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Abstract

Following the original analysis of Zhang and Hu for the 4-dimensional generalization of
Quantum Hall effect, there has been much work from different viewpoints on the higher
dimensional condensed matter systems. In this paper, we discuss three kinds of topological
excitations in the SO (4) gauge field of condensed matter systems in 4-dimension—the instan-
tons and anti-instantons, the �t Hooft–Polyakov monopoles, and the 2-membranes. Using the
/-mapping topological theory, it is revealed that there are 4-, 3-, and 2-dimensional topolog-
ical currents inhering in the SO (4) gauge field, and the above three kinds of excitations can be
directly and explicitly derived from these three kinds of currents, respectively. Moreover, it is
shown that the topological charges of these excitations are characterized by the Hopf indices
and Brouwer degrees of /-mapping.
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1. Introduction

In 2001, Zhang and Hu [1] constructed a remarkable 4-dimensional general-
ization of the Quantum Hall (QH) effect, which reveals the interesting property
of 4-dimensional QH system that the ground state is separated from all excited
states by a finite energy gap, and the density correlation functions decay gaussi-
anly [2–4]. This generalized higher dimensional system was analyzed from many
viewpoints and extended in different directions [5,6], including the realization of
this system within string theory [7], the connection between this system and the
twistor theory [8], the generalization of the QH effect onto the CPn manifolds
[9,10], the matrix descriptions of even dimensional fuzzy spherical branes in ma-
trix theory [11], and the relationship between the 4-dimensional QH liquid and
the non-commutative geometry on S4 [12]. More recently, based on this higher
dimensional theory, the dissipationless quantum spin current in hole-doped
semiconductors at room temperature with strong spin–orbit coupling was pre-
dicted theoretically (which was an important progress achieved in the research
of spintronics) [13,14], and the theoretical framework and experimental realiza-
tion of the higher dimensional Bose–Einstein condensates were also discussed in
[15,16].

In this paper, we will focus on the topological excitations in the generalized higher
dimensional systems. In [3,4,7], it has been pointed out that in the higher dimen-
sional condensed matter physical systems there exist various topological excitations,
including the SU (2) instantons (i.e., the Yang monopoles [17] which are obtained by
the second Hopf mapping: S7 fi S4), and the membranes of different dimensions.
With respect to the fact that the topological excitations are in themselves the singu-
larities on the manifold, we hope to be able to derive these excitations directly and
explicitly from the geometric distributions of the physical basic fields on the base
manifold. Adopting this viewpoint, in this paper we will use the /-mapping topolog-
ical theory [18–23] to discuss three kinds of topological excitations in the SO (4)
gauge field of 4-dimensional condensed matter physical systems—the instantons
and anti-instantons [24], the �t Hooft–Polyakov monopoles [25,26], and the 2-mem-
branes [3,4]. In Section 2, based on the group theoretical relation SO (4) =
SU (2) � SU (2), the SO (4) gauge field is fractionalized into two parts, SU (2)+ and
SU (2)�. In Section 3, it is revealed that there is a 4-dimensional topological current
inhering in the SU (2)± gauge field, while the instanton and anti-instanton structures
are directly derived from this topological current, whose topological charges underlie
the second Chern number and the signature of the 4-dimensional manifold. In Sec-
tion 4, we first generalize the �t Hooft–Polyakov theory so as to obtain the U (1) sub-
field tensor in the SO (4) gauge field, and then show that from this U (1) tensor one
can derive both the 3- and 2-dimensional topological currents, and the �t Hooft–
Polyakov monopoles and 2-membranes exist, respectively, in these two kinds of
topological currents. Moreover, it is shown that the topological charges of the three
kinds of excitations are all characterized by the Hopf indices and Brouwer degrees of
/-mapping.
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2. The fractionalization of the SO (4) gauge field

The symmetry group of the generalized 4-dimensional QH system is SO (5). This
symmetry is broken to SO (4) under the given confining potential [1,2]. In this paper,
we will emphasize on this SO (4) gauge field of higher dimensional condensed matter
systems. In this section, based on the group theoretical relation SO (4) =
SU (2) � SU (2), we discuss the fractionalization of SO (4) field by employing the
SO (4) generators to construct two SU (2) generator sets, and then using them to re-
write the SO (4) field into two SU (2) sub-field parts.

