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Periodic modulation effect on self-trapping of two weakly coupled Bose-Einstein condensates
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With phase space analysis approach, we investigate the self-trapping phenomenon for two weakly coupled
Bose-Einstein condensates (BECs) in a symmetric double well potential. We identify two kinds of self-trapping
by their different relative phase behavior. By applying a periodic modulation on the energy bias of the system
we find that the self-trapping can be controlled, in other words, the transition parameters can be adjusted
effectively by the periodic modulation. Analytic expressions for the dependence of the transition parameters on
the modulation parameters are derived for high- and low-frequency modulations. For an intermediate-
frequency modulation, we find the resonance between the periodic modulation and nonlinear Rabi oscillation
dramatically affect the tunneling dynamics and demonstrate many phenomena. Finally, we study the effects of
many-body quantum fluctuation on the self-trapping and discuss the possible experimental realization.
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I. INTRODUCTION

The double-well system is a paradigm model used to
demonstrate quantum tunneling properties [1]. The realiza-
tion of dilute Bose degenerate gas in 1995 provides an op-
portunity to revisit the old topics [2,3]. Here, the tunneling of
Bose-Einstein condensates (BECs) differs from the tradi-
tional quantum tunneling mentioned above in two essential
aspects: system scale is macroscopic (>10 um), and more
importantly, a BEC is a many-body system where the inter-
action between atoms plays an important role. A natural
question arises, how does the interaction between the con-
densed atoms affect the quantum tunneling dynamics in the
double-well system? This problem has attracted much theo-
retical attention over the past few years [4] and the recent
realization of the BECs in the optical trap of a double-well
configuration has brought a new research surge [5,6].

Among many findings, self-trapping is the most interest-
ing one [7-10]. The BEC atoms in a symmetric double-well
potential may show highly asymmetric distribution as if most
atoms are trapped in one well, even under a repulsive inter-
action between the degenerate atoms. Recently, this some-
how counterintuition phenomenon has been observed in ex-
periment [6].

In this paper, we study this phenomenon with the phase
space analysis approach. We emphasize the influence of a
periodic modulation applied on the energy bias of the sys-
tem. We find that an external ac field with high or low fre-
quency can effectively modulate the transition parameters of
the self-trapping. For a field with an intermediate frequency,
we find the BECs alternate between a self-trapping regime
and non-self-trapping regime with increasing atomic interac-
tion parameter. This fact is attributed to chaos in phase space
induced by the resonance between the periodic modulation
and the nonlinear Rabi oscillation. Furthermore, we consider
the effects of many-body quantum fluctuation on the self-
trapping and find that the quantum fluctuation may dramati-
cally influence the self-trapping phenomenon. Especially in
the case of the intermediate frequency, we show that the
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alternate phenomenon does not appear because there is no
chaos in a full-quantum description.

The paper is organized as follows. Self-trapping phenom-
enon for two weakly coupled BECs is introduced and ana-
lyzed with the phase space approach in Sec. II. Section III
discusses the periodic modulation for three cases: high fre-
quency, low frequency, and a strong resonating region, re-
spectively. After demonstrating the influence of quantum
fluctuation in Sec. IV, we give our conclusion and discuss the
experimental realization in Sec. V. The acknowledgment is in
the final part.

II. SELF-TRAPPING IN TWO WEAKLY COUPLED BECS

We first study the dynamics of the degenerate Bose gas
within a mean-field framework where the number of atoms is
supposed to be infinity and the quantum fluctuation is negli-
gible. The order parameter is then approximated by a wave
function representing the density distribution of the atoms.
For a double-well system, the wave function can be ex-
pressed as the superposition of individual wave functions in
each well. The coefficients in the expansion will satisfy the
following two-mode Gross-Pitaevskii equation (GPE) [7]:

dfa (@
’dt(b)_H<b)’ )

where a and b are the probability amplitudes of atoms in
each of the two wells, respectively. The Hamiltonian is given
by
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where v is the coupling constant between the two conden-
sates, depending on the height of the barrier of double-well
potential, 7y is the energy bias between the two wells, and c is
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FIG. 1. Trajectories on the phase space of the Hamiltonian sys-
tem (3) (left column). In the right column we plot the energy pro-
files for the relative phase 6=0 (dashed) and 6= (solid),
respectively.

the nonlinear parameter describing the interaction [11-14].
The total probability is conserved and set to be 1. Our dis-
cussion focuses on the symmetric double well, meaning that
v=0.

