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From the topological properties of a three-dimensional vector order parameter, the topo-
logical current of point defects is obtained. One shows that the charge of point defects is
determined by Hopf indices and Brouwer degrees. The evolution of point defects is also
studied. One concludes that there exist crucial cases of branch processes in the evolution
of point defects when the Jacobian D(φ

x
) = 0.

1. Introduction

In recent years, an outstanding development in the theory of condensed matter

is to study the defect by topology. It has provided new insights and spectacular

predictions. In particular there has been progress in the study of defects associated

with a nonconserved n-component vector order parameter field φ(r, t).1,2 In study-

ing such objects in physics, the question on how one can define quantity like the

density of defects arises. In the important conjecture proposed by Halperin, Liu

and Mazenko3,4 the density of such system has been written as

ρ = δ(φ)D(φ/x) , (1)

which is the fundamental equation for such problem.

In this letter, we will present a new topological current involved in four-

dimensional system by the use of the φ-mapping topological current theory, which

is important in studying the topological invariant and structure of physics sys-

tems and has been used to study topological current of magnetic monopole,5

topological string theory,6 topological characteristics of dislocations and disclina-

tions continuum,7 topological structure of the defects of space–time in the early

universe as well as its topological bifurcation,8,9 topological structure of Gauss–

Bonnet–Chern theorem10,11 and topological structure of the London equation in

superconductor.12 It is shown that the topological charges of defects can be classi-

fied by Brower degree and Hopf index of the φ-mapping. It must be pointed out that
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the existence of this topological current is inevitable and necessary, which carries

all the important topological properties of this physical system, and includes the

defect density by other conjectures given by Liu and Mazenko.4 Further research

shows that there exist the crucial cases of branch process in the evolution of the

point defects when the Jacobian D(φ
x
) = 0. We calculate the different branches of

the worldlines of defects by using the implicit function theorem. It is found that

the worldlines of point defects will split or merge at the critical points.

2. The Topological Current of Point Defects

Consider a four-dimensional system with a nonconserved three-component vector

order parameter field φ(r, t). In order to compose a topological current, we introduce

a unit vector field

na =
φa

‖φ‖ , a = 1, 2, 3 (2)

where

‖φ‖2 = φaφa .

φ(x) is just the vector order parameter. The topological current of this system is

given by

jµ =
1

8π
εµν1υ2υ3εa1a2a3∂ν1n

a1∂ν2n
a2∂ν3n

a3 . (3)

It is clear that the topological current is identically conserved, i.e.

∂µj
µ = 0 . (4)

The topological charge density correspondingly will be defined as

ρ = j0 . (5)

So, Eq. (4) is just the continuity equation of this system. Considering the following

formula

∂µn
a =

1

φ
∂µφ

a + φa∂µ
1

φ
,

we can write Eq. (3) as

jµ =
1

8π
εµµ1µ2µ3εa1a2a3∂µ1φ

a∂µ2φ
a2∂µ3φ

a3
∂

∂φa
∂

∂φa1

(
1

‖φ‖

)
.

If we define

εa1a2a3Dµ

(
φ

x

)
= εµµ1µ2µ3∂µ1φ

a1∂µ2φ
a2∂µ3φ

a3 ,
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in which J0(φx ) is just the usual three-dimensional Jacobian determinant

D0

(
φ

x

)
= D

(
φ

x

)
=



∂φ1

∂x1

∂φ1

∂x2

∂φ1

∂x3

∂φ2

∂x1

∂φ2

∂x2

∂φ2

∂x3

∂φ3

∂x1

∂φ3

∂x2

∂φ3

∂x3


,

and make use of the three-dimensional Laplacian Green’s function relation

∆φ

(
1

‖φ‖

)
= −4πδ3(φ) ,

where ∆φ is the three-dimensional Laplacian operator in φ space, we do obtain the

δ function like current

jµ = δ3(φ)Dµ

(
φ

x

)
. (6)

When µ = 0, we know that the density of jµ can be written as

ρ = δ3(φ)D

(
φ

x

)
. (7)

From this expression, we find that Jµ does not vanish only when φ = 0, i.e.

