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We investigate the quantum dynamics of a periodically kicked Bose-Einstein condensate �BEC� confined in
a one-dimensional �1D� box both numerically and theoretically, emphasizing on the phenomena of quantum
resonance and antiresonance. The quantum resonant behavior of BEC is different from the single particle case
but the antiresonance condition �T=2� and �=0� is not affected by the atomic interaction. For the antireso-
nance case, the nonlinearity �atom interaction� causes the transition between oscillation and quantum beating.
For the quantum resonance case, because of the coherence of BEC, the energy increase is oscillating and the
rate is dramatically affected by the many-body interaction. We also discuss the relation between the quantum
resonant behavior and the Kolmogorov-Arnold-Moser �KAM� or non-KAM property of the corresponding
classical system.
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I. INTRODUCTION

Quantum systems under a periodically driving force are of
great interest in varied fields of physics for their versatile
applications in microscopic manipulations and control �1�.
Their dynamics demonstrate many interesting behaviors,
such as dynamical localization and chaos-assisted tunneling,
to name a few �2–5�. Among them, quantum resonance �QR�
and antiresonance �AR� are two interesting phenomena �6,7�.
QR says that under a certain resonance condition, a particle
acquires energy from an external force most efficiently lead-
ing to its energy increase with time in a square law. In the
other limiting case, the AR case, the particle will bounce
between two states and its energy shows a periodic oscilla-
tion.

QR and AR are pure quantum behaviors without classical
counterparts. In the well-known kicked rotor system, given a
value of the kick strength K, special resonant regimes of
motion appear for periods with values T=4�

p
q , where the

integers p and q are mutually prime. Under these conditions
the system regularly accumulates energy which grows qua-
dratically in the time asymptotic �7�. The case p

q = 1
2 presents

a completely periodic behavior with period 2T. This is the
AR case. QR and AR have been observed in the atom optics
imitation of the quantum kicked rotor �8�. Recent realizations
of the Bose-Einstein condensate �BEC� �9� make us curious
about whether or not QR and AR also exist in BEC systems
and how the nonlinearity, stemming from mean field treat-
ment of the atomic interaction �10�, affects quantum reso-
nances. Recently in Ref. �11� it has been shown that a BEC
in a quasi-one-dimensional �1D� box can be achieved. This
experiment provides a good condition to investigate the
quantum resonances of BEC. The � kick can be realized

using counterpropagating laser beams and its spatial shape
can be adjusted by phase mismatch of laser beams. The in-
teraction strength between atoms g can be changed using a
Feshbach resonance. These motivate us to study the quantum
resonances of BEC under this experimental condition.

In this paper, we consider a BEC trapped in a 1D box and
kicked periodically, and study how the atomic interaction
affects the quantum resonant behaviors. We find that the QR
and AR conditions for this system are different from the
quantum kicked rotor system. For this system the AR can be
only found for a special spatial shape of the � kick when T
=2� �i.e., p

q = 1
2 �, for other shapes of kick and T=4�

p
q

��2�� the QR will be observed. Because of the coherence of
BEC, for the AR case, the nonlinearity �atom interaction�
causes the transition between oscillation and quantum beat-
ing; for the QR case the energy increase is oscillating and the
rate is dramatically affected by the many-body interaction.
We also find that for the QR case the nonlinearity �atom
interaction� suppresses the sensitivity to the spatial shape of
the kick. Finally, we discuss the relation between the quan-
tum resonant behavior and the Kolmogorov-Arnold-Moser
�KAM� or non-KAM property of the corresponding classical
system.