With a=|ale%, b=|b|e'%, the Schrodinger equation can be
casted into a classical Hamiltonian system by introducing the
population difference s=|b|>~|a|? and the relative phase @
=6,-6,[13]

c —
H=ys—§s2+v\x’1—szcos€ (3)

with s,6 are the canonically conjugate variables of the clas-
sical Hamiltonian system.

Self-trapping refers to the phase space trajectories whose
average population difference is not zero (s) # 0. This can be
well understood from the analysis on the phase space of the
classical Hamiltonian system (3). Three kinds of cases will
emerge with different parameters, as shown in Fig. 1.

(1) For the weak interaction, i.e., c/v<1, in the phase
space, there are two fixed points p,p, at s=0,0=m and s
=0,60=0, respectively [Fig. 1(a)]. The atoms distribution cor-
responding to them is in equilibrium. The trajectories around
them correspond to atoms oscillation between the two wells,
i.e., Josephson oscillation, and the average of population dif-
ference over the period of the oscillation is zero, i.e., {(s)=0.
Self-trapping phenomenon does not appear in this case.

(2) For the interaction 2>c/v > 1, two more fixed points
appear on the line 6= denoted by P5,P,. Among them, p,,
ps are stable but p, is the unstable saddle point [Fig. 1(b)].
They locate at s=-k;,k;,0, respectively, with Kk
=1—-(v/c)* Obviously for fixed points p;,p; atoms distri-
butions are not in equilibrium. The average of population
difference about the trajectories around them is nonzero, i.e.,
(s)# 0. Tt indicates that atoms are self-trapped in one well.
Because in this case both population difference s and the
relative phase 6 oscillate around fixed points, we denote it as
oscillating-phase-type self-trapping.

(3) With a stronger interaction, i.e., ¢/v>2, new trajecto-
ries emerge, for example, the trajectory across point p,. [Fig.
1(c)]. For these trajectories, s changes with time only in the
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FIG. 2. The average of population difference versus the param-
eter ¢/v when the trajectory s=—1, =0 evolves with time.

region of [-1,0] or [0,1], while the relative phase 6 varies
with time monotonously. Obviously (s)# 0, atoms are self-
trapped in one well, called running-phase-type self-trapping,
as predicted in Refs [4,7,8,15] and observed in experiment
[6].

The above changes on the topological structure of the
phase space are associated with the change in the energy
profile. With the relative phase being zero or i, the energy
depending on the population difference s can be derived
from Eq. (3) and plotted in the right column of Fig. 1 for
varied parameters. The transition from case (1) to case (2)
corresponds to the bifurcation of the energy profile of 6=
The energy curve of the single minimum bifurcates into the
curve of two minima. The low limit of the energy profile
with =0 is —c/2, and the energy of the saddle point P, is
—v, which is the local maximum of the energy profile with
0= . The transition from case (2) to case (3) is indicated by
the overlap of the energy regime of the two profiles. In this
case the trajectory originated from s=-1, #=0 cannot cross
the energy hill peaked by the saddle point. The motion will
be confined in the lower half of phase plane, corresponding
to the running-phase-type self-trapping.

From the above analysis on the energy profile we can
obtain a general criterion for the self-trapping trajectories,
that is H(s, 8) <—v. With the help of it, the transition param-
eters of self-trapping for the trajectory with arbitrary initial
value can be found. For example, in the situation of recent
experiment [6] s=0.5,0=0, the c/v=15.0 is the critical point
for the transition to the running-phase-type self-trapping. For
the state of initial condition s=-1,0=0 the transition param-
eter is ¢/v=2.0 in our analysis, agrees with our numerical
simulations as shown in Fig. 2. The scaling law near the
transition point shows a logarithmic singularity.

II1. PERIODIC MODULATION OF SELF-TRAPPING

Generally, we can control the behavior of a system by
applying a periodic modulation. For example, the tunneling
dynamics can be controlled through adjusting the modulation
parameters for the linear case [16—19]. In this section, we
will discuss how a periodic modulation affects the nonlinear
self-trapping. Without losing generality, we assume that the
modulation is applied on the energy bias with amplitude A
and frequency w, i.e., y=A sin wt. Then the nonlinear GPE
still can be mapped into the time-dependent Hamiltonian (3).
We then can investigate the global property of the trajecto-
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FIG. 3. Phase space of the Hamiltonian system (3) with y
=Asin wt at w=100,A/w=1.0, obtained by stroboscopic plotting
the trajectories with period 27/ w.

ries through phase space analysis as in the above section.
Differently, in this case, the phase space of the time-
dependent Hamiltonian (or Poincaré section) is drawn by
stroboscopic plotting of the trajectories at the moment of
integer multiple times of the modulation period, i.e., 27/ .
We will consider the following three typical cases according
to different modulation frequency regimes.