φa(t, x1, x2, x3) = 0 , a = 1, 2, 3 . (8)

Suppose that the vector field φ possesses l zeros (i.e., there exist l point defects)

denoted as zi (i = 1, . . . , l). According to the implicit function theorem,13 when the

zero points zi are the regular points of φ which requires the Jacobian

D

(
φ

x

)∣∣∣∣
zi

= D0

(
φ

x

)∣∣∣∣
zi

6= 0 , (9)

the solutions of Eq. (8) can be generally obtained:

x = zi(t) , i = 1, 2, . . . , l (10)

which represent the worldlines of l point defects moving in space. From Eq. (8), it

is easy to prove that

Dµ

(
φ

x

)∣∣∣∣
zi

= D

(
φ

x

)∣∣∣∣
zi

dxµ

dt
. (11)

So, the topological current (3) can be rigorously expressed as

Jµ = δ3(φ)D

(
φ

x

)
dxµ

dt
. (12)

As we proved in Ref. 9, we have

Jµ =
l∑
i=1

βiηiδ
3(x− zi)

dxµ

dt

∣∣∣∣
zi

, (13)

M
od

. P
hy

s.
 L

et
t. 

A
 1

99
9.

14
:2

01
1-

20
23

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

T
O

R
O

N
T

O
 o

n 
03

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 6, 1999 10:30 WSPC/146-MPLA 0397

2014 Y. Duan, L. Fu & H. Zhang

where the positive integer βi is the Hopf index and ηi = signD(φ/x)zi = ±1 is

Brouwer degree.5,7 According to Eq. (13), the density of topological charge can be

rewritten as

ρ = J0 =
l∑
i=1

βiηiδ
3(x− zi) . (14)

It is clearly that the inner structure of this system is characterized by Hopf in-

dices βi and Brouwer degrees ηi, which are topological invariants. From discussions

above, we see that the density ρ(x) is similar to a system of l classical point-like

particles with topological charge βiηi moving in the four-dimensional space–time.

The topological charge βiηi is also called the topological charge of the ith point

defect and ρ(x) can be regarded as the density of defects. And solution (10) can be

regarded as the trajectory of the ith defect. From formula (14), we obtain the total

charge of the system:

Q =

∫
ρ(x)d3x =

l∑
i=1

βiηi . (15)

The result (7) has also been carried out by Halperin,3 and exploited by Liu and

Mazenko4: the first ingredient is the rather obvious result∑
α

δ(r − rα(t)) = δ(φ(r, t))

∣∣∣∣D(φx
)∣∣∣∣ ,

where the second factor on the right-hand side is just the Jacobian of the transfor-

mation from the variable φ to r. This is combined with the less obvious result

ηα = sgnD(φ/x)|rα
to give

ρ(r, t) =
∑
α

ηαδ(r− rα(t)) = δ(φ)D

(
φ

x

)
. (16)

Here we see that the result (16) obtained by Halperin, Liu and Mazenko is not com-

plete. They did not consider the cases βl 6= 1 and D(φ/x) = 0, i.e. ηl is indefinite. It

is interesting to discuss what will happen and what does it correspond to in physics

when D(φ/x) = 0.

3. The Bifurcation of Worldlines of Point Defects

As being discussed before, the zeros of the smooth vector φ (locations of defects)

play important roles in studying the evolution of point defect. In this section, we

will study the properties of the zero points, in other words, the properties of the

solutions of the following equations
φ1(x0, x1, x2, x3) = 0 ,

φ2(x0, x1, x2, x3) = 0 ,

φ3(x0, x1, x2, x3) = 0 .

(17)
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As we know, if the Jacobian determinant

D

(
φ

x

)∣∣∣∣
zi

= D0

(
φ

x

)∣∣∣∣
zi

6= 0 ,

we will have the isolated solutions (10) of Eq. (17). The isolated solutions are called

regular points. It is easy to see that the results in Sec. 2 is based on this condition.

However, when this condition fails, the above results will change in some way, and

will lead to the branch process of topological density and give rise to the bifurcation.

We denote one of zero points as (t∗, zi).