Let the base M be a compact oriented 4-dimensional manifold with metric
glm (l,m = 0,1,2,3), andPðM; SOð4Þ; pÞ the principal SO (4) bundle onM. The Dirac
4-spinor wave function W (x) is the section of the associated bundle P�SOð4ÞC

4: W ¼
ðU1 U2 ÞT, where U1 (x) and U2 (x) are two 2-spinors. The covariant derivative of
W (x) is defined as DW = dW � xW, with x the SO (4) gauge potential, i.e., the con-
nection of P : x ¼ 1

2
xabIab. The SO (4) gauge field tensor F is given by

F ¼ dx� x ^ x ¼ 1
2
F abIab: ð1Þ

Here, a,b = 1,2,3,4 are the SO (4) group indices, and Iab is the SO (4) generator

which satisfies the Lie bracket ½Icd; Ikq� ¼ Cab
cdkqIab, with Cab

cdkq the structure constant:

Cab
cdkq ¼ dcqd

a
dd

b
k þ ddkd

a
cd

b
q � dckd

a
dd

b
q � ddqd

a
cd

b
k . Iab can be given in terms of the 4 · 4

c-matrices: Iab ¼ 1
4
½ca; cb�, where ca�s satisfy the definition of Clifford algebra:

{ca,cb} = 2dabI. A realization of c1, 2, 3, 4 and the corresponding c5 in the Kramers
form is given by

ca ¼
0 �ira

ira 0

� �
; c4 ¼

0 I

I 0

� �
; c5 ¼

I 0

0 �I

� �
; ð2Þ

where ra (a = 1,2,3) are the Pauli matrices. It can be seen that this c5-matrix is
chiral with eigenvalues +1 and �1, corresponding to which the eigenstates are
denoted as ðUþ 0 ÞT and ð 0 U� ÞT, respectively, where U+ and U� are two 2-spinors.
(The topology of U± will be discussed in Section 3.)

From the SO (4) generator Iab, one can construct other two sets of basis, Iaþ and Ia�:

Iaþ ¼ �1
2
ð1
2
�abcIbc þ Ia4Þ; Ia� ¼ �1

2
ð1
2
�abcIbc � Ia4Þ ða; b; c ¼ 1; 2; 3Þ: ð3Þ

It can be proved that Iaþ and Ia� are actually

Iaþ ¼
ra

2i
0

0 0

� �
and

Ia� ¼
0 0

0 ra

2i

� �
;

which satisfy the commutation relations

½Ia�; Ib�� ¼ �abcIc�; ½Iaþ; Ib�� ¼ 0; ð4Þ
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where no sum is assumed for ‘‘±’’. (4) means Iaþ�s and Ia��s are, respectively, the gen-
erator sets of two separate SU (2) sub-groups in the SO (4) group, therefore the so (4)
Lie algebra is fractionalized into two su (2) sub-algebras, so (4) = su (2) ¯ su (2). In
the following, one denotes the two SU (2) sub-groups, which, respectively, corre-
spond to Iaþ and Ia�, as SU (2)+ and SU (2)�, and their principal bundles on M as
P� � PðM; SUð2Þ�; pÞ.

Next, we would express the SO (4) gauge field in two SU (2) parts. It can be proved
that for an arbitrary so (4) vector u ¼ 1

2
uabIab ¼ 1

2
uabIab þ ua4Ia4, u can be written as an

su (2)+ vector plus an su (2)� one: u ¼ uþ þ u� ¼ uaþI
a
þ þ ua�I

a
�, where

ua� ¼ ua � ua4 ¼ 1
2
�abcubc � ua4. Therefore, the SO (4) gauge potential x, which is an

so (4) vector, can be written in two parts: x = x+ + x� with x� ¼ xa
�I

a
�, while the

SO (4) field tensor F is also written in two SU (2) parts:

F ¼ F þ þ F �; ð5Þ
whereF � ¼ dx� � ½x�;x�� ¼ F a

�I
a
�. According to the topological theory of 4-di-

mensional manifolds [24], the SU (2)± field tensor F+ and F� should satisfy the self-
and antiself-duality equations, respectively:

�F þ ¼ F þ;
�F � ¼ �F �; ð6Þ

where �F � is the Hodge dual tensor of F±.
Therefore, the SO (4) field tensor F is divided into two SU (2) parts, F+ and F�. In

the following sections, various kinds of topological excitations in the SO (4) gauge
field will be derived from these SU (2) sub-field tensors F+ and F�.
3. The instantons and anti-instantons

In this section, it is shown that there is a 4-dimensional topological current inher-
ing in the second Chern classes in the SO (4) gauge field, and the instanton and anti-
instanton structures are derived from this 4-dimensional topological current.

Since the base manifold M is 4-dimensional, in the study of its topology we will
begin with the topological signature. It is known that on the compact oriented 4-
manifold M, under the action of Hodge star, the space of harmonic 2-forms
H 2ðM;RÞ divides into a direct sum decomposition: H 2ðM;RÞ ¼ H 2

þðM;RÞ�
H 2

�ðM;RÞ, where H 2
þðM;RÞ and H 2

�ðM;RÞ consist of self- and antiself-dual har-
monic 2-forms, respectively [24]. Let bþ ¼ dimH 2

þðM;RÞ and b� ¼ dimH 2
�ðM;RÞ,

one has the second Betti number of M given by b2 = b+ + b�, and the so-called
topological signature of 4-manifold M defined as [24,27,28]

sðMÞ ¼ bþ � b�: ð7Þ
In topology, sðMÞ is a topological invariant which plays an important role in the
classification of 4-dimensional manifolds.

The Hirzebruch theorem shows that sðMÞ can be given by the characteristic clas-
ses on M [24]

sðMÞ ¼ 1

3

Z
M

P 1ðMÞ ¼ � 1

24p2

Z
M

TrðF ^ F Þ; ð8Þ
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where P 1ðMÞ is the first Pontrjagin class of M, P 1ðMÞ ¼ � 1
8p2TrðF ^ F Þ. From (5)

and (4), one sees that sðMÞ can be written in two SU (2) parts

sðMÞ ¼ � 1

24p2

Z
M

TrðF þ ^ F þÞ �
1

24p2

Z
M

TrðF � ^ F �Þ: ð9Þ

Noticing the definition of the second Chern class of P�: C2ðP�Þ ¼
1

8p2

R
M
TrðF � ^ F �Þ, the expression (9) is just

sðMÞ ¼ � 1

3

Z
M

C2ðPþÞ �
1

3

Z
M

C2ðP�Þ ¼ � 1

3
c2þ � 1

3
c2�; ð10Þ

where c2� ¼
R
M
C2ðP�Þ is the second Chern number. In the following, we would re-

veal the inner structure of the signature sðMÞ, and derive the instanton and anti-inst-
anton structures by studying the topology of the physical basic fields on M.

The basic field U±(x) is the 2-spinor wave function in the SU (2)± sub-field, i.e.,
the section of the associated bundle P��SUð2Þ�C

2: U� ¼ /0
� þ i/1

� /2
� þ i/3

�
� �T

,
where /A

� 2 R ðA ¼ 0; 1; 2; 3Þ, with /A
�/

A
� ¼ k/�k

2 ¼ Uy
�U�. From /A

� a unit vector

mA
� is introduced: mA

� ¼ /A
�=k/�k with mA

�m
A
� ¼ 1. It is seen that the zero points of

/A
� are just the singular points of mA

�. From U±, we introduce a normalized spinor

Û�: Û� ¼ 1ffiffiffiffiffiffiffiffiffi
Uy
�U�

p U� ¼ m0
� þ im1

� m2
� þ im3

�
� �T

:

It has been proved in our previous work [20,22] that when specially choosing Û� as a
parallel field which satisfies DlÛ� ¼ 0, one can express the second Chern class
C2(P±) as