This paper is organized as follows. In Sec. II, we intro-
duce the model. In Sec. III, we show how the interaction
between atoms in a BEC changes the evolution of the energy
in quantum resonant cases. In Sec. IV we present our ana-
lytical results which show how the many-body interaction
affects the evolution of the energy. In this section, we also
show why for certain values of the parameter � there is no
AR and we show that this is not related to whether the cor-
responding classical system is KAM or non-KAM. Finally,
in Sec. V, we present our conclusions.
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II. THE MODEL

We focus our attention on the dynamics of a quasi-1D
BEC confined in a cigar shaped trap with a pulsating poten-
tial. In the limit of validity of the mean-field treatment, this
system can be described by the dimensionless nonlinear
Gross-Pitaevskii equation �GPE�:

Ĥ = −
�2

2�x2 + g���x,t��2 + K cos�x + ���T + U�x� , �1�

where U�x�=�, for x�0,x��, and U�x�=0 elsewhere, g
=�1D4�	2Na /m is the scaled strength of nonlinear interac-
tion, N is the number of atoms, a is the s-wave scattering
length, �1D is a coefficient which compensates for the loss of
two dimensions �12�, K is the kick strength, �t�T� represents
�n��t−nT�, T is the kick period, and x denotes the position
on the x axis. The variable x� �0,�� and � is a parameter
between 0 and 2� which can be controlled by the phase
mismatch of laser beams. Due to symmetries, the only im-
portant interval for the parameter � is �� �−� /2 ,� /2�. Be-
cause the BEC is unstable under kicks if the nonlinear inter-
action is large �13�, we only study g with a maximum value
of 0.5. This value is very likely in the stable region where the
number of condensed particles is much bigger than the num-
ber of noncondensed ones for a long enough time that we can
use the GPE to study the evolution of the wave function.

In the resonant case the energy grows in average quadrati-
cally and at the same time the number of noncondensed par-
ticle is also growing. This means that our results are valid for
a limited number of kicks because after that we lose the
coherence of the condensate. It could be interesting to see
experimentally where this limit is. The energy of a particle is
given by �E�=	0

�dx��*�− �2

2�x2 + g
2 ���2���. The evolution of

the wave function is given by numerical integration of Eq.
�1�, over a certain number of kicks using the split-operator
method.

In our study, we use the ground state of the Hamiltonian

Ĥ=− �2

2�x2 +g���x , t��2 �with the same boundary condition
given above� as the initial condition. Due to the shape of the
potential U�x�, ��0, t�=��� , t�=0. The wave function ��x , t�
satisfies the normalization condition 	0

����2dx=1. For a posi-
tive g the ground state is given by �14�

� =
m

g
�2K�m�

�
�sn�2K�m�

x

�
�m� , �2�

where K�m� is the elliptic complete integral of the first kind
and sn�x ,m� is the Jacobi elliptic function. The parameter m
is included in the interval �0,1� and is related to g by

1

g�
�2K�m��2�1 −

E�m�
K�m�

� = 1, �3�

which comes from normalization condition. For negative
values of g, the initial condition is given by �14�

� =
m

G
�2K�m�

�
�cnK�m��2x

�
− 1��m� , �4�

where cn�x ,m� is the elliptic Jacobi function cn and m and
G, which is G=−g, are related by

1

G�
�2K�m��2�E�m�

K�m�
− �1 − m�� = 1. �5�

III. QUANTUM RESONANCE AND ANTIRESONANCE
OF BEC

A. Antiresonance

For this model we find that the AR can only be observed
with the condition T=2� and �=0 �shown in Fig. 1�. This
condition is different from the one of kicked rotor studied by
Zhang et al. �13� where they discovered that the AR condi-
tion is for T=2� and independent on the shape of kicks. In
Fig. 1 one can see that if the nonlinear term is zero, the
energy oscillates in time with a period 2T. However, when
the nonlinear term is nonzero, the energy oscillates in time
with an amplitude that decreases gradually to zero and then

FIG. 1. Energy ��E�� evolution for different values of the inter-
action strength g with fixed K=0.5. The period is fixed to T=2�
and �=0 which corresponds to AR condition. For g=0 �a� the evo-
lution of energy is perfectly periodic with period 2. For the other
two cases �g=0.1 in �b� and g=0.3 in �c��, the evolution is quasi-
periodic and we can see the phenomenon of beating.
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revives, similar to the phenomena of beating in classical
waves.