3.1. The branch process at a limit point

It is well known that when the JacobianD(φ
x
)|(t∗,zi) = 0, the usual implicit function

theorem is of no use. But if the Jacobian

D1

(
φ

x

)∣∣∣∣
(t∗,zi)

=
∂(φ1, φ2, φ3)

∂(t, x2, x3)

∣∣∣∣
(t∗,zi)

6= 0 ,

we can use the Jacobian D1(φx )|(t∗,zi) instead of D(φx )|(t∗,zi), for the purpose of

using the implicit function theorem.13 Then we have a unique solution of Eqs. (17)

in the neighborhood of the point (t∗, zi)

t = t(x1) ,

xi = xi(x1) , i = 2, 3 ,
(18)

with t∗ = t(x1). And we call the critical points (t∗, zi) the limit points. In the

present case, it is easy to know that

dx1

dt

∣∣∣∣
(t∗,zi)

=
D1
(
φ
x

)∣∣
(t∗,zi)

D
(
φ
x

)∣∣
(t∗,zi)

=∞ , (19)

i.e.

dt

dx1

∣∣∣∣
(t∗,zi)

= 0 .

Then we have the Taylor expansion of Eq. (18) at the point (t∗, zi)

t = t∗ +
dt

dx1

∣∣∣∣
(t∗,zi)

(x1 − z1
i ) +

1

2

d2t

(dx1)2

∣∣∣∣
(t∗,zi)

(x1 − z1
i )

2

= t∗ +
1

2

d2t

(dx1)2

∣∣∣∣
(t∗,zi)

(x1 − z1
i )

2 .
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Therefore

t− t∗ =
1

2

d2t

(dx1)2

∣∣∣∣
(t∗,zi)

(x1 − z1
i )

2 (20)

which is a parabola in the x1− t plane. From Eq. (20), we can obtain two worldlines

of two-point defects x1
1(t) and x1

2(t), which give the branch solutions of the system

(17). If d2t
(dx1)2 |(t∗,zi) > 0, we have the branch solutions for t > t∗, otherwise, we

have the branch solutions for t > t∗. It is clear that these two cases are related to

the origin and annihilation of point defects. Since the topological charge of point

defect is identically conserved, the topological charge of these two must be opposite

at the zero point, i.e.

βi1ηi1 = −βi2ηi2 . (21)

One of the results of Eq. (19) — the velocity of point defects is infinite when they

are annihilating — agrees with that obtained by Bray14 who has a scaling argument

associated with point defects final annihilation which leads to large velocity tail.

From Eq. (19), we also get a new result that the velocity of point defects is infinite

when they are generating, which is gained only from the topology of the three-

dimensional vector order parameter.

For a limit point, it also requires the D1(φ
x
)|(t∗,zi) 6= 0. As to a bifurcation

point,15 it must satisfy a more complement condition. This case will be discussed

in the following subsections in detail.

3.2. The branch process at a bifurcation point

In this subsection, we have the restrictions of the system (17) at the bifurcation

point (t∗, zi): 
D

(
φ

x

)∣∣∣∣
(t∗,zi)

= 0 ,

D1

(
φ

x

)∣∣∣∣
(t∗,zi)

= 0 .

(22)

These will lead to an important fact that the function relationship between t

and x1 is not unique in the neighborhood of the bifurcation point (zi, t
∗). It is easy

to see from equation

dx1

dt

∣∣∣∣
(t∗,zi)

=
D1
(
φ
x

)∣∣
(t∗,zi)

D
(
φ
x

)∣∣
(t∗,zi)

(23)

which under the restraint (22) directly shows that the direction of the worldlines

of point defects is indefinite at the point (zi, t
∗). This is why the point (zi, t

∗) is

called a bifurcation point of the system (17).
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Next, we will find a simple way to search for the different directions of all branch

curves at the bifurcation point. Assume that the bifurcation point (zi, t
∗) has been

found from Eqs. (17) and (22). We know that, at the bifurcation point (zi, t
∗), the

rank of the Jacobian matrix [∂φ
∂x

] is smaller than 3. First, we suppose the rank of

the Jacobian matrix [∂φ
∂x

] is 2 (the case of a more smaller rank will be discussed

later). Suppose that the 2× 2 submatrix J1(
φ
x
) is

J1

(
φ

x

)
=


∂φ1

∂x2

∂φ1

∂x3

∂φ2

∂x2

∂φ2

∂x3

 , (24)

and its determinant D1(φx ) does not vanish. The implicit function theorem says

that there exist one and only one function relation

xi = f i(x1, t) , i = 2, 3 . (25)

We denoted the partial derivatives as

f i1 =
∂f i

∂x1
, f it =

∂f i

∂t
, f i11 =

∂2f i

∂x1∂x1
,

f i1t =
∂2f i

∂x1∂xt
, f itt =

∂f i

∂xt∂xt
.