C2ðP�Þ ¼
1

12p2
�lmkq�ABCDolmA

�omm
B
�okm

C
�oqm

D
�d

4x; ð11Þ

where l,m,k,q = 0,1,2,3 denote the base M. According to the /-mapping topolog-
ical theory, the 4-dimensional topological current is defined as [23]

J� ¼ 1

12p2
ffiffiffi
g

p �lmkq�ABCDolmA
�omm

B
�okm

C
�oqm

D
�; ð12Þ

where g = det (glm), therefore C2ðP�Þ ¼ J�
ffiffiffi
g

p
d4x.

Making use of the Green function relation in /±-space: oAoAð1=k/�k
2Þ ¼

�4p2d4ð~/�Þ, one proves that J± can be written in the d-function form

J� ¼ 1ffiffiffi
g

p d4ð~/�ÞD
/�
x

� �
; ð13Þ

where D (/±/x) is the Jacobi determinant, �ABCDDð/�=xÞ ¼ �lmkqol/
A
�om/

B
�ok/

C
�oq/

D
�.

The expression (13) provides the important conclusion:

J�
¼ 0 iff ~/� 6¼ 0;

6¼ 0 iff ~/� ¼ 0;

(
ð14Þ

so it is necessary to study the zero points of ~/� to determine the non-zero solutions
of J±. The implicit function theory shows [29] that under the regular condition
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D (/±/x) „ 0, the general solutions of the zero point equations /A (x0,x1,x2,x3) = 0
(A = 0,1,2,3) can be expressed as

xl ¼ xlj� ðl ¼ 0; 1; 2; 3; j ¼ 1; . . . ;M�Þ; ð15Þ

which represents M± isolated 4-dimensional singular points on base M. Since the
SU (2) sub-field tensors F+ and F�, respectively, satisfy the self- and antiself-duality
equations (6), these 4-dimensional singular point solutions are M+ instantons and
M� anti-instantons in the SO (4) gauge field.

Furthermore, in d-function theory [30] it can be proved that

J� ¼ 1ffiffiffi
g

p
XM�

j¼1

bj�gj�d
4ðxl � xlj�Þ; ð16Þ

where gj± is the Brouwer mapping degree, gj� ¼ sign½Dð/�=xÞ�xlj� ¼ 1;�1; and bj± a

positive integer which is called the topological Hopf index (which means that when xl

covers the neighborhood of xlj� once, /A
� covers the corresponding region in the

/±-space bj± times). In (16), bj±gj± forms the topological charges of the instantons
and anti-instantons. Then, using (10) and (16) one obtains the second Chern numbers

c2� ¼
Z
M

J�
ffiffiffi
g

p
d4x ¼

XM�

j¼1

bj�gj� ð17Þ

and the topological signature

sðMÞ ¼ � 1

3

XMþ

j¼1

bjþgjþ � 1

3

XM�

j¼1

bj�gj�: ð18Þ

The expressions (16)–(18) reveal the inner structure of the second Chern class, Chern
number, and the topological signature, which mean that the topological effect of the
second Chern class is indeed caused by the inherent instantons and anti-instantons
with topological charges bj±gj±, while the Chern number, and then the signature
sðMÞ, is just characterized by the topological numbers of these instantons and
anti-instantons, bj± and gj±.

It should be addressed that according to the Atiyah–Singer index theorem [24],
the numbers of the instantons and anti-instantons, M+ and M�, should be deter-
mined by the self- and antiself-duality equations (6). The relationship between
M± and the expression (6) will be discussed in detail in our further work.
4. The ’t Hooft–Polyakov monopoles and 2-membranes

In this section, the �t Hooft–Polyakov monopoles and 2-membranes induced by
the U (1) sub-field tensor in the SO (4) gauge field are discussed.