A. High-frequency modulation (w=>v)

When a high-frequency modulation is applied to the sys-
tem, two kinds of self-trapping, i.e., oscillating or running
phase, still exist as shown in Fig. 3. Here the phase space is
the Poincaré section of the trajectories at the moment of in-
teger multiple times of the modulation period. Compared
with Fig. 1, the fixed points are shifted to the left. This is
because the phase space depends on the time moment when
the Poincaré section is made. For different time moments,
the topological structure of the Poincaré section remains con-
sistent which guarantees the validity of our observation.
Moreover, we find that the critical interaction parameter for
the self-trapping occurrence changes dramatically with the
periodic modulation. Figure 4(a), taking the trajectory s=
—1,60=0 for an example, shows that the critical interaction is
about 1.531 at w=100,A/w=1.0,u=1.0. Figure 4(b) shows
the phase diagram for the transition to the self-trapping. It
says that the critical values c/v depend on the modulation
parameters similar to the way the Bessel function J,(A/w)
does.

The above observation can be understood as follows. Us-
ing the high-frequency approximation, the time-dependent
system (1) is equivalent to a stationary one. Let us make the
transformation q=e/(A2@)cos wiy! | — p=ilAR20)cos wipy!  Then we
can obtain the following Schrodinger equation:
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FIG. 4. (Color online) (a) The average of population difference
vies parameter c¢/v when the trajectory s=-1,0=0 evolves with
time at w=100,A/w=1.0. (b) Transition phase diagram for the oc-
currence of the self-trapping. The triangle describes the case at w
=100. The line describes Jy(A/w) (lower line) and 2Jy(A/w) (upper
one).

da' ¢ ,
izz_5(|bl|2_|a/|2)a/_%ez(A/w)cos wip ! (4)
db’ Cc v .
i;=§(|b/|2_|a/|2)b/_Eez(A/w)cos wtgr (5)
Using the formula
etiz cos wf _ E _]h(z)(il')netinwt’ (6)

n=—0

where J,(z) is the Bessel function of nth order, and consid-
ering the contribution of those higher order Bessel function
to the integrals can be neglected [18,20], the effective cou-
pling constant becomes v’ =vJy(A/ w).

Immediately, we see that the critical values are c/v
=Jy(A/w) for the oscillating phase self-trapping and c/v
=2Jy(A/w) for the running phase self-trapping based on the
results in Sec. II. This result is consistent with the numerical
calculation.

B. Low-frequency modulation (w<<v)

For this case, it is not important to identify the two kinds
of self-trapping. We suppose initially all particles confined in
one well with the relative phase of , i.e., s=—1,6=m. Then
for given parameters we check if the trajectory is self-
trapped, i.e., {s)# 0. We find that the self-trapping still oc-
curs for some regime of parameters, as shown in Fig. 5(a).
There, we see, above a critical value of interaction which is a
function of modulation amplitude and the energy gap, the
average population difference jumps from an irregular oscil-
lation to a constant ((s)=—1, self-trapping regime).

To see what happened before and after the transition, we
plot the phase space of the system with y changing slowly,
see Fig. 6. Below the critical point, e.g., c/v=13.5, the fixed
point p; (where we started from) moves up smoothly, at a
certain 7, it collides with another fixed point p, and gives
birth to a new trajectory. Above the critical point, e.g., ¢/v
=13.6, the trajectory p; moves along the line #=7 up and
down smoothly, having no chance to collide with other fixed
point. For the large ¢ case, the shift of our trajectory away
from the bottom line (s=—1) is small that the time average of
the population difference is approximately —1.
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FIG. 5. (Color online) (a) The average of population difference
vies the interaction parameter at w=0.01,A=10,0=1.0. (b) The re-
lationship between the critical values of ¢ and A when o is ex-
tremely small at v=1.0. The triangle describes the situation at w

=0.01. The line describes the theoretical prediction c=(A%3
+p23)32,

The singularity point vy, where two fixed points collide
leading to the topological change on phase space depends on
the modulation amplitude but has little relation to its fre-
quency. Our theoretical deduction gives y,= =+ (c??-p?3)%?
[13]. When the modulation frequency is very small, the pa-
rameter vy varies adiabatically with time y=Aw cos wt<v. If
amplitude A does not exceed the critical values, atoms
should be self-trapped. This gives the condition c¢>(A%?
+v%3)32 for self-trapping, which agrees with the numerical
result shown in Fig. 5(b). Below the critical point, the colli-
sion between the two fixed points implies the occurrence of
instability, which may lead to the irregular oscillation of the
average population difference as is seen in Fig. 5(a).

