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PACS. 03.65.Ud – Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequal-
ities, GHZ states, etc.).

PACS. 03.67.-a – Quantum information.

Abstract. – The state of a bipartite system may be changed by a cyclic operation applied on
one of its subsystems. The change is a nonlocal effect, and can be detected only by measuring
the two parts jointly. By employing the Hilbert-Schmidt metric, we can quantify such nonlocal
effects via measuring the distance between the initial and final state. We show that this nonlocal
property can be manifested not only by entangled states but also by the disentangled states
which are classically correlated. Furthermore, we study the effect for the system of two qubits
in detail. It is interesting that the nonlocal effect of disentangled states is limited by 1/

√
2,

while the entangled states can exceed this limit and reach 1 for maximally entangled states.

Entanglement is a striking feature of composite quantum system, which has no classi-
cal analog. Historically, since Einstein, Podolsky, and Rosen (EPR) published their famous
gedanken experiment in 1935 [1], entanglement had become a key issue in the debate about the
foundations and interpretation of quantum mechanics. The appeal was changed dramatically
in 1964 by John Bell’s theorem [2]. Bell inequalities [3–5] bound the correlations within any
local and realistic theory. According to Bell’s theorem, there are some states of a composite
system; when measurements are performed on the two subsystems separated in space their
results are correlated in a manner which cannot be explained by local hidden variables models.
For quite a long time, entanglement was widely believed to be equivalent to the violation of
a Bell inequality. Whereas until 1989, Werner proved that even if Bell’s inequality is satisfied
by a given composite system, there is no guarantee that its state can be prepared by two dis-
tant observers who receive instructions from a common source [6]. Thereafter, it is generally
recognized in the community that a quantum state of a system composed of two subsystems
is called entangled if and only if it is not a separable state, i.e. it cannot be expressed as

σs =
∑

l

pl

∣∣ψl
A

〉 〈
ψl

A

∣∣ ⊗ ∣∣ψl
B

〉 〈
ψl

B

∣∣ , (1)
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where pl are positive real numbers and
∑

l pl = 1. A separable system always satisfies Bell’s
inequality, but the converse is only true for pure states.

Nowadays, quantum entanglement has become not only a tool for exposing the weirdness
of quantum mechanics [1,2], but also a more powerful resource in a number of applications [7–
10]. One of the most important problem is the characterization and classification of mixed
entangled states. The most prominent criterion for deciding whether a given state is entangled
or not is known as positive partial transpose (PPT) test [11]. For systems consisting of two
qubits or a qubit and a qutrit, the PPT test is the necessary and sufficient conditions for the
presence of entanglement. For systems of more than three parties, or for higher-dimensions
system, the PPT test is only a sufficient criterion, since there exist PPT-entangled states [12].

Entanglement witness (EW) are operators that are designed to detect the presence of
entanglement in a state [12–14]. A Hermitian operator W is called entanglement witness if it
has a positive expectation value for all separable states, Tr[Wσs] ≥ 0, while there exists at least
one state ρ for which Tr[Wρ] < 0. Therefore, the state with negative expectation should be
entangled and it is said to be detected by the witnessW. Entanglement witness is an important
concept and provides a very useful tool for the experimental detection of entanglement [15,16].

In this letter, we generalize the nonlocal effect manifested by the maximally entangled state
in the quantum dense coding process [9] to any state of a bipartite system. By employing
the Hilbert-Schmidt distance [10], we quantify this nonlocal effect. We find such nonlocal
effect vanishes for product states but does not vanish for classically correlated states (the
disentangled states which cannot be factorized) [6]. Furthermore, we investigate this effect for
two qubits in detail. The interesting thing is that the nonlocal effect of disentangled states is
bounded by 1/

√
2, but for entangled states it can exceed this limit and reach 1 for maximally

entangled states. Hence, the nonlocal effect can be used to detect entanglement for some states.
At first, let us remind the reader of the dense coding process. Quantum dense coding [9]

enables the communication of two bits of classical information by transferring one qubit be-
tween two parties who share a maximally entangled pair. At the beginning, one party, “Alice”,
prepares a maximally entangled pair and sends one of the particles to another party, “Bob”.
Bob applies one of four possible unitary operations, and sends it back to Alice. By measur-
ing the two particles jointly, the outcomes of these measurements tell her which of the four
operations Bob applied and the corresponding two-bit classical number.