�t Hooft and Polyakov proposed [25,19] that the U (1) sub-field tensor in SU (2)
gauge field, fSU (2), is written as

f SUð2Þ ¼ ðF SUð2Þ; nSUð2ÞÞ þ ðnSUð2Þ; ½DnSUð2Þ;DnSUð2Þ�Þ; ð19Þ
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where FSU (2) is the SU (2) field tensor, and nSU (2) is the unit vector of su (2) Lie alge-
bra. Here, we will generalize this theory to discuss the U (1) sub-field tensor in SO (4)
gauge field. First, it is known that in the so (4) Lie algebra space, the inner product
between two arbitrary so (4) vectors, say, u ¼ 1

2
uabIab and v ¼ 1

2
vabIab, is given by:

ðu; vÞ ¼ 1
4
gabcdu

abvcd ¼ 1
2
uabvab, where gabcd is the metric tensor of SO (4) group mani-

fold defined from the structure constant Cab
cdkq: gabcd ¼ 1

4
Ckq

abrsC
rs
kqcd ¼ dacdbd � daddbc.

Using (4), the inner product is expressed as two parts: ðu; vÞ ¼ 1
2
ðuaþvaþ þ ua�v

a
�Þ. Then,

generalizing (19), one can define the U (1) sub-field tensor in the SO (4) gauge field as

f� ¼ ðF ; n�Þ þ ðn�; ½Dn�;Dn��Þ; ð20Þ
where n± is the unit vector in SU (2)± sub-group space, na� ¼ Û

y
�IaÛ� ða ¼ 1; 2; 3Þ

with na�n
a
� ¼ 1; and Dn± = dn± � [x±,n±] is the covariant derivative of n±. Noticing

the definitions F a
� ¼ dxa

� þ �abcxb
�x

c
� and Dna� ¼ dna� þ �abcxb

�n
c
�, (20) becomes

f�lm ¼ ðolA�m � omA�lÞ � K�lm ð21Þ
with

K�lm ¼ �abcna�oln
b
�omn

c
�; ð22Þ

where A�l ¼ xa
�ln

a
� is a U (1) gauge potential, and K±lm a topological term describing

the non-uniform distribution of na� at large distance (see [19] and references therein).
Since in the 4-dimensional space there exist different kinds of non-uniform distribu-
tions at large distance for unit vector na�, there are different topological excitations
which can be derived from the topological term K±lm. In the following, we will
discuss the �t Hooft–Polyakov monopole and 2-membrane structures from the
K±lm tensor.

4.1. The �t Hooft–Polyakov monopoles

In this subsection, it is shown that there is a 3-dimensional topological current
which can be derived from K±lm, and the monopole structures are inhering in the
3-dimensional topological current.

In the classical electromagnetic theory, the Maxwell equations are

omf Uð1Þ
lm ¼ 4pjEl ; om

�f lm
Uð1Þ ¼ 0; ð23Þ

where f Uð1Þ
lm is the classical U (1) electromagnetic field tensor with jEl the electric

current, and �f lm
Uð1Þ is the dual tensor of f Uð1Þ

lm : �f lm
Uð1Þ ¼ 1

2
�lmkqf Uð1Þ

kq . The second equa-
tion in (23) is known as the Bianchi identity. To include the monopoles in the theory,
�t Hooft and Polyakov generalized the electromagnetic field to SU (2) and proposed a
U (1) sub-field tensor in SU (2) gauge field, i.e., the tensor f SUð2Þ

lm in (19) [25]. In terms
of f SUð2Þ

lm , the Maxwell equations become

o
mf SUð2Þ

lm ¼ 4pjEl ; om
�f lm

SUð2Þ ¼ �4pjlM ; ð24Þ

where jlM is the monopole current.
To discuss the monopoles in SO (4) field, we have defined the U (1) sub-field tensor

f± in (20) and (21), hence the corresponding Maxwell equations are
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o
mf�lm ¼ 4pjE�l; om

�f lm
� ¼ �4pjl�M ; ð25Þ

where the electric current jE�l is purely due to the U (1) potential A±l, and jl�M due to
the topological term K�lm : j

l
�M ¼ 1

4pom
�Klm

� ¼ 1
8p�

lmkq�abcomna�okn
b
�oqn

c
�. According to

the /-mapping theory, the 3-dimensional topological current is defined as [23]

Jl
� ¼ 1

8p
ffiffiffi
g

p �lmkq�abcomna�okn
b
�oqn

c
� ðl ¼ 0; 1; 2; 3Þ ð26Þ

so 1ffiffi
g

p jl�M is just the 3-dimensional topological current Jl
�. It can be seen that Jl

� is
identically conserved: 1ffiffi

g
p olð

ffiffiffi
g

p
Jl
�Þ ¼ 0.