From Eqs. (17) and (25) we have for a = 1, 2, 3

φa = φa(x1, f2(x1, t), f3(x1, t), t) = 0 (26)

which give

∂φa

∂x1
= φa1 +

3∑
j=2

∂φa

∂f j
∂f j

∂x1
= 0 , (27)

∂φa

∂t
= φat +

3∑
j=2

∂φa

∂f j
∂f j

∂t
= 0 , (28)

from which we can get the first-order derivatives of f i: f i1 and f it . Differentiating

Eq. (27) with respect to x1 and t respectively we get

3∑
j=2

φaj f
j
11 = −

3∑
j=2

[
2φaj1f

j
1 +

3∑
k=2

(φajkf
k
1 )f j1

]
− φa11 , a = 1, 2, 3 (29)

3∑
j=2

φaj f
j
1t = −

3∑
j=2

[
φajtf

j
1 + φaj1f

j
t +

3∑
k=2

(φajkf
k
t )f j1

]
− φa1t , a = 1, 2, 3 . (30)
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And the differentiation of Eq. (28) with respect to t gives

3∑
j=2

φaj f
j
tt = −

3∑
j=2

[
2φajtf

j
t +

3∑
k=2

(φajkf
k
t )f jt

]
− φatt , a = 1, 2, 3 (31)

where

φajk =
∂2φa

∂xj∂xk
, φajt =

∂2φa

∂xj∂t
. (32)

The differentiation of Eq. (28) with respect to x1 gives the same expression as

Eq. (30). By making use of the Gaussian elimination method to Eqs. (30)–(32) we

can find the second-order derivatives f i11, f
i
1t and f itt. The above discussion does not

affect the last component φ3(x, t). In order to find the different values of dx1/dt at

the bifurcation point (zi, t
∗), let us investigate the Taylor expansion of φ3(x, t) in

the neighborhood of (zi, t
∗). Substituting Eq. (25) into φ3(x, t) we have the function

of two variables x1 and t

F (x1, t) = φ3(x1, f2(x1, t), f3(x1, t), t) (33)

which according to Eq. (17) must vanish at the bifurcation point

F (z1
i , t
∗) = 0 . (34)

From Eq. (33) we have the first-order partial derivatives of F (x1, t)

∂F

∂x1
= φ3

1 +
3∑
j=2

φ3
jf
j
1 ,

∂F

∂t
= φ3

t +
3∑
j=2

φ3
jf
j
t . (35)

Using Eqs. (27) and (28), the first equation of (22) is expressed as

D

(
φ

x

)∣∣∣∣
(zi,t∗)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
3∑
j=2

φ1
jf
j
1 φ1

2 φ1
3

−
3∑
j=2

φ2
jf
j
1 φ2

2 φ2
3

φ3
1 φ3

2 φ3
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(zi,t∗)

= 0 (36)

which by Cramer’s rule can be written as

D

(
φ

x

)∣∣∣∣
(zi,t∗)

=
∂F

∂x1
detJ1

(
φ

x

)∣∣∣∣
(zi,t∗)

= 0 .

Since detJ1(
φ
x )|(zi,t∗) 6= 0, the above equation gives

∂F

∂x1

∣∣∣∣
(zi,t∗)

= 0 . (37)
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With the same reasons, we have

∂F

∂t

∣∣∣∣
(zi,t∗)

= 0 . (38)

The second-order partial derivatives of the function F can be found out easily to be

∂2F

(∂x1)2
= φ3

11 +
3∑
j=2

[
2φ3

1jf
j
1 + φ3

jf
j
11 +

3∑
k=2

(φ3
kjf

k
1 )f j1

]
, (39)

∂2F

∂x1∂t
= φ3

1t +
3∑
j=2

[
φ3

1jf
j
t + φ3

tjf
j
1 + φ3

jf
j
1t +

3∑
k=2

(φ3
jkf

k
t )f j1

]
, (40)

∂2F

∂t2
= φ3

tt +
3∑
j=2

[
2φ3

jtf
j
t + φ3

jf
j
tt +

3∑
k=2

(φ3
jkf

k
t )f jt

]
, (41)

which at (zi, t
∗) are denoted by

A =
∂2F

(∂x1)2

∣∣∣∣
(zi,t∗)

