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Abstract

Adiabatic approximation for quantum evolution is investigated addressing its dependence on the Berry connections that are functions of a
slowly-varying parameter R. When the Berry connections have singularities of type 1/Rσ with σ < 1, the adiabatic fidelity converges to unit
according to a power-law; When the singularity index σ becomes larger than one, adiabatic approximation breaks down. Two-level models are
used to substantiate our theory.
© 2007 Elsevier B.V. All rights reserved.

PACS: 03.65.Ca; 03.65.Ta
The adiabatic theorem, as a fundamental theorem in quan-
tum mechanics, plays a crucial role in our understanding and
manipulation of microscopic world [1]. Recent years witness
its growing importance in the quantum control of the newly
formed matter—Bose–Einstein condensate [2] and adiabatic
quantum computation [3].

However, applicability and completeness of the theorem
need further study. A warning that the application of the the-
orem may lead to inconsistency was given recently by Marzlin
and Sanders [4]. A subsequent work [5] explicitly formulated
a ‘counterexample’ with a two-level model illustrating that the
adiabatic condition widely recognized and commonly used is
not sufficient for guaranteeing the adiabatic approximation. In
the present Letter, we point out that the above confusions can
be avoided when formulating the quantum adiabatic evolution
within a parameter domain rather than the time domain. Within
this new formulation, we investigate the fidelity of the adiabatic
approximation quantitatively. We find that the properties of the
Berry connections dramatically affect the behavior of the adi-
abatic fidelity and conclude that the singularities of the Berry
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connections inhibit the accuracy of the adiabatic approxima-
tion. Because the estimation on the upper bound of adiabatic
fidelity is essential for the search time [6,7], our findings have
important meaning in the practical adiabatic quantum search al-
gorithms.

The system we consider is a Hamiltonian containing slowly-
varying dimensionless parameters R(t) belonging to a given
regime [R0,R1], say, H(R(t)). Initially we have a state, for
example the ground state |E0(R(t0))〉 with energy E0(R(t0)).
The wave function |Ψ (t)〉 fulfills the usual Schrödinger equa-
tion, i.e., i dΨ

dt
= H(R(t))Ψ (t), with h̄ = 1. The above problem

has a well-known adiabatic approximate solution:

(1)|Ψad〉 = e−i
∫ t

E0 dt eiγ0
∣∣E0

(
R(t)

)〉
with γ0 = i

∫ t
dt〈E0|Ė0〉, the geometric phase term [8,9]. The

above equation is the explicit formulation of the adiabatic the-
orem stating that the initial non-degenerate ground state will
remain to be the instantaneous ground state and evolve only in
its phase, given by the time integral of the eigenenergy (known
as the dynamical phase) and a quantity independent of the time
duration (known as the geometric phase).

The problems is, how close is the above adiabatic approxi-
mate solution to the actual solution |Ψ (t)〉. To clarify the above
question and formulate it quantitatively, we introduce two phys-
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Fig. 1. Schematic illustration of the quantum adiabatic evolution formulated in
parameter condition, see text for detailed description.

ical quantities, namely the adiabatic parameter and the adiabatic
fidelity.

The dimensionless adiabatic parameter is defined as the ra-
tio between the change rate of the external parameters and the
internal characteristic time scale of the quantum system (i.e. the
Rabi frequency |Em − En|), used to measure how slow the ex-
ternal parameter changes with time:

(2)ε = max
|Ṙ|

|En(R) − Em(R)| , m �= n.

ε → 0 corresponds to adiabatic limit.
Adiabatic fidelity is introduced to measure how close the

adiabatic solution is to the actual one, Fad = |〈Ψ (t)|Ψad〉|2.
The convergence of the adiabatic fidelity to unit uniformly in
the range R ∈ [R0,R1] in the adiabatic limit (ε → 0), indicates
the validity of the adiabatic approximation. Evaluating fidelity
function will give an estimation on how good the adiabatic ap-
proximation is.