For the quantum beating case there are two frequencies:
one is the frequency of kick and another is the beating fre-
quency which is due to the coherence of the BEC and can be
obtained approximately by a two-state model. As for the one
in Ref. �13�, for �=0, our model can be mapped onto a
two-state model �15–17�. We can write the wave function as
a sum of only the ground state and the first excited state with
relative population a and b �with normalization condition
�a�2+ �b�2=1�. Defining Sz= �a�2− �b�2 as the population differ-
ence between ground state and first excited state and
−arctan�Sy /Sx� as the relative phase between the two states,
we can express the Hamiltonian as

H = −
3

4
Sz +

g

2�
Sx

2 +
Sz

2

4
� +

K

2
�t�T�Sx. �6�

Then, one can obtain the beating frequency of the evolution
of the energy from the two-state model,

fbeat �
g cos�K�

�
. �7�

We can see in Fig. 2 that the theoretical approximate agrees
very well with numerical calculations.

The quantum resonant behaviors of kicked BEC in 1D
box are different from the one of kicked rotor studied by
Zhang et al. �13�. For the kicked BEC in 1D box the QR
behaviors can also be controlled by the spatial shape of the
kick which can be adjusted by mismatch of laser beams. In
our model the spatial shape is parameterized by �. Following
we will show that if ��0, we will have QR even if T=2�
�AR condition of kicked rotor�.

B. Quantum resonance

For any nonzero �, the quantum behavior of the system is
very different from the case of �=0. In Fig. 3 we show the
energy evolution with time �in unit of kicks� for different g
=0 �a�, g=0.1 �b�, and g=0.3 �c� with �=0.1. We can see
that for g=0, AR does not exist anymore and there is only
QR. The energy increases with time on average in square
law.

For g�0, because of the coherence of BEC, the energy
increase is oscillating and the rate is dramatically affected by
the interaction term. However, though the energy oscillates,
the energy on average has a quadratic increase as for the
resonant case.

The behavior of the energy with the number of kicks for
different values of � and g are summarized in Fig. 4, where
the value of energy after 50 kicks for K=0.5 and different
values of g and � is shown. We can see many interesting
things in this figure. First of all, there is a symmetry axis at
�=�. For g=0 the value of energy is symmetric and the
symmetry is broken by the nonlinear term. Opposite values
of g are symmetric �considering only the kinetic energy� with
respect to this axis. The energy reaches a maximum at �
=� /2 for negative g and at �=3� /2 for positive g. The
breaking of the symmetry is due to the coherence of the
BEC.

From Fig. 4 it seems that, the bigger the value of g, the
lesser is the effect of a small change of �. We can see this in
detail in Fig. 5 where we show for g=0, g=0.1, and g=0.3
the effect of small values of �. For �=0.4 only the case with
g=0.3 is still stable, while for example for g=0, a tiny per-
turbation such as �=0.01 is enough to make the energy in-
crease rapidly. This shows that, the bigger the interaction is
between the atoms in the BEC, the less sensitive to a varia-
tion of � is the system.

FIG. 2. �Color online� �a� Modulation frequency versus kick
intensity �K� for fixed interaction value �g=0.2�. �b� Modulation
frequency versus g for fixed kick intensity �K=0.5�. The theoretical
result of Eq. �7� agrees very well with the numerical simulation.

FIG. 3. Energy ��E�� evolution for K=0.5 and �=0.1. The in-
teraction strength is g=0 for �a�, g=0.1 for �b�, and g=0.3 for �c�.
The motion is neither periodic nor quasi-periodic. In �b� and �c� we
can also see the oscillation due to the nonlinear interaction.
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IV. ANALYTICAL STUDY

A. Approximate study of the influence of the interaction

In this section, we shall demonstrate that it is possible to
understand analytically why the evolution of the energy has
the above behavior. As it will be shown, the underlying
mechanism is the interaction of the atoms in the BEC.