C. Strong resonating region (w=v)

For this case, the situation is complicated. Due to the
strong resonance between the nonlinear Rabi oscillation and
the periodic modulation, chaos appears as shown in the
phase space plotting in Fig. 7, where the scattered points
denote the chaotic trajectories forming a chaotic sea [21].
Inside the chaotic sea there are stable islands corresponding
to the self-trapping trajectory. We find that with the increase
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FIG. 7. Phase space of the Hamiltonian system (3) with y
=A sin wr at w=2.0, obtained by stroboscopic plotting the trajecto-
ries with period 27/ w. (a) describes the situation at ¢=5.88, (b) at
¢=9.2, and (c) at ¢=16.65, respectively. The inset is a magnified
portion.

of the interaction parameter, the stable islands appear alter-
nately. Figure 8 describes this alternation with sgn=1 stand-
ing for self-trapping and sgn=0 for non-self-trapping when
the interaction parameter varies continuously. The mutations
are the transition parameters. Analytic expression for the de-
pendence of the transition parameters on the modulation pa-
rameters cannot be found.

IV. THE EFFECT OF QUANTUM FLUCTUATION

In the above discussions on the self-trapping, our frame-
work is the mean-field treatment with the assumption that the
number of particle is infinity. However, in practical experi-
ment, the particle number is finite and we want to know how
the quantum fluctuation caused by finite number of atoms
affects the self-trapping. With this motivation we investigate
following second quantized Hamiltonian which is the quan-
tum counterpart of our mean-field system (1):
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where v, ¢, v are the energy bias between the two modes, the
interaction between atoms, and the coupling between the
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FIG. 6. Evolution of the phase space motions of the Hamiltonian
system (3) with y=A sin wt at A=10,c/v=13.5 (left column) and
A=10,c/v=13.6 (right column) as y changes adiabatically. The ar-
rows refer to the moving direction of the fixed points as ¢ in-
creases, i.e., y changes adiabatically, where ¢=wt.

FIG. 8. (a) The average of population difference vies the inter-
action parameter at 0=2.0,A=10,0=1.0. (b) Critical values of ¢ for
occurrence of self-trapping shows the complicated behavior at v
=1.0,w=2.0,A=10. See the text for detailed explanation.
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FIG. 9. (Color online) Evolution of population difference with
time at w=100,A/w=1.0,0=1.0. (a) is mean-field results. (b) is full-
quantum results.

modes, respectively. a’,b’ (a,b) are creating (annihilating)
boson operators. N is the total number of atoms. Its matrix
elements are obtained in the representation of Fock states
|n,N-n). H,,=—(y/2)(2n—=N)-(c/2N)(2n*+N*~2Nn—N),
H,,=H,,=@/2)\n(N-n+1). Corresponding to the
mean-field s=—1 our initial state in the full quantum frame-
work is |0,N). We then can solve the correspond
ing Schrodinger equation i(d/dt)a,=H, , a, +H,,a,
+H, ,.1a,,; with Runge-Kutta method, and trace the time
evolution of population difference s=3[|a,|>(N-2n)/N]
where a,, is the amplitude of Fock state |n,N—n). Our main
results are that, for the cases of high- or low-frequency
modulation, the self-trapping effect can still be observed in
full-quantum description, i.e., with increasing the interaction
parameter, the quantum average population will transition
from symmetric distribution to asymmetric distribution.
However, different from the mean-field case, the transition
here is smooth or continuous, no scaling law or singularity is
observed. For the case of intermediate modulation, because
the quantum effect dramatically suppress the classical chaos,
and consequently the alternation phenomenon observed in
the mean-field case vanishes. What we observe is a continu-
ous transition to the self-trapping regime with increasing the
interaction parameter. In the following we give a detailed
presentation of our results.

