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Abstract

Following the original analysis of Zhang and Hu for the 4-dimensional generalization of
Quantum Hall effect, there has been much work from different viewpoints on the higher
dimensional condensed matter systems. In this paper, we discuss three kinds of topological
excitations in the SO(4) gauge field of condensed matter systems in 4-dimension—the instan-
tons and anti-instantons, the 't Hooft-Polyakov monopoles, and the 2-membranes. Using the
¢-mapping topological theory, it is revealed that there are 4-, 3-, and 2-dimensional topolog-
ical currents inhering in the SO (4) gauge field, and the above three kinds of excitations can be
directly and explicitly derived from these three kinds of currents, respectively. Moreover, it is
shown that the topological charges of these excitations are characterized by the Hopf indices
and Brouwer degrees of ¢-mapping.
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1. Introduction

In 2001, Zhang and Hu [1] constructed a remarkable 4-dimensional general-
ization of the Quantum Hall (QH) effect, which reveals the interesting property
of 4-dimensional QH system that the ground state is separated from all excited
states by a finite energy gap, and the density correlation functions decay gaussi-
anly [2-4]. This generalized higher dimensional system was analyzed from many
viewpoints and extended in different directions [5,6], including the realization of
this system within string theory [7], the connection between this system and the
twistor theory [8], the generalization of the QH effect onto the CP, manifolds
[9,10], the matrix descriptions of even dimensional fuzzy spherical branes in ma-
trix theory [11], and the relationship between the 4-dimensional QH liquid and
the non-commutative geometry on S* [12]. More recently, based on this higher
dimensional theory, the dissipationless quantum spin current in hole-doped
semiconductors at room temperature with strong spin—orbit coupling was pre-
dicted theoretically (which was an important progress achieved in the research
of spintronics) [13,14], and the theoretical framework and experimental realiza-
tion of the higher dimensional Bose-FEinstein condensates were also discussed in
[15,16].

In this paper, we will focus on the topological excitations in the generalized higher
dimensional systems. In [3,4,7], it has been pointed out that in the higher dimen-
sional condensed matter physical systems there exist various topological excitations,
including the SU(2) instantons (i.e., the Yang monopoles [17] which are obtained by
the second Hopf mapping: S’ — §%), and the membranes of different dimensions.
With respect to the fact that the topological excitations are in themselves the singu-
larities on the manifold, we hope to be able to derive these excitations directly and
explicitly from the geometric distributions of the physical basic fields on the base
manifold. Adopting this viewpoint, in this paper we will use the ¢-mapping topolog-
ical theory [18-23] to discuss three kinds of topological excitations in the SO(4)
gauge field of 4-dimensional condensed matter physical systems—the instantons
and anti-instantons [24], the 't Hooft-Polyakov monopoles [25,26], and the 2-mem-
branes [3.,4]. In Section 2, based on the group theoretical relation SO(4) =
SU((2) ® SU(2), the SO(4) gauge field is fractionalized into two parts, SU(2)+ and
SU(2)_. In Section 3, it is revealed that there is a 4-dimensional topological current
inhering in the SU(2).. gauge field, while the instanton and anti-instanton structures
are directly derived from this topological current, whose topological charges underlie
the second Chern number and the signature of the 4-dimensional manifold. In Sec-
tion 4, we first generalize the 't Hooft—Polyakov theory so as to obtain the U(1) sub-
field tensor in the SO(4) gauge field, and then show that from this U(1) tensor one
can derive both the 3- and 2-dimensional topological currents, and the 't Hooft—
Polyakov monopoles and 2-membranes exist, respectively, in these two kinds of
topological currents. Moreover, it is shown that the topological charges of the three
kinds of excitations are all characterized by the Hopf indices and Brouwer degrees of

¢-mapping.
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2. The fractionalization of the SO (4) gauge field

The symmetry group of the generalized 4-dimensional QH system is SO(S5). This
symmetry is broken to SO (4) under the given confining potential [1,2]. In this paper,
we will emphasize on this SO(4) gauge field of higher dimensional condensed matter
systems. In this section, based on the group theoretical relation SO(4) =
SU2) ® SU(2), we discuss the fractionalization of SO(4) field by employing the
SO (4) generators to construct two SU(2) generator sets, and then using them to re-
write the SO(4) field into two SU(2) sub-field parts.

