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We present a comprehensive analysis of the Landau-Zener tunneling of a nonlinear three-level system in a
linearly sweeping external field. We find the presence of nonzero tunneling probability in the adiabatic limit
�i.e., very slowly sweeping field� even for the situation that the nonlinear term is very small and the energy
levels keep the same topological structure as that of the linear case. In particular, the tunneling is irregular with
showing an unresolved sensitivity on the sweeping rate. For the case of fast-sweeping fields, we derive an
analytic expression for the tunneling probability with stationary phase approximation and show that the non-
linearity can dramatically influence the tunneling probability when the nonlinear “internal field” resonate with
the external field. We also discuss the asymmetry of the tunneling probability induced by the nonlinearity.
Physics behind the above phenomena is revealed and possible application of our model to triple-well trapped
Bose-Einstein condensate is discussed.
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I. INTRODUCTION

Avoided crossing of energy levels is a universal phenom-
enon for the quantum nonintegrable systems where the sym-
metry break leads to the splitting of degenerate energy levels
forming a tiny energy gap. Around the avoided crossing
point of the two levels the Landau-Zener tunneling �LZT�
model provides an effective description for the tunneling dy-
namics under assumption that the energy bias of two levels
undergoes a linear change with time �1�. It is a basic model
in quantum mechanics and has versatile applications in quan-
tum chemistry �2�, collision theory �3�, and more recently in
the spin tunneling of nanomagnets �4,5�, Bose-Einstein con-
densates �BEC� �6�, and quantum computing �7�, to name
only a few.

LZT model has been extended to many versions taking
diverse physical conditions into account: LZT problem with
a time-varied sweeping rate �8�, LZT model with a fast noise
from the outer environment �9�, LZT model with periodic
modulation �10,11�, and so on. Among them, LZT in a non-
linear two-level system is one of the most interesting models
and attracts much attention recently �12–15�. In this model,
the level energies depend on the occupation of the levels and
may arise in a mean-field treatment of a many-body system
where the particles predominantly occupy two energy levels.
The nonlinear LZT model not only demonstrates behavior of
great interest in theory but also has important applications in
spin tunneling of nanomagnets �16� and a Bose-Einstein con-
densate in a double-well potential �12,14,17� or in an optical
lattice �13,15�. However, since most of the problems of in-
terest involve more than two energy levels, with transitions
between several levels happening simultaneously �18–21�,
for example, BECs trapped in multiple wells �22–25�, spin
tunneling of nanomagnets with large spin, etc., it is naturally

desirable to extend the above nonlinear tunneling to the mul-
tilevel situation.

In the present paper, we consider the simplest multilevel
system—the three-level system, to investigate its compli-
cated tunneling dynamics in the presence of nonlinearity. Be-
cause quantum transitions may happen between several lev-
els simultaneously, the LZT in the nonlinear three-level
model shows many striking properties distinguished from
that of the two-level case. In the adiabatic limit we will show
that, for a very small nonlinear parameter, the energy levels
still keep the same topological structure as its linear counter-
part, the adiabaticity breaks down manifesting the presence
of a nonzero tunneling probability. This is quite different
from the two-level case, where the breakdown of the adiaba-
ticity is certainly accompanied by a topological change on
the energy levels. More interestingly, the tunneling is irregu-
lar with showing an unresolved sensitivity on the sweeping
rate, a phenomenon attributed to the existence of the chaotic
state. In the sudden limit, we derive an analytic expression
for the tunneling probability under stationary phase approxi-
mation and show that the nonlinearity can dramatically in-
fluence the tunneling probability at the resonance between
the nonlinear “internal field” and the external field. We also
discuss the asymmetry of the tunneling probability induced
by the nonlinearity. The physical mechanism behind these
phenomena is revealed and possible application of our model
to triple-well trapped Bose-Einstein condensate is discussed.