In the quantum dense coding process, the subsystem of the treated particle is not changed
by the local unitary operation (or in other words, the marginal statistics of measurements
of the treated particle is unperturbed after the local operation applied by Bob [9]). The
untreated particle is fixed all the time. So, the states of both two subsystems are not changed
after the local unitary operation. However, the state of the whole system is changed after the
operation applied by Bob. The shift of the state of the whole system is a nonlocal effect, since
it can be observed only by measuring the two particles jointly.

Now, let us consider more general cases. Assuming Alice and Bob share a system com-
pounded by two particles A (in Alice’s hand) and B (in Bob’s hand), which is in a state
described by the density operator ρ. The subsystems are described by the reduced density
operators, ρA

0 = trB(ρ0) and ρB
0 = trA(ρ0), respectively. Bob applies a local unitary operation

UB on the particle in his hand which satisfies

[ρB
0 , U

B ] = 0. (2)

Obviously, the subsystem is not changed by such an operation. However, the whole system
will not always return to its initial state, i.e., ρ0 �= (

I ⊗ UB
)
ρ0

(
UB† ⊗ I

)
in general. The

change between the final and initial states cannot be detected locally. For convenience, we
denote the operation satisfies condition (2) as a local cyclic operation.
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To denote the difference between the initial and final states, we introduce the distance be-
tween two states [10]. Here, we employ the Hilbert-Schmidt metric, D(ρ1||ρ2) = Tr|ρ1 − ρ2|2,
to measure the distance between quantum states ρ1 and ρ2, where |X| = √

X+X. The Hilbert-
Schmidt metric D(ρ1||ρ2) ≥ 0 with the equality saturated iff ρ1 = ρ2 [17,18]. Then, we quan-
tify the shift between the initial state ρ0 and the final state ρf =

(
I ⊗ UB

)
ρ0

(
UB† ⊗ I

)
by

d(ρ0, U
B) =

√
D(ρ0||ρf )/2. (3)

By considering Tr(ρ2
0) = Tr(ρ2

f ), we can obtain

d(ρ0, U
B) =

√
Tr(ρ2

0)− Tr(ρ0ρf ). (4)

Obviously, d(ρ0, U
B(τ)) ≤ 1 and d(ρ0, U

B) = 1 only when the initial state is a pure state and
it is orthonormal with the final state. In fact, for ρ0 = |ψ〉 〈ψ| is a pure state, we can have
d(ρ0, U

B) =
√
1− F (ρ0, ρf ), where F (ρ0, ρf ) = 〈ψ| ρτ |ψ〉 is just the Bures fidelity [10].

Therefore, we have 0 ≤ d(ρ0, U
B(τ)) ≤ 1, and the equality on the left is saturated iff

ρ0 = ρf . Hence, d(ρ0, U
B(τ)) can be used to quantify the nonlocal shift of the state induced

by the local cyclic operation. For convenience, we use dmax(ρ0) to denote the maximum value
of d(ρ0, U

B) over all the local operations UB which satisfy (2).
A state of a bipartite system can be written in the following form:

ρ0 =
1

NANB

[
IA ⊗ IB +

√
NA(NA − 1)

2
rA · �λA ⊗ IB+

+

√
NB(NB − 1)

2
IA ⊗ rB · �λB +

√
NA(NA − 1)NB(NB − 1)

4
βijλ

A
i ⊗ λB

j

]
, (5)

where NA and NB are the dimensions of each subsystems, �λA = (λA
i ; i = 1, 2, · · · , N2

A−1) and
�λB = (λA

i ; i = 1, 2, · · · , N2
B −1) are the generators of SU(NA) and SU(NB) respectively, rA =

(rA
i ; i = 1, 2, · · · , N2

A−1) and rB = (rB
i ; i = 1, 2, · · · , N2

B−1) are two Bloch vectors, and βij are
(N2

A − 1)(N2
B − 1) real numbers which constructs the so-called correlation matrix β = {βij}.

The states of the two subsystems are described by the following reduced density operators:

ρA
0 =

1
NA

[
IA +

√
NA(NA − 1)

2
rA · �λA

]
,

ρB
0 =

1
NB

[
IB +

√
NB(NB − 1)

2
rB · �λB

]
. (6)

It is easy to see ρB
f = UBρB

0 U
B+ = ρB

0 for the local cyclic operation defined by (2). An
interesting case is for the states of which |rA| = |rB | = 0. For such states, any local unitary
operation is a local cyclic operation. The maximally entangled states and the Werner
states [6] are belong to this case.

