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We investigate the collective excitations of a one-dimensional Bose-Einstein condensate with repulsive
interaction between atoms in a quadratic plus quartic trap. Using variational approaches, the coupled equations
of motions for the center-of-mass coordinate of the condensate and its width are derived. Then, two low-energy
excitation modes are obtained analytically. The frequency shift induced by the anharmonic distortion, and the
collapse and revival of the collective excitations originating from the nonlinear coupling between the two
modes, are discussed.
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I. INTRODUCTION

One of the most important characters of an interacting
quantum many-body system is its response to external per-
turbations, where collective excitation modes represent a
very effective tool for exploring the role of interactions and
testing theoretical schemes. For this reason, measurements of
the collective modes in trapped gases of alkali-metal atoms
�1–3� were carried out soon after the discovery of Bose-
Einstein condensates �BECs�. For dilute degenerate gases,
the essential physics of the BEC ground state is included in
the Gross-Pitaevskii equation �GPE�. The nonlinearity origi-
nating from the interatomic interaction is included in the
equation through a mean-field term proportional to the con-
densate density. The study about the collective excitations of
the condensation has been investigated extensively by using
various theoretical methods �4–8�. The remarkable agree-
ment between measured frequencies and theoretical predic-
tions is one of the most important achievements in the inves-
tigation of these new systems. Meanwhile, because of the
emergence of nonlinearity, a lot of interesting phenomena in
the collective excitations of BECs, such as frequency shift
�9�, mode coupling �9–12�, damping �13,14�, collapse and
revival of oscillations �15,16�, and the onset of stochastic
motions for strong driving amplitude �17–19�, have been
paid much attention.

Recently, the collective dynamics of a one-dimensional
�1D� trapped ultracold Bose gases has attracted considerable
attention, since experiments on trapped Bose gases at low
temperature have pointed out the occurrence of characteristic
1D feature �20–22�. In previous work the studies of the col-
lective excitations of BECs in the magnetic traps are mainly
limited to the harmonic case. However, in the practical situ-
ation of experiments, the trap usually is not purely harmonic.
With this concern, we study the collective excitations of a
one-dimensional BEC in a harmonic trap with a quartic dis-
tortion. Our aim is to understand how the distortion affects
the collective excitations of BECs.

Our study is facilitated by variational approaches. Using a
Gaussian trial function, the GPE is transformed into a set of
second-order ordinary differential equations about some pa-
rameters that characterize the condensate wave function.
Then we derived the expressions for the two low-energy os-
cillation modes analytically, and the nonlinear coupling be-
tween the two modes is revealed. In particular, we find that a
very small anharmonic distortion may cause a significant fre-
quency shift of the excitation modes when the atomic inter-
action is strong. Finally, we demonstrate that the anharmonic
distortion may give rise to the collapse and revival of the
collective excitations.

The paper is organized as follows. In Sec. II we derive the
governing equations for the center-of-mass coordinate of the
condensate and its width. In Sec. III we discuss the collective
modes and the frequency shift caused by the anharmonic
distortion. In Sec IV, we demonstrate the collapse and revival
of the collective excitations in an anharmonic potential. The
final section is our conclusion.

II. VARIATIONAL APPROACH AND GOVERNING
EQUATIONS

We consider dilute degenerate bosons confined in a cigar-
shaped trap and assume that the system is far from the
Tonks-Girardeau regime �23�. Then the BEC can be well
described by the dimensionless 1D GPE,
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�x2 + V�x� + g���x,t��2���x,t� , �1�

where the coordinate x is measured in units of �� /m�x and
time is in units of 1 /�x. �x is the x-component frequency of
the harmonic trap. ��x , t� is the macroscopic wave function
of the condensate normalized so that 	���x��2dx=1; g
=4N��1das /�� /m�x characterizes the interatomic interac-
tion and is defined in terms of the s-wave scattering length as
�below we shall be concerned with repulsive BECs for which
as�0�; �1d=	���y ,z��4dy dz / �	���y ,z��2dy dz�5/2 is a coeffi-
cient which compensates for the loss of two dimensions �24�.
In the above expressions, N is the total number of atoms and*Electronic address: Liu�Jie@iapcm.ac.cn
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��y ,z� is the ground-state wave function of the lateral di-
mensions.