The paper is organized as follows. In Sec. II we introduce
our nonlinear three-level LZT model and calculate its adia-
batic levels. Section III discusses LZT among the levels.
Section IV gives a possible application of the model to the
triple-well trapped BEC.

II. THE MODEL AND ADIABATIC LEVELS

We consider the following dimensionless Schrödinger
equation:*Electronic address: liu�jie@iapcm.ac.cn
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where v is the coupling constant between the neighboring
levels; c is the nonlinear parameter; the energy bias � is
supposed to be adjusted by a linearly external field, i.e., �
=�t, � is the sweeping rate; a1, a2, a3 is probability ampli-
tude in each level and the total probability �a1�2+ �a2�2+ �a3�2
is conserved and set to be a unit.

When the nonlinear parameter vanishes, our model re-
duces to the linear case and the adiabatic energy levels
����=0, ± 1

2
��2+2v2 �Fig. 1�a�� derived by diagonalizing the

Hamiltonian �2�. Tunneling probability �nm �n ,m=1,2 ,3� is
defined as the occupation probability on the mth level at �
→ +� for the state initially on the nth level at �→−�. For
the linear case, the above system is solvable analytically and
the tunneling probabilities can be explicitly expressed as �21�
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The others are �21=�23=�32=�12, �31=�13, �33=�11 due to
the symmetry of the levels.

With the presence of the nonlinear terms, we want to
know how the tunneling dynamics in the above system is
affected. In our discussions, the coupling parameter is set to
be a unit, i.e., v=1. Therefore, the weak nonlinear case and
the strong nonlinear case mean that c�1 and c�1, respec-
tively. As to the external fields, we will consider three cases,
namely, adiabatic limit, sudden limit, and moderate case, cor-
responding to ��1, ��1, and �1, respectively.

Similar to the linear case, we need to analyze the adia-
batic levels of the nonlinear model first. With a1=�s1ei	a1,
a2=�1−s1−s2ei	a2, a3=�s2ei	a3, we introduce the relative
phase 	1=	a1

−	a2
, 	2=	a3

−	a2
. In terms of s1, 	1 and s2, 	2,

the nonlinear three-level system is cast into a classical
Hamiltonian system,

He = 
�
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c

8
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8
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−
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+
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8
s2�s2

− v��1 − s1 − s2�s1 cos 	1 − v��1 − s1 − s2�s2 cos 	2.

�7�

s1, 	1 and s2, 	2 are two pairs of canonically conjugate vari-
ables of the classical Hamiltonian system, governed by the
following differential equations:

ṡ1 = − v��1 − s1 − s2�s1 sin 	1, �8�

	̇1 =
�

2
−

c

4
�1 − 2s1 − s2� −

1 − 2s1 − s2
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v cos 	1

+
s2

2��1 − s1 − s2�s2

v cos 	2, �9�

ṡ2 = − v��1 − s1 − s2�s2sin 	2, �10�

	̇2 = −
�

2
−

c

4
�1 − s1 − 2s2� +

s1

2��1 − s1 − s2�s1

v cos 	1

−
1 − s1 − 2s2

2��1 − s1 − s2�s2

v cos 	2. �11�

The fixed points of the nonlinear classical Hamiltonian cor-
respond to the eigenstates of the nonlinear three-level sys-

tem. By setting ṡ1= ṡ2= 	̇1= 	̇2=0 in the equations �8�–�11�
the eigenstates of the system are obtained. Accordingly, the
eigenenergy is obtained by 
=He, i.e., the energy levels are
gained as shown in Fig. 1.

For weak nonlinearity, the levels’ structure is similar to its
linear counterpart �Fig. 1�b��. For strong nonlinearity �Fig.
1�c��, in the middle level a double-loop topological structure
emerges and in the upper level a butterfly structure appears.