For w> v, with increasing the interaction parameter, Fig.
9 compares the transition to self-trapping in the full-quantum
treatment with that in the mean-field framework, by tracing
the time evolution of population difference. It is found that,
within the mean-field framework [Fig. 9(a)], there is an
abrupt transition to self-trapping characterized by a logarith-
mic scaling law as mentioned above. However, for full-
quantum calculations [Fig. 9(b)] the transition becomes
smooth and no scaling law or singularity is found in this
case.

For the case of w<}v, our results are similar. As shown in
Fig. 10, we find that the transition to the self-trapping regime
is abrupt in the mean-field treatment [Fig. 10(a)], but smooth
for the full-quantum case [Fig. 10(b)].

For the intermediate case of w=uv, the situation is quite
different. The classical chaos shown in the mean-field treat-
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FIG. 10. (Color online) Evolution of population difference with
time at w=0.01,A=10,0=1.0. (a) is mean-field results. (b) is full-
quantum results. In (a) the amplitude of line ¢=14.0 is so small that
it almost cannot be seen.

ment is expected to be suppressed by the quantum fluctuation
and alternate phenomena observed in the mean-field case
vanish, as we see in Fig. 11. With the mean-field method
[Fig. 11(a)], the self-trapping effect (s)#0 and non-self-
trapping effect (s=0) appear alternately with increasing in-
teraction parameter, while, in the full-quantum method [Fig.
11(b)], a continuous transition to the self-trapping regime is
observed. In other words, with the increase of the interaction
parameter, the BEC distribution becomes more and more
self-trapped in a well.

From the above analysis, we see that in order to have a
practical experiment to observe the dramatic effects of the
quantum fluctuation caused by the finite number of particle,
we need to choose the parameters in the regime of the oc-
currence of classical chaos in mean-field systems. To sub-
stantiate the above argument, we consider a concrete situa-
tion and choose parameters that are the same as in the
experiment [6]. The results are demonstrated in Fig. 12. It is
clearly seen for the case where the periodic modulation is
absent (left column of Fig. 12) that the mean-field solution

; nt
|Hl|'l “‘l‘“l“\l‘,ll\ll’

"“l“l‘”'l' it

FIG. 11. (Color online) Evolution of population difference with
time at w=2.0,A=10,0=1.0. (a) is mean-field results. (b) is full-
quantum results.
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FIG. 12. Evolution of population difference with time. The lines
are mean-field case. The circles are the full-quantum case. (a) and
(b) are absence of the modulation. (a’) and (b’) are presence of the
modulation with @=2.0,A=10. In (a) and (a’), N=200 for full-
quantum case. In (b) and (b"), N=500 for it.

follows the quantum solution for a long time duration up to
24 ms and no significant difference is found in this case. In
the above simulation, the number of the total atoms is chosen
as only 200 or 500 due to the limitation of our computer
capacity, which is less than 1000 of the practical experiment.
However, these calculations clearly show a tendency that the
larger the number of atoms, the better the correspondence
between the mean-field solution and quantum solution. So
we can predict a still better correspondence for the case N
=1000. On the other hand, as chaos appears in the presence
of the periodic modulation, the quantum fluctuation become
huge. Caution is advised with the results from the mean-field
approximation, which may be far far from the real situation
as shown in the right column of Fig. 12. The above conclu-
sion can be extended to the case of larger atom number N
=1000 in the experimental situation [6].

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have investigated the periodic modula-
tion effect on the self-trapping of two weakly coupled Bose-
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Einstein condensates in a symmetric double well potential
both numerically and analytically. It is shown that the tun-
neling dynamics in this system can be controlled and the
transition parameters of the self-trapping can be adjusted by
applying an external periodic field. We also study the many-
body quantum fluctuation effect on the self-trapping and dis-
cuss the correspondence between the mean-field solution and
the full-quantum solution.

Experimentally, BEC in optical double well system can be
generated by coherently splitting BEC into a double-well
potential generated by two laser beams. The energy offset
can be periodically modulated by adjusting the intensity of
the two laser beams [5,6]. The second possible physical sys-
tem that can be used to realize our model is the tunneling
between the internal state of BEC as in 8’Rb [22,23]. There,
two internal states are separated by the relatively large hy-
perfine energy, but in the presence of a near-resonant cou-
pling field the states appear to be nearly degenerate. The
energy bias can be adjusted by the detuning of the lasers
from resonance. Our theory predicts the periodic modulation
on the energy bias will dramatically affect the tunneling dy-
namics and the nonlinear self-trapping. We hope our discus-
sion will stimulate further experiments.
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