Let the base .# be a compact oriented 4-dimensional manifold with metric
guw (v =0,1,2,3), and 2(.#,S50(4), n) the principal SO(4) bundle on .#. The Dirac
4- spmor wave function ¥ (x) is the section of the associated bundle 2 x o4 C Y=
(P, <I>2) , where @(x) and ®,(x) are two 2-spinors. The covariant derlvatlve of
¥ (x) is defined as DY = d¥ — oV, with o the SO(4) gauge potential, i.e., the con-
nection of 2 : w = 1w*I,5. The SO(4) gauge field tensor F is given by

F=do—oho=1F"L (1)
Here, o, =1,2,3,4 are the SO(4) group indices, and I,z is the SO(4) generator
which satisfies the Lie bracket [1,5,7,,] = “mp 2> With Cffg)vﬂ the structure constant:

C,, = 8,p030) + 65,8280 — 6,,0500 — 85,070} Ly can be given in terms of the 4 x 4
y-matrices: [,5 = %[ya,yﬁ}, where 7p,’s satisfy the definition of Clifford algebra:
(Vo 7p} = 20,51 A realization of p123:% and the corresponding 7° in the Kramers

form is given by

0 —io” . 0 I s I 0
"a: = ) = 2
y (ia” 0 ) y ([ 0>, y (0 _1)7 (2)

where ¢ (a =1,2,3) are the Pauli matrices. It can be seen that this y’-matrix is
chiral with eigenvalues +1 and —1, corresponding to which the eigenstates are
denoted as (@, 0)" and (0 @_ )", respectively, where @, and ®_ are two 2-spinors.
(The topology of @, will be discussed in Section 3.)

From the SO(4) generator 1,4, one can construct other two sets of basis, /¢ and /*:

]i = *%(%gahc]hc +1a4)5 Ia = ( 6abc[bc *1a4) (aabac = 17273) (3)

It can be proved that I and /? are actually

0
¢ = 2i
=5 o)
]a_<0 0)
— 0 Z_Z )

which satisfy the commutation relations

[I‘L]Q = €awel’, [Iia[li] =0, (4)
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where no sum is assumed for “+”. (4) means /%’s and /*’s are, respectively, the gen-
erator sets of two separate SU(2) sub-groups in the SO(4) group, therefore the so(4)
Lie algebra is fractionalized into two su(2) sub-algebras, so(4) = su(2) ® su(2). In
the following, one denotes the two SU(2) sub-groups, which, respectively, corre-
spond to /¢ and /¢, as SU(2)+ and SU(2)_, and their principal bundles on .# as
P.=P(4,SU(2),,m).

Next, we would express the SO (4) gauge field in two SU(2) parts. It can be proved
that for an arbitrary so(4) vector u = Ju*I,5 = "1, + u*1 4, u can be written as an
su(2)y vector plus an su(2)- one: wu=u, +u_=ulll +u'l®, where
uf = u" +u™ = Je"uy, + u™. Therefore, the SO(4) gauge potential w, which is an
so(4) vector, can be written in two parts: w = w4 + w_ with o, = w{/‘, while the
SO(4) field tensor F'is also written in two SU(2) parts:

F=F,+F_ ()

whereF, = dwy — [wx,ws] = F{I%. According to the topological theory of 4-di-
mensional manifolds [24], the SU(2).. field tensor F; and F_ should satisfy the self-
and antiself-duality equations, respectively:
‘F.=F, ‘F_=-F_, (6)
where *F . is the Hodge dual tensor of F..
Therefore, the SO(4) field tensor F'is divided into two SU(2) parts, F and F_. In
the following sections, various kinds of topological excitations in the SO(4) gauge
field will be derived from these SU(2) sub-field tensors F; and F_.

3. The instantons and anti-instantons

In this section, it is shown that there is a 4-dimensional topological current inher-
ing in the second Chern classes in the SO (4) gauge field, and the instanton and anti-
instanton structures are derived from this 4-dimensional topological current.