Similar to Section 3, one can prove that

Jl
� ¼ 1ffiffiffi

g
p d3ð~u�ÞDlðu�=xÞ; ð27Þ

where Dl (u±/x) is the Jacobian vector: �abcDl (u±/x) = �lmkqomu
aoku

boqu
c, and ua

�
is a 3-component vector defined in the su (2)± sub-algebra space: na� ¼ ua

ku�k
,

with ku�k
2 ¼ ua

�u
a
� ða ¼ 1; 2; 3Þ. Obviously, the zero points of ~u� field are

just the 3-dimensional singular points of ~n� field. The expression (27) provides

Jl
�

¼ 0 iff ~u 6¼ 0;

6¼ 0 iff ~u ¼ 0;

�

so it is necessary to study the zero points of ~u� to determine the non-zero solutions
of Jl

�. Since the number of the zero point equations

ua
�ðxÞ ¼ 0 ða ¼ 1; 2; 3Þ ð28Þ

is three but the base manifold M is 4-dimensional, one can choose x0 as the param-
eter of the solutions of (28). The implicit function theory shows [29] that under the
regular condition D0 (u±/x) „ 0, the general solutions of (28) can be expressed as

x1;2;3 ¼ x1;2;3�l ðx0Þ ðl ¼ 1; 2; . . . ;N�Þ; ð29Þ
which represents N± isolated singular lines on M, with x0 the line parameter. These
singular lines are just the world lines of N± �t Hooft–Polyakov monopoles on 4-man-
ifold M [25,26].

Next, we should expand Jl
� onto these N± singular lines. In d-function theory [30],

one can prove that

d3ð~u�Þ ¼
XM
l¼1

b�lg�l

D0ðu=xÞ~x�l

d3ðxl � xl�lÞ; ð30Þ

then (27) is

J 0
� ¼ 1ffiffiffi

g
p

XN�

l¼1

b�lg�ld
3ðxl � xl�lÞ;

J i
� ¼ 1ffiffiffi

g
p

XN�

b�lg�ld
3ðxl � xl�lÞd̂

i

�l ði ¼ 1; 2; 3Þ; ð31Þ

l¼1
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where d̂
i

�l denotes the direction vectors of the world lines, d̂
i

�l ¼ dxi�=dx
0
�l ¼

Diðu�=xÞ=D0ðu�=xÞ. The expression (31) shows that these monopoles are character-
ized by the topological charge b±lg±l, and their world lines are in the direction of d̂

i

�l.
In the case of the Zhang–Hu 4-dimensional QH system the base manifold M is an

S4 [1]. Considering an S2 sub-space N on S4 [7], and taking the flat limit of S4:
S4 fi R4 (which is thought of as a copy of the 2-dimensional QH system [9,6,1]),
the winding number W� on N is given by

W� ¼ 1

8p

Z
N
�abcna�oln

b
�omn

c
� dxl ^ dxm ¼ 1

8p

Z
N
Klm dxl ^ dxm: ð32Þ

In topology, this means that when xl covers N once, the unit vector na� will cover the
2-sphere S2 in ua

� space for W� times. W� is a topological invariant and actually a
Gauss mapping degree. By making use of the Stokes� theorem, one has

W� ¼ 1

8p

Z
D
�abcolnaomnbokncdxl ^ dxm ^ dxk ðoD ¼ NÞ: ð33Þ

In terms of the zero component of Jl
�, W� is given by

W� ¼
Z
D
J 0
� d3x ¼

XN�

l¼1

b�lg�l: ð34Þ

This quantized result describes the topological effect of the �t Hooft–Polyakov mono-
poles in higher dimensional QH system, which shows that the winding number W�
wrapping these monopoles is characterized by their /-mapping topological numbers
b±l and g±l.