, B =
∂2F

∂x1∂t

∣∣∣∣
(zi,t∗)

, C =
∂2F

∂t2

∣∣∣∣
(zi,t∗)

. (42)

Then take note of Eqs. (34), (37), (38) and (42) the Taylor expansion of F (x1, t)

in the neighborhood of the bifurcation point (zi, t
∗) can be expressed as

F (x1, t) =
1

2
A(x1 − z1

i )
2 +B(x1 − z1

i )(t− t∗) +
1

2
C(t− t∗)2 (43)

which by Eq. (33) is the expression of φ3(x, t) in the neighborhood of (zi, t
∗). The

expression (43) is reasonable, which shows that at the bifurcation point (zi, t
∗), one

of Eqs. (17), φ3(x, t) = 0, is satisfied, i.e.

A(x1 − z1
i )

2 + 2B(x1 − z1
i )(t− t∗) + C(t− t∗)2 = 0 . (44)

Dividing Eq. (44) by (t − t∗)2 and taking the limit t → t∗ as well as x1 → z1
i

respectively we get

A

(
dx1

dt

)2

+ 2B
dx1

dt
+ C = 0 . (45)

In the same way we have

C

(
dt

dx1

)2

+ 2B
dt

dx1
+A = 0 , (46)

where A, B and C are three constants. The solutions of Eq. (45) or Eq. (46) give

different directions of the branch curves (worldlines of point defects) at the bifur-

cation point. There are four possible cases, which will show the physical meanings

of the bifurcation points.
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Case 1 (A 6= 0): for ∆ = 4(B2 − AC) > 0 from Eq. (45) we get two different

directions of the velocity field of point defects

dx1

dt

∣∣∣∣
1,2

=
−B ±

√
B2 −AC
A

, (47)

where two worldlines of two-point defects intersect with different directions at the

bifurcation point. This shows that two-point defects encounter and then depart at

the bifurcation point.

Case 2 (A 6= 0): for ∆ = 4(B2−AC) = 0 from Eq. (45) we get only one direction

of the velocity field of point defects

dx1

dt

∣∣∣∣
1,2

= −B
A
, (48)

which includes three important cases. (a) Two worldlines tangentially contact, i.e.

two-point defects tangentially encounter at the bifurcation point. (b) Two worldlines

merge into one worldline, i.e. two-point defects merge into one-point defect at the

bifurcation point. (c) One worldline resolves into two worldlines, i.e. one-point defect

splits into two-point defects at the bifurcation point.

Case 3 (A = 0, C 6= 0): for ∆ = 4(B2 −AC) = 0 from Eq. (46) we have

dt

dx1

∣∣∣∣
1,2

=
−B ±

√
B2 −AC
C

= 0 , −2B

C
. (49)

There are two important cases: (a) one worldline resolves into three worldlines, i.e.

one-point defect splits into three-point defects at the bifurcation point. (b) Three

worldlines merge into one worldline, i.e. three-point defects merge into one-point

defect at the bifurcation point.

Case 4 (A = C = 0): Eqs. (45) and (46) give respectively

dx1

dt
= 0 ,

dt

dx1
= 0 . (50)

This case is obvious, similar to case 3.

The above solutions reveal the evolution of the point defects. Besides the en-

countering of the point defects, i.e. two-point defects encounter and then depart at

the bifurcation point along different branch curves, it also includes splitting and

merging of point defects. When a multicharged point defect moves through the bi-

furcation point, it may split into several point defects along different branch curves.

On the contrary, several point defects can merge into one-point defect at the bifur-

cation point. The identical conversation of the topological charge shows the sum of

the topological charge of final point defect(s) must be equal to that of the initial

point defect(s) at the bifurcation point, i.e.∑
f

βlf ηlf =
∑
i

βliηli (51)
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for fixed l. Furthermore, from the above studies, we see that the generation, an-

nihilation and bifurcation of point defects do not change gradually, but start at a

critical value of arguments, i.e. a sudden change.