Since the base manifold .# is 4-dimensional, in the study of its topology we will
begin with the topological signature. It is known that on the compact oriented 4-
manifold .#, under the action of Hodge star, the space of harmonic 2-forms
H*(.;R) divides into a direct sum decomposition: H*(.#;R) = H> (M;R)®
H?* (M(;R), where H> (.#;R) and H? (./;R) consist of self- and antiself-dual har-
monic 2-forms, respectively [24]. Let b, = dimH?2 (.#;R) and b_ = dimH” (.#;R),
one has the second Betti number of .# given by b, =b, + b_, and the so-called
topological signature of 4-manifold .# defined as [24,27,28]

t( M) =b, —b._. (7)

In topology, ©(.#) is a topological invariant which plays an important role in the
classification of 4-dimensional manifolds.

The Hirzebruch theorem shows that t(.#) can be given by the characteristic clas-
ses on ./ [24]

r(%):%/ﬂﬂ(ﬂ):—%‘lﬁz /ﬁTr(F/\F), (8)
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where P (.#) is the first Pontrjagin class of .#, P\(.#) = —g=Tr(F AF). From (5)
and (4), one sees that t(.#) can be written in two SU(2) parts

o) = =3 41 / Tr(F. AF.) =3 411[2 //ZTr(F,/\F,). )

Noticing the definition of the second Chern class of P.:Cy(Py)=
o=/ ,Tr(F+ AF.), the expression (9) is just

(M) = _% /ﬂ Gy (P) _% /{{ G (P) = —%Cu —%sz, (10)

where ¢, = f C,(P.) is the second Chern number. In the following, we would re-
veal the inner structure of the signature t(.#), and derive the instanton and anti-inst-
anton structures by studying the topology of the physical basic fields on ..

The basic field @ (x) is the 2-spinor wave function in the SU (Z)i sub-field, i. &
the section of the associated bundle Pi Xsu( jzC <Di ((jbi 1q§ ¢i 1¢i) ,
where ¢ € R (4 = 07 1,2,3), with ¢:t¢:t = ||<;’>i\| = @\ ®.. From (f)i a unit vector
m is introduced: m! = ¢’ /||¢. || with mim? = 1. It is seen that the zero points of

¢ % are just the singular points of m?. From @, we introduce a normalized spinor

P, =—L @, = (mS +im!. m> +im? )T.

\ oL os

It has been proved in our previous work [20,22] that when specially choosing P, asa
parallel field which satisfies D,®. =0, one can express the second Chern class
Cy(PL) as

Cy(Py) = € € 450 0,m L0, mB 0;mEd,mY d’x, (11)

12n2

where i, v,4,p =0,1,2,3 denote the base .#. According to the ¢-mapping topolog-
ical theory, the 4-dimensional topological current is defined as [23]

1
127:2\/"

where g = det(g,,), therefore C,(Py) = Jifd x.
Making use of the Green function relation in ¢.-space: 0.404(1/1p-11%)
4n254(¢i) one proves that J, can be written in the -function form

b
Ji= L g 13
o' @an (%) (13)
where D(¢./x) is the Jacobi determinant, e**°D(¢, /x) = €d,¢"0,¢" 0,50,
The expression (13) provides the important conclusion:

=0 iff §. #0,

J -

#£0 iff ¢, =0,
so it is necessary to study the zero points of q_b)i to determine the non-zero solutions
of J.. The implicit function theory shows [29] that under the regular condition

Ji = " € 45cp0,m0,m5 ;mSd,m?, (12)

(14)
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D(¢./x)#0, the general solutions of the zero point equations ¢ (x°,x',x* x*) =0
(4=0,1,2,3) can be expressed as

M=x (0=0,1,2,3 j=1,...,M.), (15)

which represents M isolated 4-dimensional singular points on base .#. Since the
SU(2) sub-field tensors F. and F_, respectively, satisfy the self- and antiself-duality
equations (6), these 4-dimensional singular point solutions are M. instantons and
M _ anti-instantons in the SO(4) gauge field.