4.2. The 2-membranes

In this subsection, it is shown that from K±lm one can also derive a 2-dimensional
topological current, and the 2-membrane structures are inhering in this 2-dimension-
al current.

The K±lm tensor can also be expressed in an Abelian field tensor form [31,19]

K�lm ¼ �abcna�oln
b
�omn

c
� ¼ olW �m � omW �l: ð35Þ

Here, W±l is the Wu–Yang potential: W �l ¼~e�1 	 ol~e�2, where~e�1 and~e�2 are two
unit vectors, respectively, normal to na�, i.e., ð~e�1;~e�2;~n�Þ forms an orthogonal
frame:~e�1 	~e�2 ¼~e�1 	~n� ¼~e�2 	~n� ¼ 0 and~e�1 	~e�1 ¼~e�2 	~e�2 ¼~n� 	~n� ¼ 1.

Consider another 2-component vector in SU (2)± space: ~n� ¼ ðn1�; n
2
�Þ, which

resides in the plane formed by the unit vectors~e�1 and~e�2, satisfying

ea�1 ¼
na�

kn�k
; ea�2 ¼ �ab

nb�
kn�k

ðkn�k2 ¼ na�n
a
�; a; b ¼ 1; 2Þ: ð36Þ

It can be proved that this expression of~e�1 and~e�2 satisfies the above restriction of
orthogonal frames. Obviously, the zero points of ~n� are the 2-dimensional singular

points of ~e�1 and ~e�2. Using ~n� field, the Wu–Yang potential can be expressed as

W �l ¼ �ab
na�
kn�k

ol
nb�
kn�k

, and the field tensor K±lm becomes K�lm ¼ 2�abol
na�
kn�k

om
nb�

kn�k
.
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Similar to Section 3, one can prove that

�abol
na�

kn�k
om

nb�
kn�k

¼ �lmkq2pd
2ð~n�ÞDkqðn�=xÞ ða; b ¼ 1; 2Þ; ð37Þ

where Dkqðn�=xÞ ¼ 1
2
�kqlm�aboln

a
�omn

b
� is the Jacobian tensor. Then, K±lm is expressed

in a d-function form: K�lm ¼ 4p�lmkqd
2ð~n�ÞDkqðn�=xÞ. According to the /-mapping

theory [23], the 2-dimensional topological current is defined as

Jlm
� ¼ 1

2p
ffiffiffi
g

p
1

2
�lmkq�abok

na�
kn�k

oq
nb�

kn�k
¼ 1ffiffiffi

g
p d2ð~n�ÞDlmðn�=xÞ ð38Þ

so in K±lm there exists a 2-dimensional topological current: K�lm ¼ 4p
ffiffiffi
g

p
�lmkqJ

kq
� .

The expression (38) provides

Jlm
�

¼ 0 iff ~n 6¼ 0;

6¼ 0 iff ~n ¼ 0;

(

so it is necessary to study the zero points of~n� to determine the non-zero solutions of
Jlm
� . Since the number of the zero point equations

naðxÞ ¼ 0 ða ¼ 1; 2Þ ð39Þ
is two but the base manifold M is 4-dimensional, the solutions of (39) will be ex-
pressed with two parameters denoting the two surplus dimensions ofM. The implicit
function theory shows [29] that under the regular condition Dlm(n±/x) „ 0, the gen-
eral solutions of (39) can be expressed as

xl ¼ xlk ðr1
�; r

2
�Þ ðl ¼ 0; 1; 2; 3; k ¼ 1; 2; . . . ; L�Þ; ð40Þ

which represents L± 2-dimensional isolated surfaces P±k (k = 1,2, . . .,L±) on M,
with r1