The trapping potential we consider takes the form

V�x� =
1

2
�x2 + �x4� . �2�

The quartic term in the potential denotes the anharmonicity
of the trap. In �25�, the authors created such a quartic con-
finement with a blue-detuned Gaussian laser directed along
the axial direction. In their case, the nonrotating condensate
was cigar shaped and the strength of the quartic admixture
was �
10−3. Here, we regard � as a controllable parameter
and assume that the anharmonicity is weak, i.e., ���	1.

The problem of solving Eq. �1� can be restated as a varia-
tional problem corresponding to the minimization of the ac-
tion related to the Lagrangian density �6�,
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where the asterisk denotes a complex conjugate. In order to
obtain the dynamics of the condensate in the trapping poten-
tial we will find the extremum of Eq. �3� with a set of trial
functions. In our case, a natural choice of the trial function is
a Gaussian, i.e., we take

��x,t� = 
�t�e−�x − ��t��2/2w�t�2+ix��t�+ix2��t�. �4�

At a given time t, this function defines a Gaussian distribu-
tion centered at the position � with width w. The other varia-
tional parameters 
, �, and � are all real variables. Inserting
�4� into �3� we can calculate a grand Lagrangian by integrat-
ing the Lagrangian density over the whole coordinate space,
L=	−

+� dx. Then, from the Lagrange equations, we obtain
the evolution equations for all variational parameters.

The dynamical equations for the center of mass and width
of the condensate are derived as follows:

�̈ + � + 2��3 + 3��w2 = 0, �5�

ẅ + w + 3�w3 + 6��2w =
1

w3 +
p

w2 , �6�

where the effective interaction p�g /�2�, which comes
from the nonlinear interaction between the particles.

The other variational parameters can be obtained from the
center coordinate and the width through the equations

���
�t��2w�t� = 1, �7�

� =
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, � = �̇ − �

ẇ

w
. �8�

The first one corresponds to the normalization condition of
the wave function, 	���x , t��2dx=1. Therefore, once we know
the behavior of the center and width of the condensate, we
can calculate the evolution of the rest of the parameters, and
then completely characterize the dynamics of the condensate.

Comparing the above equations with that of a pure har-
monic potential, we find the emergence of two new terms in
Eqs. �5� and �6�, i.e., the third and fourth terms in the left

side. Obviously, the third term is directly from the distortion
of potential, whereas, the fourth one represents the response
of a coherent wave to the distortion of the potential, mani-
festing a coupling between the motion of the center and the
width.

III. COLLECTIVE MODES AND FREQUENCY SHIFT DUE
TO THE ANHARMONIC DISTORTION

When we consider the contribution from the quartic dis-
tortion, i.e., ��0 in the potential V�x�, nonlinear coupling
between the oscillations of the center and width emerges.
The equilibrium points of Eqs. �5� and �6� correspond to
stable or unstable stationary states of the condensate. They
satisfy the following equations:

�0 + 2��0
3 + 3��0w0

2 = 0, �9�
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1
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There is only one stable equilibrium point for ��0, that is,

�0 = 0, �11�

w0 + 3�w0
3 =

1

w0
3 +

p

w0
2 . �12�

For ��0 there are several equilibrium points; one of them is
stable and the others are unstable. The stable equilibrium
point also satisfies Eqs. �11� and �12�.

Expanding Eqs. �5� and �6� around the equilibrium points
defined by Eqs. �11� and �12� and making a routine diago-
nalizing process, we can obtain the following frequencies for
low-energy excitation modes:

�1,2 = �1 + �1 �
1

2
�6�w0

2 + �1 � 1�� 3

2w0
4 +

p

w0
3�1/2

,

�13�

which are related to the coupled variation of the center and
width of the condensate �4–8�. When �=0, �1 corresponds
to the dipole oscillation �m=1� characterizing the motion of
the center of mass, and �2 is the frequency of the variation of
the condensate width; it is just the low-lying collective mode
�m=0�.