In Fig. 1 we schematically illustrate the physical process we
describe above. Our main result is that the distance between the
adiabatic solution and actual one consists in two parts: the fast
oscillation term and the secular term. The time scale of the os-
cillation is the Rabi period, its amplitude is proportional to the
square of the adiabatic parameter. The amplitude of the secu-
lar term is exponentially small (∼ exp−1/ε) supposing that the
Berry connections of the system are regular, and turn to follow
a power-law (∼εx, x < 2) if the Berry connections have singu-
larity or the external parameters vary in time nonlinearly.

We start our statement with writing the wavefunction as a
superposition of the instantaneous eigenstates,∣∣Ψ (t)

〉 = ∑
n

Cn(t)e
−i

∫ t
dt (En−i〈En(R)|Ėn(R)〉)∣∣En

(
R(t)

)〉
,

and suppose initial state is the ground state, i.e., C0(t = 0) = 1,
Cn(t = 0) = 0(n �= 0). Then the adiabatic approximate solu-
tion takes the form of Eq. (1) and the adiabatic fidelity Fad =
|〈Ψ (t)|Ψad〉|2 = |C0|2 ∼ 1 − |�Cn|2(n �= 0). To evaluate the
adiabatic fidelity we need quantitatively evaluate the change of
the coefficients Cn with respect to time.

Substituting the above solution into Schrödinger equation,
we have the following differential equation for the coefficients:

(3)
d

dt
Cn = i

∑
m �=n

ei
∫ t

((En−αnnṘ)−(Em−αmmṘ)) dtαnm(R)
dR
dt

Cm

where αnm(R) is the Berry connection. Both off-diagonal and
diagonal Berry connections have clear physical meaning and
Fig. 2. The integral path and the singular points in the complex plane.

important applications [10]. We first suppose these Berry con-
nections and the gradient of instantaneous eigenenergy are not
singular (NS) as the functions of the external parameters, i.e.,

(4)αnm(R) = 〈En|i∇R|Em〉; βn(R) = ∇REn(R), NS.

The right-hand side of Eq. (3) contains unknown Cm, to the
first order of approximation, we take C0 = 1 and Cm = 0,m �= 0
in the right-hand side of Eq. (3). Then, Eq. (3) shows that the
change consists in two parts: the fast oscillation term and the
secular term. The time scale of the oscillation is the Rabi pe-
riod, its amplitude is proportional to the adiabatic parameter
under the condition that the Berry connections are regular with
limitation. Whereas the secular term maybe is exponential small
of form e−1/ε or a power-law depending on the Berry connec-
tions as will be shown in following.

Let us denote θn = ∫ t
(En − E0) dt , and then the upper

bound of the increment on the coefficients (n �= 0) can be eval-
uated as follows,

(5)�Cn ∼
θn(R1)∫

θn(R0)

eiθn

En − E0
αn0Ṙdθn

(6)=
∞∫

−∞
. . . dθn −

( θn(R0)∫
−∞

+
∞∫

θn(R1)

)
. . . dθn

where we set that in the right-hand side of Eq. (3) the coeffi-
cients Cm ∼ 0 for m �= 0, and C0 ∼ 1 since we want to estimate
the upper bound of the adiabatic approximation. For simplic-
ity and without loosing generality, in following deductions we
regard the slowly-varying parameter as a scalar quantity, and
assume that dR

dt
∼ εg(R) with the function g(R) being regular

with limitation.
The first term on the right-hand side is an infinite integral;

it can be estimated by extending the integral to the upper half-
plane with a closed path at infinity as shown in Fig. 2. The in-
tegral along the upper horizontal path of the closure is zero be-
cause e− Im θn → 0 there. On the other hand, the integrals along
the vertical paths also vanish because of the fast oscillation of
the function e−i Re θn at infinity [11]. Hence, the main contribu-
tion to the first term comes from the pole point, θc