Furthermore, in J-function theory [30] it can be proved that

1 &
Jy :ﬁZﬁ/inji54(x"—xfi), (16)
=1

where 7, is the Brouwer mapping degree, 1, = sign[D(¢.. /x)]. =1,—1; and f;; a
. “ .

positive integer which is called the topological Hopf index (which means that when x*

covers the neighborhood of xJ, once, ¢’ covers the corresponding region in the

¢ -space f;; times). In (16), B,.1;+ forms the topological charges of the instantons
and anti-instantons. Then, using (10) and (16) one obtains the second Chern numbers

My
Cop = / Ji\/§d4x = Zﬂjir]j:t (17)
M j=1
and the topological signature
1 M 1 M
(M) = 3 ZﬂH"H 3 Zﬁjf”jf' (18)
=1 =1

The expressions (16)—(18) reveal the inner structure of the second Chern class, Chern
number, and the topological signature, which mean that the topological effect of the
second Chern class is indeed caused by the inherent instantons and anti-instantons
with topological charges f;,#,., while the Chern number, and then the signature
t(M), is just characterized by the topological numbers of these instantons and
anti-instantons, ;. and 1.

It should be addressed that according to the Atiyah—Singer index theorem [24],
the numbers of the instantons and anti-instantons, M, and M _, should be deter-
mined by the self- and antiself-duality equations (6). The relationship between
M and the expression (6) will be discussed in detail in our further work.

4. The ’t Hooft—Polyakov monopoles and 2-membranes

In this section, the 't Hooft-Polyakov monopoles and 2-membranes induced by
the U(1) sub-field tensor in the SO(4) gauge field are discussed.

’t Hooft and Polyakov proposed [25,19] that the U(1) sub-field tensor in SU(2)
gauge field, /5Y?), is written as

fSU(Z) — (FSU(Z),nSU(Z)) + (nSU(Z)’ [DnSU(2>, DnSU(2>]), (19)
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where FSY® is the SU(2) field tensor, and #n5Y® is the unit vector of su(2) Lie alge-
bra. Here, we will generalize this theory to discuss the U(1) sub-field tensor in SO (4)
gauge field. First, it is known that in the so(4) Lie algebra space, the inner product
between two arbitrary so(4) vectors, say, u = uI,; and v =1v"/1,, is given by:
(u,v) = 3,0 5uPv" = PP where g,4,5 is the metric tensor of SO(4) group mani-
fold defined from the structure constant C;‘f; ot upys = %CiZJIC‘)’I;ﬁ = 05,055 — 0450,
Using (4), the inner product is expressed as two parts: (u,v) = 3(u® v + u“v* ). Then,
generalizing (19), one can define the U(1) sub-field tensor in the SO(4) gauge field as

fe = (F,ns) + (ns, [Dny, Dn.]), (20)

where n, is the unit vector in SU(2). sub-group space, n{ = @l]a@i (a=1,2,3)
with n{n® = 1; and Dny = dn, — [w.,n,]is the covariant derivative of n,. Noticing
the definitions F% = do’. + e o’ 0w and Dn’. = dn’ + e*“’n<, (20) becomes

f;{:[l\‘ = (a;tAj:v - avAj:u) - Kj:uv (21)
with
Kj:uv = eabcniauniavni7 (22)

where 4., = of n% is a U(1) gauge potential, and K., a topological term describing
the non-uniform distribution of n¢ at large distance (see [19] and references therein).
Since in the 4-dimensional space there exist different kinds of non-uniform distribu-
tions at large distance for unit vector n%, there are different topological excitations
which can be derived from the topological term K. ,,. In the following, we will
discuss the 't Hooft-Polyakov monopole and 2-membrane structures from the
K., tensor.

4.1. The 't Hooft—Polyakov monopoles

In this subsection, it is shown that there is a 3-dimensional topological current
which can be derived from K ,,, and the monopole structures are inhering in the
3-dimensional topological current.