With the condition (2), and the trace relation Tr(λiλj) = 2δij for the generators of SU(N),
one can obtain

d(ρ0, U
B) =

√√√√√ (NA − 1)(NB − 1)
NANB


|β|2 −

∑
i,j

βijβ
f
ij


, (7)
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in which |β|2 =
∑

i,j βijβij and βf
ij are the elements of correlation matrix of the final state,

which are defined by the following relations:

βf
ijλ

A
i ⊗ λB

j = βijλ
A
i ⊗ UBλB

j U
B+
. (8)

In the above calculation, we have used the relation |β| = |βf |. If we regard the expression∑
i,j βijβ

f
ij as the inner product of two vectors, so

∑
i,j βijβ

f
ij ≤ |β|2. Then we can easily prove

that d(ρ0, U
B) ≥ 0 and d(ρ0, U

B) = 0, if an only if ρf = ρ0.
Theorem. For the state (5) of which βij = αrA

i r
B
j (0 ≤ α ≤ 1), dmax(ρ0) = 0, i.e., such

state cannot have the nonlocal shift induced by a local cyclic operation.
Proof. From eq. (6), the condition, [ρB

0 , U
B ] = 0, is equivalent to

rB · �λB = UB
(
rB · �λB

)
UB+

. (9)

If βij = αrA
i r

B
j (0 < α ≤ 1), the correlation matrix β = αrA · �λA ⊗ rB · �λB. Then, βf =

αrA · �λA ⊗ UBrB · �λBUB+
. From (9), we obtain βf = β, i.e., βf

ij = αrA
i r

B
j = βij . Hence,

d(ρ0, U
B) = 0. The proof is ended.

From this theorem, we know that the nonlocal shift cannot be observed for any product
state (ρ = ρA ⊗ ρB). Hence, the effect cannot be observed for the disentangled pure states,
since they are product states.

It is well known that some disentangled mixed states are able to exhibit non-locality [6],
which are the so-called classically correlated states. A property of this nonlocal effect is that
the effect can be observed for the disentangled states which are classically correlated. A state
ρ is classically correlated if it can be expressed as

ρ =
M∑
l

pl

∣∣ψl
A

〉 〈
ψl

A

∣∣ ⊗ ∣∣ψl
B

〉 〈
ψl

B

∣∣ , (10)

with M > 1, where pl are positive real numbers and
∑M

l pl = 1. Denoting rAl,Bl as the
Bloch vectors corresponding to

∣∣ψl
A

〉 〈
ψl

A

∣∣ and ∣∣ψl
B

〉 〈
ψl

B

∣∣, respectively, the Bloch vectors for
such state are rA =

∑M
l plr

Al and rB =
∑M

l plr
Bl , and βij =

∑M
l plr

Al
i rBl

j . Then from
eq. (8) we can see that, for a local operation UB satisfying (9), βf

ij �= βij unless M = 1 (or
rA1 = rA2 = · · · = rAM ). Therefore, this nonlocal effect can be observed for the disentangled
states which are classically correlated.

To make the above discussion more clear, we study this nonlocal effect for two qubits in
detail. For qubits, it is common to choose the generators of SU(2) as Pauli matrices, i.e.,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
. The unitary operation applied on

the subsystem can be expressed as UB = ei ϕ
2 u·�σ where u is a unit vector. At first, we discuss

the case for pure states. For notational convenience, we assume the initial state as follows:

|ψ〉 = k1 |00〉+ k2 |11〉 , (11)

with |k1|2 + |k2|2 = 1. For |k1| = |k2| =
√

2
2 , the state is a maximally entangled state. The

states of two subsystems are

ρA = ρB =
1
2
(
[
I +

(|k1|2 − |k2|2
)
σ3

]
). (12)
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It is easy to prove that the unitary operation which satisfies (2) can be expressed as

UB = eiϕ/2σ3 . (13)

Then, ρf = |ψf 〉 〈ψf | with |ψf 〉 = I ⊗ UB |ψ〉. From eq. (4), we obtain

d(ψ,UB) = 2|k1k2 sinϕ/2|. (14)

Obviously, dmax(ψ) = 2|k1k2|, which just equals the degree of entanglement for pure state of
two qubits suggested in refs. [19–21]. The definition of the entanglement degree is consistent
with the violation of Bell’s inequality. The optimal form of Bell’s inequality for the entangled
qubits is known as the Clauser-Horne-Shimony-Holt (CHSH) inequality [3]. It has been shown
by Gisin [22] that any entangled pure state of qubit pairs can violate the CHSH inequality and
the maximum violation is Bmax(ψ) = 2

√
1 + 4|k1k2|2. Obviously, Bmax(ψ) = 2

√
1 + d2

max(ψ).
Therefore, the nonlocal effect can be used to quantify the entanglement of pure states of qubit
pairs.