n = ∫ tc (En −
E0) dt ∼ 1

ε

∫ Rc(En − E0)/g(R)dR, determined by the equa-
tion En(θ

c
n) − E0(θ

c
n) = 0. Under the assumption of non-
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degeneracy, the solutions of the above equation are complex
with nonzero imaginary parts. Let ω0 be the singularity closest
to real axis, i.e., the one with the smallest (positive) imaginary
part (see Fig. 2). Then, the first term is approximately bounded

by exp(− Imω0) ∼ e− 1
ε
|∫ | Im(Rc)|

(En−E0)/g(R)dR|, which con-
tributes to the secular term with an exponential small quantity
in the adiabatic limit.

The second term on the right-hand side depends on the
boundary condition. If the boundary values are large enough
the terms in parentheses of Eq. (6) will be small compared to
the first term. For an infinite boundary of the parameter do-
main as that in the well-known Landau–Zener model [12], i.e.,
R1,0 → ±∞, the integral vanishes because θn(R1,0) = ±∞;
for a finite boundary condition, it gives a quantity of order ε.

Now, we consider the situation that Berry connection has
singularity of form 1

Rσ at R(t∗) = 0. We then evaluate the above
integral in the neighborhood domain [−�t + t∗,�t + t∗] of
the singular point, integral over other regimes is regular and
contributes a quantity of order ε. Near the singular point,

|�Cn| ∼
∣∣∣∣∣

�t+t∗∫
−�t+t∗

ei
∫ t

(En−E0) dtαn0(R)Ṙ dt

∣∣∣∣∣
=

∣∣∣∣∣
�R+∫

�R−

ei
∫ t

(En−E0) dtαn0(R)dR

∣∣∣∣∣
(7)∼ ε(1−σ).

In the above deduction we take advantage of the relation
�R± = R(±�t + t∗) ∝ ±ε.

The situation is divided into two cases: σ < 1 and σ � 1. For
σ < 1, this type of singularity can be removed because the inte-
gral is finite. The integral in the neighborhood domain [−ε, ε]
of the singularity contributes a quantity of order ε(1−σ). We thus
expect that the adiabatic fidelity approaches to unit uniformly in
the 2(1 − σ) power-law of the adiabatic parameter, i.e.,

(8)1 − Fad ∼ ε2(1−σ).

For the case of σ � 1, the singularity is irremovable and the
adiabatic approximation is expected to break down.

The above discussion is readily extended to the case that the
slowing-varying parameters change nonlinearly with time, i.e.,
R = εtσ , where σ is any positive number. The nonlinear time
dependent parameter has many physical origins, for example in
the molecule spin system the effective field vary in time nonlin-
early [13]. Another field of broad examples is quantum optics,
Rabi frequency coupling different levels (i.e., stimulated Ra-
man adiabatic passage) has often nonlinear dependence on time
[14]. Here we suppose that the Berry connections of quantum
system are regular with limitation as the function of the parame-
ter R and the level spacings are of order 1. To apply our theory,
we introduce the new parameters R′ and ε′ through the expres-
sions ε′1/σ and R′ = ε′t . Then, R = R′σ . As a function of the
new parameter R′, the singularity of the Berry connections is
determined by dR

dR′ ∼ 1/R′1−σ . Our discussions are divided into
two cases: (i) σ > 1 and (ii) σ < 1. In the former case, the Berry
connections as functions of the new parameter are regular, so
the adiabatic fidelity is determined by the short-term oscillation
and is expected to converge to one in a power-law of ε′2. Then
we have

(9)1 − Fad ∼ ε
2
σ .

In the latter case, the Berry connections as functions of the new
parameter are singular, of the type 1/R′1−σ . Fortunately, this
singularity is removable, it gives an upper bound of the adia-
batic Fidelity as ε′2σ , i.e.,

(10)1 − Fad ∼ ε2.