3.3. The branch process at a higher degenerate point

In the above subsection, we have studied the case that the rank of the Jacobian

matrix [∂φ
∂x

] of Eqs. (17) is 2 = 3− 1. In this subsection, we consider the case that

the rank of the Jacobian matrix is 1 = 3 − 2. Let the J2(
φ
x
) = ∂φ1

∂x1 and suppose

that detJ2 6= 0. With the same reasoning as we obtained Eq. (25), we can have the

function relations

x3 = f3(x1, x2, t) . (52)

Substituting relations (52) into the last two equations of (17), we have the following

two equations with three arguments x1, x2, t{
F1(x

1, x2, t) = φ2(x1, x2, f3(x1, x2, t), t) = 0 ,

F2(x
1, x2, t) = φ3(x1, x2, f3(x1, x2, t), t) = 0 .

(53)

Calculating the partial derivatives of the function F1 and F2 with respect to x1, x2

and t, taking note of Eq. (52) and using six similar expressions to Eqs. (37) and

(38), i.e.

∂Fj

∂x1

∣∣∣∣
(zi,t∗)

= 0 ,
∂Fj

∂x2

∣∣∣∣
(zi,t∗)

= 0 ,
∂Fj

∂t

∣∣∣∣
(zi,t∗)

= 0 , j = 1, 2 , (54)

we have the following forms of Taylor expressions of F1 and F2 in the neighborhood

of (zi, t
∗)

Fj(x
1, x2, t) ≈ Aj1(x

1 − z1
i )

2 +Aj2(x
1 − z1

i )(x
2 − z2

i ) +Aj3(x
1 − z1

i )(t− t∗)

+Aj4(x
2 − z2

i )
2 +Aj5(x

2 − z2
i )(t− t∗)

+Aj6(t− t∗)2 = 0 , j = 1, 2 . (55)

In case of Aj1 6= 0 and Aj4 6= 0, dividing Eq. (55) by (t− t∗)2 and taking the limit

t→ t∗, we obtain two quadratic equations of dx1

dt and dx2

dt

Aj1

(
dx1

dt

)2

+Aj2
dx1

dt

dx2

dt
+Aj3

dx1

dt
+Aj4

(
dx2

dt

)2

+Aj5
dx2

dt
+Aj6 = 0 , j = 1, 2 . (56)
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Eliminating the variable dx1/dt, we obtain an equation of dx2/dt in the form of a

determinant∣∣∣∣∣∣∣∣∣∣∣

A11 A12v +A23 A14v
2 +A15v +A16 0

0 A11 A12v +A13 A14v
2 +A15v +A16

A21 A22v +A23 A24v
2 +A25v +A26 0

0 A21 A22v +A23 A24v
2 +A25v +A26

∣∣∣∣∣∣∣∣∣∣∣
= 0 , (57)

where v = dx2/dt, that is a fourth-order equation of dx2/dt

a0

(
dx2

dt

)4

+ a1

(
dx2

dt

)3

+ a2

(
dx2

dt

)2

+ a3

(
dx2

dt

)
+ a4 = 0 . (58)

Therefore we get different directions of the worldlines of point defects at the higher

degenerate point bifurcation point. The number of different branch curves is at

most four.

At the end of this section, we conclude that in our theory of point defects there

exist the crucial case of branch process.11 Besides the encountering of the point

defects, i.e. two-point defects encounter and then depart at the bifurcation point

along different worldlines, it also includes splitting and merging of point defects.

When a multicharged point defect moves through the bifurcation point, it may

split into several point defects along different worldlines. On the contrary, several

point defects can merge into one-point defect at the bifurcation point. Since the

topological charges of point defects is identically conserved (4), the sum of the

topological charge of final point defect(s) must be equal to that of the initial point

defect(s) at the bifurcation point.

4. Conclusions

We have studied the evolution of the point defects of a three-dimensional vector

order parameter by making use of the φmapping topological current theory. We con-

clude that there exist crucial cases of branch processes in the evolution of the point

defects. This means that the point defects generate or annihilate at the limit points

and encounter, split or merge at the bifurcation points of the three-dimensional

vector order parameter, which shows that the point defects system is unstable at

these branch points. There are two restrictions of the evolution of point defects in

this letter. One restriction is the conservation of the topological charge of the point

defects during the branch process, the other restriction is the number of different

directions of the worldlines of point defects is at most four at the bifurcation points.

We would like to point out that all the results in this letter are obtained from the

viewpoint of topology without using any particular models or hypothesis.
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