FIG. 1. Adiabatic energy levels at v=1.0: �a� linear case, �b�
weak nonlinearity case of c=0.1, �c� strong nonlinearity case of c
=10.0.
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The double-loop structure is also observed in Ref. �25�. Be-
cause of these topological distortions on the energy levels,
we expect that the tunneling dynamics will dramatically
change.

III. LANDAU-ZENER TUNNELING

In this section we study LZT in the nonlinear three-level
system both numerically and analytically. First, we consider
two limit cases: adiabatic limit and sudden limit, respec-
tively. Then we will discuss the tunneling probability in the
general case and investigate the symmetry of the tunneling
probability.

A. Adiabatic limit „�™1…

In the adiabatic limit, the characters of the tunneling prob-
abilities should be entirely determined by the topology of the
energy levels and the eigenstates’ properties �corresponding
to the stability of the fixed points in the classical Hamil-
tonian system�, according to the adiabatic theorem �26,27�.
So, we expect that, for the weak nonlinearity case, an initial
state starting from any level �upper, middle or lower� will
follow the levels and evolve adiabatically, as a result, no
quantum transition between levels occurs; for the strong non-
linearity, an initial state from the lower level is expected to
evolve adiabatically keeping stay on the ground state, lead-
ing to zero adiabatic tunneling probability, whereas for the
state initially from the middle or upper level, due to the
topological change of the level, it cannot move smoothly
from the left side to the right side. Transition to other levels
happens at the tip of the loop or butterfly. Consequently, the
adiabatic tunneling probability is expected to be nonzero.

However, the above picture is only partly corroborated by
our directly solving the Schrödinger equation using fourth-
fifth order Runge-Kutta adaptive-step algorithm, as shown in
Fig. 2.

On the one hand, Fig. 2 clearly shows, for the strong
nonlinearity case, as we expect, no tunneling for the state
from the lower level, but a serious adiabatic tunneling is
observed for the states from the upper two levels. In particu-
lar, we find that the tunneling probability as a function of the
sweeping rate shows an irregular oscillation. This oscillation
is also observed by Graefe et al. �25�. We associate this
irregularity to the chaotic state. To demonstrate it, we plot in
Fig. 3 the Poincare section of the trajectories for c=10 before
and after the tip of the butterfly structure of the upper level in
Fig. 1�c�. It shows that, before the tip, the eigenstate corre-
sponds to the fixed point surrounded by the quasiperiodic
orbit, therefore it is stable. As the state evolves to the right-
hand tip of the butterfly, it makes contact with the chaotic
sea, after that the states becomes chaotic. The characteristics
of the chaos is sensitive on the parameters, therefore the
chaotic state is responsible for the irregular tunneling prob-
ability exposed by Figs. 2�h� and 2�i�.

On the other hand, Fig. 2 also shows that for the weak
nonlinearity, even though the adiabatic levels keep the same
topological structure as the linear case, there is still nonzero
tunneling probability for the state started from the middle

level. The tunneling also shows some kind of irregularity.
This phenomenon is counter to our naive conjecture from
observing the topological structure of the adiabatic levels.

To explain this unusual phenomenon, we need to make a
detailed analysis on the property of the fixed points of the
classical system Hamiltonian �7�, corresponding to the eigen-
states of the middle level.

We plot quantity s1 as the function of � in Figs. 4�a� and
4�b�, we see the adiabatic evolution of the eigenstate breaks
down around �=−2 due to the nonlinearity �Fig. 4�b��. This
adiabaticity breakage is caused by the change on the property
of the fixed point corresponding to the eigenstate of the
middle level. This is revealed by investigating the
Hamiltonian-Jaccobi matrix obtained by linearizing the non-
linear equations �8�–�11� at fixed points,

FIG. 2. The tunneling probability �11, �22, �33 �full circles� as
functions of � for different nonlinear parameters at v=1.0. The
dashed lines represent the results from the linear Landau-Zener
model for comparison.