Notice that in this case, the upper bound of the adiabatic fidelity
is independent of the nonlinear index σ .

In following, we use two-level models to substantiate the
above discussions. With a model denoted by Sa , let us consider
a spin-half particle in a rotating magnetic field; its Hamiltonian
reads:

Ha
(
R(t)

) = −ω0

2

(
sin θ cosf

(
R(t)

)
σx + sin θ sinf

(
R(t)

)
σy

(11)+ cos θσz

)
,

ω0 is defined by the strength of the magnetic field, and σi

(i = x, y, z) are Pauli matrices. f (R) is a function of slowly-
varying parameter R. The above 2 × 2 matrix is readily di-
agonalized for fixed R and we then obtain its instantaneous
eigenenergies Ea± = ±ω0

2 , and instantaneous eigenvectors:

∣∣Ea−(R)
〉 =

(
e−i

f (R)
2 sin θ

2

−ei
f (R)

2 cos θ
2

)
,

(12)
∣∣Ea+(R)

〉 =
(

e−i
f (R)

2 cos θ
2

ei
f (R)

2 sin θ
2

)
.

The Berry connections are derived as follows,

(13)αc−− = 1

2
cos θ

df

dR
, αc−+ = 1

2
sin θ

df

dR
.

(i) We first consider the following two cases: f (R) = ln |R|
and f (R) = |R|1−σ with σ < 1, respectively. Here the slowly-
varying parameter is supposed to linearly change with time,
i.e., R(t) = ωt . ω is the rotating frequency of the magnetic
field. Apparently, the Berry connection has a singularity of the
form 1/Rσ at point R = 0. These systems are complicated and
analytic solutions are not reachable. We thus make numeri-
cal simulations on the adiabatic fidelity by directly solving the
Schrödinger equation with the 4th–5th Runge–Kutta adaptive
step method. Our results are shown in Figs. 3 and 4. In Fig. 3,
it is clearly shown that, without the singularity (left panel of
Fig. 3), the distance between adiabatic solution and solution
is determined by the fast oscillation, therefore gives the upper
bound of square adiabatic parameter. With the singularity (right
panel of Fig. 3), the upper bound is determined by the type of
the singularity of the Berry connections as we discussed above.
In case that the Berry connections have an irremovable singu-
larity (i.e., σ = 1, see Fig. 4b) the adiabatic fidelity converges to
0.53 rather than one, implying the failure of adiabatic approxi-
mation. For the case of the removable singularity of the Berry
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Fig. 3. Adiabatic fidelity evolves for different type of singularity.

Fig. 4. Upper bound of the adiabatic fidelity in system Sc for different
type of singularity. F ad

min is the minimum fidelity in the parameter range
R ∈ [−2π,2π ].

Fig. 5. Upper bound of the adiabatic fidelity for different type of the nonlin-
early-varying external parameters.

connection (σ < 1) the adiabatic fidelity converges to unit in
the power-law dependence of the adiabatic parameters as we
expect (see Fig. 4a).

(ii) We then set f (R) = R where R varies in time nonlin-
early, i.e., R = ε sign(t)|t |σ . In this case, from Fig. 5 we see
that, for σ > 1, the adiabatic fidelity converges to unit in a
power-law of exponent 2/σ ; for σ < 1, it clearly demonstrates
that the exponent turns to be two, independence of the nonlinear
index σ . These numerical simulations corroborate our theory.

In the above studies we discussed quantum adiabatic issue in
the parameter domain. It requires that the Hamiltonian explic-
itly depends on time only through the slowly-varying parameter
of the form H(R(t)). Within this formulation, the initial and the
final Hamiltonians are fixed, namely, H(R0) and H(R1) are in-
dependent of the adiabatic parameter ε. We then can well depict
how slowly the system varies in time using either Ṙ or the time
duration T = t1 − t0, i.e., Ṙ → 0 or T → ∞ indicates the adia-
batic limit.
However, things becomes much confusing when people dis-
cuss adiabatic issue in a time domain [t0,t1] with introducing
a small parameter ε to describe the change rate of the system.
For this case both final H(t1, ε) and initial H(t1, ε) depend on
the parameter ε even though initial time t0 and final time t1
are fixed. Therefore it is much illegible to depict the “slowly-
varying” for the system through the parameter ε because the
distance to the target varies in the parameter ε.