We approach the problem by looking for an expression of
the energy to the first order in g. For small values of g we
can approximate the shape of the wave function ��x� by

��x,T� = �e−iV�x�e−ig���2T/2ei�2/2Te−ig���2T/2���x,0� . �8�

Mapping this model on a periodic ring, we can predict the
value of the energy after a certain number of kicks. In gen-
eral a model with x� �0,�� and an infinite square potential
can be mapped into a model with x� �0,2�� and periodic

boundary conditions. The initial condition �̃�x ,0� is, for 0

�x
�, �̃�x ,0�=��x ,0� /
2, and for ��x
2�, �̃�x ,0�
=��2�−x ,0� /
2, where ��x ,0� is the initial condition for

the model with x� �0,��. The kick Ṽ�x� is given, for 0�x


�, by Ṽ�x�=V�x� and, for ��x
2� by Ṽ�x�=V�2�−x�,
where V�x� in this case is K cos�x+��. This mapping could
be done for any potential.

The evolution of the wave function, after an even number
�N=2M� of kicks, is given by

�̃�x,NT� = e−iM�Ṽ+Ṽ���1 + e−i2g sin2�x�

2
�N

�̃�x,0� , �9�

where Ṽ�= Ṽ�x+��. In this way we can compute the energy
which is given by

E�N� =
N2K2

8
sin2��� −

16

15�
g sin � +

1

2
+

3

16�
g . �10�

To obtain this result, we have used ��x ,0�=
 2
�sin x which is

a very good approximation in the case of small values of g
here studied.

Equation �10� approximates the value of the energy after
an even number N of kicks. We can see in Fig. 6 how good
the approximation is. From Eq. �10� we can see if �=0 the
energy is independent of the number of kicks N and if �
�0 the energy increases with the number of kicks in square
law.

Moreover it is possible to see in Eq. �10� why for g=0 the
behavior is completely symmetric and also where the sym-
metry for opposite values of g comes from. However, it is
not possible to understand the behavior for bigger values of g
in this way. For example we can see in Fig. 4 that for g
= ±0.5 the maximum is smaller than for g= ±0.3. It is also
not possible to show the oscillation of the energy due to the
nonlinear term, but for our purpose of understanding the av-
erage growth of g for different values of �, the method
shown in this paper is good, at least for small values of g.

B. Classical dynamical properties and quantum
resonance

The study of quantum systems whose classical counter-
part is non-KAM already showed interesting results. In both
the classical and quantum cases, the non-KAM systems
�18–21� demonstrate quite different behavior from the KAM

FIG. 5. �Color online� Energy ��E�� as function of the number of
kicks for different values of g and �=0 �black�, �=0.02 �red�, and
�=0.04 �green�. The interaction strength is g=0 �c�, g=0.1 �b�, and
g=0.3 �a�. The bigger g is the more stable is the motion to changes
of the parameter �.

FIG. 4. �Color online� Energy ��E�� evolution for different val-
ues of g with fixed K=0.5. The interaction strength is g=0 �blue�,
g= ±0.1 �light blue and green�, g= ±0.3 �red and purple�, and g
= ±0.5 �black and yellow�. We can see a symmetric behavior for
opposite values of g as long as the strength is not too large �case
�g�=0.5�. Positive values of g reach a maximum for �=3� /2 and
negative for �=� /2.
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one. For instance, in classical KAM systems, as the external
or driven parameter is increased, the invariant curves gradu-
ally break up. Local chaos evolves into global chaos and
diffusion takes place. In a non-KAM system, there are no
such invariant curves for any small external or driven param-
eters. Quantum mechanically, the quantum interference sup-
presses the classical diffusion leading to a so-called exponen-
tial localization �2�, while in a non-KAM system, the
localization becomes power law, or in other words, there is
no localization �18�.