� and r2
� the intrinsic coordinates of P±k. These singular surfaces are the

L± 2-membranes in 4-manifold M [19].
Then, we should expand Jlm onto these L± singular surfaces P±k�s. First, it can be

proved that in the 4-manifold M there exists another 2-dimensional surface R+

which is transversal to every P+k at the section point p+k (and similarly a R� trans-
versal to every P�k):

glm
oxl

orI
�

oxm

osC�

����
p�k

¼ 0 ðI ¼ 1; 2; C ¼ 1; 2Þ; ð41Þ

where s1� and s2� are the intrinsic coordinates of R±. Thus, on R± one can prove that
[30,23]

d2ð~n�Þ ¼
XN
k¼1

b�kg�kd
2 ~s� �~sðp�kÞð Þ: ð42Þ

Second, since every p±k is related to a singular surface P±k, the above two-dimen-
sional d-function d2ð~s�~sðp�kÞÞ must be expanded to the d-function on singular sur-
face P±k [i.e., d(P±k)]. Meanwhile, in d-function theory it has been given [30,23] that
dðP�kÞ ¼

R
Pk
d4ðxl � xlk ðr�ÞÞ

ffiffiffiffiffiffiffi
g�r

p
d2r�, where g±r is the determinant of the metric
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g±IJ of Pk : g�r ¼ detðg�IJ ÞðI ; J ¼ 1; 2; g�IJ ¼ glm
oxl

orI�

oxm

orJ�
Þ. So, third, Jlm

� is expanded
onto L± singular surfaces P±k:

Jlm
� ¼ 1ffiffiffi

g
p Dlm n�

x

� �XL�
k¼1

b�kg�k

Z
Pk

d4ðxl � xl�kðr�ÞÞ
ffiffiffiffiffiffiffi
g�r

p
d2r�: ð43Þ

This means that in the SO (4) gauge field there exists the 2-dimensional topological
current, while the 2-membranes are inhering in this current with the topological
charges b±kg±k.

In the end of this section, we would briefly discuss the integral of this current Jlm
�

on M. In analogy with the form of the Nielsen�s Lagrangian in classical dual string
theory [32] one can define

L� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
glkgmqJ

lm
� J

kq
�

q
: ð44Þ

Then, from (42) it can be proved that L� ¼ 1ffiffi
g

p d4ð~n�Þ, and the integral of Jlm
� on M

becomes

S� ¼
Z
M

L�
ffiffiffi
g

p
d4x ¼

Z
M

d4ð~n�Þ d4x: ð45Þ

Noticing (42), we arrive at the important result

S� ¼
XL�
k¼1

b�kg�k

Z
P�k

ffiffiffiffiffiffiffi
g�r

p
d2r� ¼

XL�
k¼1

b�kg�kS�k; ð46Þ

where S�k ¼
R
P�k

ffiffiffiffiffiffiffi
g�r

p
d2r� is the area of 2-membrane P±k. It can be seen that the

expression (46) takes the same form as the Nambu action [32], and S� is quantized
and characterized by the /-mapping topological numbers b±k and g±k.
5. Conclusion

In this paper, we use the /-mapping topological theory to directly derive three
kinds of topological excitations from the SO (4) gauge field of condensed matter sys-
tems in 4-dimension: the instantons and anti-instantons, the �t Hooft–Polyakov
monopoles, and the 2-membranes. In Section 2, the SO (4) gauge field is fractionali-
zed into two parts SU (2)+ and SU (2)�. In Section 3, it is revealed that there is a
4-dimensional topological current J± inhering in the SU (2)± gauge field, while the
instanton and anti-instanton structures are acquired from J±, whose topological
charges underlie the second Chern number c2± and the signature sðMÞ of 4-manifold
M. In Section 4, we generalize the �t Hooft–Polyakov theory and obtain the U (1)
sub-field tensor f±lm in the SO (4) gauge field. We show that from the topological
term K±lm of f±lm, one can derive both the 3-dimensional topological current Jl

�
and the 2-dimensional topological current Jlm

� , and the �t Hooft–Polyakov monopoles
and 2-membranes are, respectively, existing in Jl

� and Jlm
� . Moreover, it is shown that

the topological charges of these three kinds of excitations are all characterized by the
/-mapping topological numbers Hopf indices and Brouwer degrees.
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