When the potential is not perfectly harmonic, i.e., ��0,
the contribution from the quartic term will give rise to a shift
on the frequencies. When ��0 the frequency will be blue-
shifted and when ��0 the frequency will be redshifted. This
is true for both single particles and BECs. However, it is
interesting that for BECs the frequency shift is enhanced
dramatically by the atomic interaction. The frequencies of
two low-energy excitations as functions of p for the above
parameters are plotted in Fig. 1.

From Eq. �13�, we see that the contribution to the fre-
quency shift comes from the second term in the right-hand
side, i.e., ��w0

2, which is due to the response of the coherent
wave to the distortion of the potential. On the other hand, the
width w0 of the wave function will be broadened by the atom
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interaction. In Fig. 2 we show this effect by plotting the
dependence of w0 on � for different interaction parameters.

From the above discussion, we know that, although the
anharmonic distortion is very small, the frequency shift may
be large due to magnification effects from the atom interac-
tion. To demonstrate it, in Fig. 3 we plot the frequencies of
the dipole motion of the BEC wave packet for different atom
interactions and anharmonic parameters. It is clearly shown
that the atom interaction will give rise to 20% or more shift
of frequency when there is only 2% of anharmonic distortion
�see Fig. 3, data at p=20�. We expect that these phenomena
can be observed in future experiments.

IV. COLLAPSE AND REVIVAL OF THE COLLECTIVE
EXCITATIONS

Another promising direction is to investigate the collapse
and revival of the collective excitations �15,16�, which are
directly induced by the nonlinear coupling effect between

two oscillation modes. In previous work, the nonlinear cou-
pling originates from the intrinsic interaction between par-
ticles in the system. Here, we show a different mechanism
for the nonlinear coupling that is due to the nontrivial anhar-
monic corrections to the trap.

In our case, qualitative results can be obtained by analyz-
ing Eqs. �5� and �6�. The oscillation of the center of the
condensate couples with the motion of the width through the
anharmonic parameter �. It is noted that the coupled motion
can be triggered by putting a small shift on the center of the
condensate from its equilibrium point. The consequent mo-
tions of the width of the condensate excited by the shift are
illustrated in Fig. 4 for different anharmonicity parameters.
In all the above calculations, the initial shift is set as ��
=0.1. Figure 4 clearly shows the collapse and revival of os-
cillation patterns for the condensate width with respect to
time, induced by the anharmonicity.

Moreover, the changes of collapse and revival are not
monotonic with increasing �, and the revival period can be
effectively controlled by adjusting the anharmonicity param-

FIG. 1. Frequencies of two low-energy exci-
tations as functions of effective interaction p for
different �.

FIG. 2. Equilibrium width w0 as functions of � for different
effective interaction p.

FIG. 3. Frequencies of mass center motions in anharmonic trap
as functions of � for BECs with different atom interactions p.
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eter. In fact, by linearizing Eqs. �5� and �6� around the equi-
librium point, we have �̈�+�1

2��=0 and ẅ�+�2
2w�=

−6�w0��2. Obviously, the motion of the width behaves like a
periodically driven oscillator. Since the frequency of the “ex-
ternal force” is 2�1, and the intrinsic frequency of the width
oscillation is �2, the linear combination of the two frequen-
cies gives the frequency of the collapse and revival, that is,
�2�1−�2�. Detailed analysis also suggests that the frequency
of the collapse and revival increases monotonically with the
nonlinear parameter p, but is not monotonic with increasing
�. It will vanish for some parameters, e.g., at ��0.053 for

p=0.4. This is confirmed by our numerical simulations, as in
Fig. 4; around ��0.053 for p=0.4, the period of collapse
and revival becomes much longer.

V. CONCLUSION

We have investigated collective excitations of a Bose-
Einstein condensate in an anharmonic trap using variational
approaches and obtained analytical expressions for the fre-
quencies of the low-energy excitations. It is shown that the
two low-energy excitation modes, corresponding to varia-
tions of the center and width of the condensate, couple with
each other. The blueshift and redshift on the excitation fre-
quency caused by the anharmonic distortion are revealed and
found to be more dramatic in the case of strong atomic in-
teraction. Furthermore, the collapse and revival of collective
excitations in the anharmonic potential is discussed. We hope
our theoretical results will stimulate experiments in this di-
rection.
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