In our case, it is interesting to notice that the system that
we study presents AR when the classical counterpart is KAM
�for �=0�, and that there is QR when the classical equivalent
system is non-KAM �for ��0�. We would like to understand
whether the properties of the quantum system and its classi-
cal equivalent �AR with KAM and QR with non-KAM� are
related.

To understand this we start showing a general result
which is valid for a generic periodically kicked system with
x� �0,2�� and the kick is given by a generic V�x�. Now,
starting from Ref. �7� it is easy to see that ��x�N+1

=exp�−iV�x����x+��N. So after two kicks with a period T
=2� we have that

��x�N+2 = exp�− i�V�x� + V�x + ������x�N. �11�

From this point it is easy to derive that the condition for
AR is T=2� and

V�x� + V�x + �� = C . �12�

This result, after doing the mapping discussed in Sec. III, can
be applied to our model which, as it should be emphasized, is
characterized by an infinite well and x� �0,��. For ��0 or

���, the mapping on the circle of the kick Ṽ does not

follow Eq. �12�. Ṽ�x�+ Ṽ�x+���C, but it is a function of x.
It is now obvious that AR is not related to whether the

corresponding classical system is KAM or non-KAM, but
due to Eq. �12�. We can have KAM systems without AR and
non-KAM systems with AR. This is shown also in Fig. 7
where the kick is given either by V�x�=K cos�2x� �KAM�
and we see QR, either by V�x�=� /2−x for 0�x
� and
V�x�=−3� /2+x for ��x
2� and we have AR.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have investigated the quantum dynam-
ics of a periodically kicked Bose-Einstein condensate con-
fined in a 1D box both numerically and theoretically, empha-
sizing on the phenomena of QR and AR. We find that the
atomic interaction does not affect the AR condition �or QR
condition�. However, the resonant behaviors of BEC is dif-
ferent from the single particle case. For the AR case, the
nonlinearity �atom interaction� causes the transition from os-

FIG. 6. �Color online� Evolution of the energy ��E�� for different
values of the interaction strength g and K=0.5 after 50 kicks for
different values of �. The numerical �black� curve is compared to
the analytical ones given by Eq. �10� �red�. The red curve approxi-
mates the numerical results. The values of the interaction strength
are g=0.01 �a�, g=−0.01 �b�, g=0.05 �c�, g=−0.05 �d�, g=0.1 �e�,
g=−0.1 �f�.

FIG. 7. �a� Energy ��E�� evolution for a kick of type V�x�
=K cos�2x�. T=4�

1
2 and K=0.1. We do not have AR even though

the system is KAM. �b� Evolution of the energy ��E�� with the
number of kicks for a kick of the kind V�x�=� /2−x for 0�x
�
and V�x�=−3� /2+x for ��x
2�. The system is non-KAM but
we have AR.
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cillation to quantum beating. For the QR case, because of the
coherence of BEC, the energy increase is oscillating and the
rate is dramatically affected by the interaction between at-
oms. And, the rate at which the energy increases in the sys-
tem depends on the atom interaction. The interaction breaks
the symmetric evolution of the energy for different values of
� around �=�. We have also found that, the stronger the
interaction between atoms, the more stable the system is to
small changes of �. This means that for bigger interaction
the AR behavior will be much more stable to errors in the
matching of the kick-generating lasers and the trap. We also
discussed the relation between the quantum resonant behav-
ior and the KAM or non-KAM property of the corresponding
classical system.

We would like to emphasize the fact that the system that
we studied can be realized with current experimental tech-
niques. In this way with the same experimental set-up it

could be possible to observe the phenomenon which we have
shown, such as quantum beating, and the phenomenon of the
destruction of AR. The phenomenon of quantum beating can
be used to measure the value of the interaction of the atoms,
and the breaking of AR can be used to see if the laser
matches with the trap.
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