Although disentangled states may have such nonlocal effect, the maximum value for dis-
entangled states is bounded and this boundary can be exceeded by entangled states. For the
disentangled states expressed by eq. (10), βij =

∑M
l plr

Al
i rBl

j . Then, one can have |β|2 ≤ 1,
since |rAl | = |rBl | = 1. On the other hand,

∑
i,j βijβ

f
ij ≥ −|β|2 for qubit [23]. Therefore,

from eq. (7) we can immediately obtain

dmax ≤ 1√
2

(15)

for the states which are classically correlated. Therefore, the nonlocal shift of disentangled
states is bounded by 1/

√
2.

From (14) we know that the shifts of entangled states can exceed this limit and reach 1 for
maximally entangled states. It is interesting that the entangled states violate the classically
correlated states by the factor

√
2, which consists with the CHSH inequality.

Any state violating the inequality (15) is entangled. Therefore, the nonlocal effect can be
employed to detect entanglement of some states. On the other hand, because dmax = 0 for
the product states, we can use this nonlocal effect to identify product states.

It is not difficult to observe this nonlocal effect by using the following Bell-type experiment.
Under the transformation UB = ei ϕ

2 u·�σ , we can get

σf
i = UBσiU

B† = cosϕσi + εijkuj sinϕσk + 2 sin2 ϕ

2
uiu · �σ. (16)

In fact, �σf = (σf
1 , σ

f
2 , σ

f
3 ) is just another set of Pauli matrices. From (8), we have

βf
ijσi ⊗ σj = βijσi ⊗ σf

j . (17)

Let us perform the measurements either A1 or A2 on one particle, and either B1 or B2 on
the other, where A1 = n1 ·�σ, A2 = n2 ·�σ, B1 = m1 ·�σ, and B2 = m2 ·�σ. Let E(A,B), denote
the quantum expectation value of the product AB. We define F as

F = E(A1, B1) + E(A1, B2) + E(A2, B1)− E(A2, B2), (18)

which is just the CHSH expression [3]. Let us introduce the measurement matrix T as Tij =
(n1

i + n2
i )m

1
j + (n1

i − n2
i )m

2
j , i, j = 1, 2, 3. We can obtain the quantum expectation of F for

the initial state ρ0,
F (ρ0, T ) =

∑
i,j

βijTij . (19)
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Then, for the final state ρf , if one chooses the measurements, A
f
1 = A1, A

f
2 = A2, B

f
1 =

m1 · �σf , and Bf
2 = m2 · �σf , we can prove that

F (ρ0, T ) = F (ρf , T
f ), (20)

in which T f is the measurement matrix corresponding to the measurement settings for the
final state.

At first, we let B1 = σ1, and B2 = σ2 be fixed, and then change the settings for A1 and
A2 to find the maximal value Fmax(ρ0, T ) for the initial state. We can obtain the optimal
settings A1 and A2.

Secondly, we apply measurements on the final state. At this time, we let Af
1 = A1 and

Af
2 = A2 be fixed. Then we vary the settings for the others. From the above discussion, we can

see that F (ρf , T
f ) will reach its maximal value (which must equal Fmax(ρ0, T )), if B

f
1 = σf

1 ,
and Bf

2 = σf
2 . So, from the relations between Pauli matrices, one can get σf

3 . Hence, from (7)
and (17) we can obtain βf and the d(ρ0, U

B) immediately.
In conclusion, we have investigated nonlocal effects for the bipartite system induced by

local cyclic operations of one of its subsystem. We employ the Hilbert-Schmidt distance to
measure the nonlocal effect. Such nonlocal shifts vanish for product states, but do not vanish
for disentangled states that are only classically correlated. Therefore this nonlocal effect can
be used to classify the disentangled states. For qubit pairs, we show that the nonlocal shift
of disentangled states is limited by 1/

√
2, while the shifts of entangled states can exceed this

limit and reach 1 for maximally entangled states. Hence, the nonlocal effect can be used as a
sufficient condition of detecting the entanglement.

In fact, the nonlocality is due to the existence of correlations in compound quantum
systems, which is a more general notion than entanglement. It is well known that the local
operations on the subsystem of the compound quantum system in the distance labs paradigm
can produce nonlocal consequences. In this letter attention was focused on the nonlocal
properties caused by the local operations which do not make the subsystem change. Such
nonlocal property is not equivalent to entanglement in general. We hope that such nonlocal
property, especially, the fact that nonlocal property is implied by disentangled states, will
draw much more the attention of physicists to the study of the nonlocality and entanglement
of quantum systems.
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