FIG. 3. Poincare section of the trajectories for c=10 before and
after the tip of the butterfly structure of the upper level in Fig. 1�c�.
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We solve the eigenvalues of HJ for different � and plot our
results in Fig. 4�c�. These eigenvalues can be real, complex
or pure imaginary. Only pure imaginary eigenvalues corre-
spond to the stable fixed point, others indicate the unstable
ones. In Fig. 4�c�, we can see the eigenvalues are complex
numbers �i.e., their real parts are not zero� around �=0, ±2.
The corresponding fixed points are unstable. For other re-
gions, the eigenvalues of HJ are pure imaginary. Therefore,
even though no topological structure changes on the level
structures, the instability of the fixed point corresponding to
the middle level leads to the breakdown of the adiabaticity
manifesting the irregular nonzero tunneling probability ex-
posed by Fig. 2�e� in the adiabatic limit.

The above instability mechanism occurs for any smaller
nonlinear perturbation. Let us make some analytic deduction
as follows. Note that the fixed points of equations �8�–�11�
can be accurately calculated if c=0: s1

0=s2
0= 1

2+�2 , 	1
0=0, 	2

0

=� for ��0, and 	1
0=�, 	2

0=0 for ��0. By employing the
perturbation theory using c as a small parameter, we can get

the fixed points for small c : s1
0= 1

2+�2 −
�1−�2�2

4�2+�2�c�, s2
0= 1

2+�2

+
�1−�2�2

4�2+�2�c�, 	1
0=0, 	2

0=� for the nonlinear case. Substituting

them into Eq. �12�, we can obtain the eigenvalues of HJ by
solving the following quartic equation:

�64 + 1280�4�x4 + �64 + c2 + 1344�2�x2 + �16 + c2 + 352�2�

= 0.

The useful quadratic discriminant is =4096�4−2432c2�2

+ �c4−128c2�. In the linear case, c=0, =4096�4 is always
larger than zero, which means that the solutions for x are
pure imaginary, thus the fixed points are stable. For small c,
lim�→0 �0, the real part of the solutions c /16, while the
imaginary part �2/2. As a result, the fixed point corre-
sponding to the middle level becomes unstable around �=0
for any small nonlinearity, implying the breakdown of the
adiabatic evolution of states on the middle level.

B. Sudden limit „�š1…

The sudden limit corresponds to nonadiabatic LZT. The
tunneling probability does not relate much to the structure of
the levels. In this limit a weak nonlinearity does not affect
the tunneling probability, however, a strong nonlinearity can
dramatically influence the tunneling dynamics.

In this limit, we can derive the analytical expression of
the tunneling probabilities using the stationary phase ap-
proximation �SPA�. As a demonstration, we concentrate on
the middle level, i.e., to calculate �22 which is equal to 1
−�21−�23. Because of the large sweeping rate �, a quantum
state would stay on the initial level most of the time. Thus
the amplitudes a1 and a3 in the Schrödinger equation �1�
remain small and �a2�1 all the time. A perturbation treat-
ment of the problem becomes adequate.

We begin with the variable transformation,

a1 = a1� exp	− i�
0

t 
�

2
+

c

4
�a1�2�dt� , �13�
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2
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c

4
�a3�2�dt� . �15�

As a result, the diagonal terms in the Hamiltonian are trans-
formed away, and the evolution equations of a1�, a2�, a3� be-
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We need to calculate the above integrals self-consistently.
Due to the large �, the nonlinear term in the exponent gen-

FIG. 4. The variety of s1 with � when the eigenstate �0,1 ,0�T

evolves adiabatically at v=1.0, �=0.0001. �a� Linear case. �b� Non-
linear case at c=0.1. �c� The real parts of the eigenvalues of HJ.
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erally gives a rapid phase oscillation, which makes the inte-
gral small. The dominant contribution comes from the sta-
tionary point t0 of the phase around which we have

a1� = −
v
2i
�

−�

t

dt exp	i�
0

t 
�

2
+

3c

4
�a1�2 −

c

4
�dt� , �16�

�

2
+

3c

4
�a1�2 −

c

4
= �1�t − t0� , �17�
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�1 =
�

2
+

3c

4

d�a1�2

dt
�
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. �18�

Since �a1�2= �a1��
2, then we have

�a1�2 = 
v
2
�2��
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t

dt exp
 i

2
�1�t − t0�2��2

. �19�

This expression can be differentiated and evaluated with re-
sults at time t0. A standard Fresnel integral with the result
� d�a1�2

dt
�

t0
= � v

2
�2� �

�1
is obtained. Combining this with the rela-

tion �15�, we come to a closed equation for �1,

�1 =
�

2
+

3c

4

v

2
�2� �

�1
. �20�

For given �, c, v, �1 the above equation can be obtained. The
tunneling probability is

�23 = �a1�+�
2 =

�v2

2�1
. �21�

The alliance of Eqs. �20� and �21� gives the analytic expres-
sion on the tunneling probability �23 in the sudden limit.
Compared with our numerical simulation it shows good
agreement at c /v�130, c /v�130 a clear deviation is ob-
servable �Fig. 5�a��. It is due to the resonance between the
“internal field” and the external field leads to the invalidity
of our assumption �a2�1, as we show later.

Similarly, to calculate �21, we consider the following
equations:

a3� = −
v
2i
�

−�

t

dt exp	i�
0

t 
−
�

2
+

3c

4
�a3�2 −

c

4
�dt� ,

�22�

−
�

2
+

3c

4
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c

4
= �3�t − t0� , �23�

�3 = −
�

2
+

3c

4

v

2
�2� �

��3�
. �24�

Differently, in this case we may have three stationary
phase points that are solutions of Eq �24� when c
�

8
27

� 6
�

�3/2

v2 , but only one solution otherwise, as demonstrated
in Fig. 6. We denote them as �31, �32, �33 from smallest to
largest. For small c, �31 is around −� /2, and the other two
solutions are located at the two sides of the origin. In this
case, we simply take �3=�31+�32+�33.

Then

a3� = −
v
2i
�

−�

t

dt exp
i�
0

t �3

2
�t − t0�2dt� . �25�

The tunneling probability is

�21 = �a3�+�
2 = ��v2

2�3
� . �26�

The alliance of Eqs. �24� and �26� will give the approximate
solution of the �21. Compared with our numerical simulation
it shows a good agreement at c /v�110, whereas for c /v
�110 a clear deviation is observed �Fig. 5�b��.

What happens around c /v=110 that leads to the break-
down of our stationary phase approximation? The reason is
the resonance between the “internal field” and the external
field. Let us recall the exponent in the integrand of Eq. �22�,
we find the effective sweeping rate should be the difference
between the change rate of the “internal field” �i.e., �a3�� and
the sweeping rate of the external field. At c /v=110, we find
the two frequencies become almost identical, leading to the
invalidity of SPA assumption of rapid phase oscillation. This
resonance is accompanied by the bifurcation of the stationary

FIG. 5. Comparison between our analytic results using SPA
�full circles and crosses� and the numerical integration of the
Schrödinger equation �1� �solid lines�. FIG. 6. The plot of function f�x�=x+ �

2 − 3cv2

16
� �

�x� .
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phase points. Crossing c /v=110 we observe that the number
of stationary phase points changes from three to one, as
shown in Fig. 6. The resonance breaks the SPA leading to a
serious transition from level 2 to level 1, consequently, at
c /v�130, our assumption �a2 � 1 becomes invalid, and our
approximation on the �23 from SPA is no longer good as
shown in Fig. 5�a�.