In following we address this point with an example raised
recently [5]. It is constructed from Sa for the case of f (R) = R,

R = ωt through following relation,

(14)H ce = −Ua†(t)Ha(t)Ua(t)

with Ua(t) = T exp(
∫ t

0 Ha(t ′) dt ′) the time evolution operator
of system Sa . Its explicit analytic expression is readily obtained
[5]. After lengthy deduction, we obtain the explicit expression
of the Hamiltonian H ce = ω0

2 L(t) ·σ , where L(t) = (sin θ(ω2
0 +

2ωω0 cos θ cos2 �t/2 + ω2 cos�t)/� 2, ω sin θ
�

sin�t, cos θ +
2ωω0 sin θ

� 2 sin2 θ sin2 �t/2), and � =
√

ω2
0 + ω2 + 2ωω0 cos θ .

It is easy to verify that L(t) is a unit vector, i.e., |L(t)| = 1.
The eigenvalues and eigenvectors for this system are,

(15)Ece± = ±ω0

2
,

∣∣Ece± (L)
〉 =

( √
1±L3

2 e−iφ

∓
√

1∓L3
2 eiφ

)
,

where φ = 1
2 arctan(L2/L1). We then can obtain the Berry con-

nections as follows,

αce−− =
(

L2L3

2(1 − L2
3)

,− L1L3

2(1 − L2
3)

,0

)
,

(16)αce−+ =
(

− L2

2
√

1 − L2
3

,
L1

2
√

1 − L2
3

,− i

2
√

1 − L2
3

)
.

As L3 < 1, the Berry connections are not singular. For d|L|/
dt ∼ ω, the adiabatic parameter of this system is ε = ω/ω0.

The controversy is that, even though in the adiabatic limit
of ε → 0, the adiabatic fidelity calculated in the time domain
t ∈ [−2π,2π] does not converge to unit [5]. Moreover, with
changing the sign of the above Hamiltonian and re-calculating
the adiabatic fidelity in the time domain [−2π,2π], we find that
the adiabatic fidelity converges to unit in the adiabatic limit. The
above result is rather confusing. The reason for the above con-
troversy is that the problem is discussed in time domain rather
in parameter domain.

To resolve the above controversy, we check the above sys-
tem in the parameter domain. First, after transformation (14),
R = ωt acted as the slowly-varying parameter in Ha(t) system
no longer should be chosen as the slowly-varying parameter for
the new system H ce, because the Hamiltonian H ce depends ex-
plicitly on the time not only through R. Instead, L(t) can serve
as the slowly-varying parameters. However, the range of the pa-
rameters keeps the same order of the adiabatic parameter (i.e.,
|L1(t = t1)−L0(t = t0)| ∼ ω) and tends to zero in the adiabatic
limit no matter how long the evolution time t1 − t0 is. This com-
pletely counters to our picture schematically plotted in Fig. 1.
Above analysis indicates that the system Hce cannot be well
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formulated in the parameter domain, it essentially not a system
that adiabatic theory can applies to. If one discuss the dynam-
ics of this system in the time domain as shown the above, any
strange things can happen.

In summary, we investigate the fidelity for quantum evolu-
tion in the parameter domain addressing the adiabatic approx-
imation quantitatively. Within this framework, we clarify the
confusion in applying quantum adiabatic theory and figure out
that the singularities of Berry connections inhibit the accuracy
of the adiabatic approximation. Our estimation on the adiabatic
fidelity has important meaning in the practical adiabatic quan-
tum search algorithms.
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