics.
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