C. General property of the nonlinear tunneling probability

The nonlinear tunneling probability as the function of the
two scaled quantities � /v2 and c /v show many unusual
properties. Taking mid-level tunneling �22, for example, we
make a large numerical exploration for a wide range of pa-
rameters, to demonstrate the general property of the nonlin-
ear tunneling probability in Fig. 7. In general, increasing the
sweeping rate will reduce the probability of tunneling to the
upper or lower level and the positive nonlinearity usually
suppresses the probability of the state’s staying in the middle
level, because of that the nonlinearity with positive c can be
regarded as a kind of repulsive potential. This repulsive self-
interaction makes particles tend to transition to a lower level
more easily, and this transition becomes more serious at the
occurrence of the resonance between the “internal field” and
the external field. The occurrence of the resonance is clearly
exposed by the boundary between the white regime and the
dark regime in Fig. 7. In the white regime, due to the reso-
nance, the nonlinearity dramatically changes the tunneling
probability.

The other issue we want to address is the symmetry. The
nonlinearity makes levels deform and therefore break the
symmetry between the upper level and lower level; conse-
quently, the relations �21=�23=�32=�12, �31=�13, �33=�11
that hold in the linear case, break in the presence of the
nonlinearity. For our three-level system, the symmetry break-
ing is clearly exposed by Fig. 8 showing the tunneling prob-
ability �nm as the functions of � /v2 for c=10, c=40. In the
linear case, we have �21=�23=�32=�12, however, with the

presence of the nonlinear, �12, �21 increases whereas the �23,
�32 decreases. A similar thing happens for �31, �13 and �33,
�11. The above symmetry breaking may be observed experi-
mentally �28�.

IV. CONCLUSION AND APPLICATION

In conclusion, we have made a comprehensive analysis of
the Landau-Zener tunneling in a nonlinear three-level sys-
tem, both analytically and numerically. Many tunneling
properties are demonstrated and behind the dynamical
mechanism is revealed.

Our model can be directly applied to the triple-well
trapped BEC and explains the tunneling dynamics between
the traps �24,25�. In a triple trap v�r�, a BEC is described by

Gross-Pitaevskii equation �GPE� i�
���r,t�

�t =− �2

2m�2��r , t�
+ �v�r�+g0���r , t��2���r , t� under the mean-field approxima-
tion, where g0= 4��2aN

m , m is the atomic mass and a is the

FIG. 7. �Color online� The contour plot of tunneling probability
�22 as the functions of the scaled sweeping rate and nonlinearity.

FIG. 8. �nm as the function of � for c=10 �open pentacles�, c
=40 �open circles� at v=1.0. Dashed line denotes the linear case for
comparison.
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scattering length of the atom-atom interaction. The wave
function ��r , t� of GPE is the superposition of three wave
functions describing the condensate in each trap �12�, i.e.,
��r , t�=�1�t��1�r�+�2�t��2�r�+�3�t��3�r�. When we study
the tunneling of three weakly coupled BEC in traps 1, 2, and
3, the dynamics of the system is described by the nonlinear
Schrödinger equation with the Hamiltonian,

H = �E1
0 + c1��1�2 − K12 0

− K12 E2
0 + c2��2�2 − K23

0 − K23 E3
0 + c3��3�2

� , �27�

where E�
0 =�� �2

2m �����2+v�r�����2�dr ��=1,2 ,3� is the
ground-state energy for each trap. c�=�g0����4dr ��
=1,2 ,3� stands for atom-atom interaction, i.e., nonlinear pa-
rameter. K12=−�� �2

2m ��1��2+v�r��1�2�dr is the coupling
matrix element between traps 1 and 2. K23=
−�� �2

2m ��2��3+v�r��2�3�dr is the coupling matrix ele-

ment between traps 2 and 3. For simplicity, we only consider
the case that these two coupling matrix elements are the
same and there is no coupling between traps 1 and 3, i.e.,
K12=K23=K, K13=0. The energy bias can be adjusted by
tilting the trapping well and the nonlinearity can be adjusted
by the Feshbach resonance technique. We hope our theory
will stimulate the experiment in this direction.
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