In the classical electromagnetic theory, the Maxwell equations are

O =dnjt, ol =0, (23)

where f;f{m is the classical U(1) electromagnetic field tensor with jﬁ the electric
current, and “f}{, is the dual tensor of f,J(") : "ff = Je"* f/z(l). The second equa-
tion in (23) is known as the Bianchi identity. To include the monopoles in the theory,
’t Hooft and Polyakov generalized the electromagnetic field to SU(2) and proposed a
U(1) sub-field tensor in SU(2) gauge field, i.e., the tensor f5U® in (19) [25]. In terms

of £V, the Maxwell equations become
oSy = A, 0 Sy = —4mji, (24)
where j, is the monopole current.

To discuss the monopoles in SO (4) field, we have defined the U(1) sub-field tensor
f+ 1n (20) and (21), hence the corresponding Maxwell equations are
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O fuw =4mjl,, O = —dmjly, (25)
where the electric current ;£ 1, 1s purely due to the U(1) potential 4., and /', due to
the topological term K., : /%, = 16 K = ewweahca nia,nia,,ni According to

the ¢-mapping theory, the 3-dimen51onal topolog1cal current is defined as [23]

Ji = We’”;"’egbca‘,ni@miapn; (0=0,1,2,3) (26)
o) g]iM is just the 3-dimensional topological current J%. It can be seen that JY is

1dentlcally conserved: - 70 W(v/8J4) = 0.
Similar to Section 3 one can prove that

= %53@)1)“(%#), (27)

where D"(¢./x) is the Jacobian vector: e”“D"(¢p./x) = €**3,¢"0;¢"0,¢¢, and Pl
is a 3component vector defined in the su(2), sub-algebra space: n? = H:ffiH’
with o, | = = ¢%¢% (a=1,2,3). Obviously, the zero points of ¢, field are
just the 3-dimensional smgular points of 7. field. The expression (27) provides

(=0 iff 3#0,
JY o o
£0 iff =0,

so it is necessary to study the zero points of $, to determine the non-zero solutions
of J!. Since the number of the zero point equations

Pi(x)=0 (a=1,2,3) (28)

is three but the base manifold .# is 4-dimensional, one can choose x° as the param-
eter of the solutions of (28). The implicit function theory shows [29] that under the
regular condition D°(¢./x)#0, the general solutions of (28) can be expressed as

X2 = 2300 (1=1,2,...,Ny), (29)

which represents N, isolated singular lines on .#, with x° the line parameter. These
singular lines are just the world lines of N ’t Hooft-Polyakov monopoles on 4-man-
ifold .# [25,26].

Next, we should expand J* onto these N singular lines. In é-function theory [30],
one can prove that

M

3= e ) (30)

then (27) is
1 &
= ﬁ Z Bt (et — x),
=1

1 - N\ .
~ e D Bungd @t —xl)dy, (i=1,2,3), (31)
=1
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where &’;, denotes the direction vectors of the world lines, d\, = dx,/dx), =
D'(¢, /x)/D" (¢, /x). The expression (31) shows that these monopoles are character—
ized by the topological charge B ., and their world lines are in the direction of d' 4

In the case of the Zhang—Hu 4-dimensional QH system the base manifold .# is an
S* [1]. Considering an S* sub-space = on S* [7], and taking the flat limit of S*:
S* — R* (which is thought of as a copy of the 2-dimensional QH system [9,6,1]),
the winding number #"; on Z is given by

1 a C V 1 Vv
We=g / Curen 0Oy, A A di = o / Koo de A dx”. (32)

In topology, this means that when x* covers Z once, the unit vector n¢ will cover the
2-sphere S in % space for # . times. # . is a topological invariant and actually a
Gauss mapping degree. By making use of the Stokes’ theorem, one has

1
We=oo / €ascOn ", dx" Adx' Ady' (04 = E). (33)
A

In terms of the zero component of J, # ", is given by
Ny
W= /J(i d'x = Zﬁilnil’ (34)
4 =1

This quantized result describes the topological effect of the 't Hooft—Polyakov mono-
poles in higher dimensional QH system, which shows that the winding number % .
wrapping these monopoles is characterized by their ¢-mapping topological numbers
B+ and ny.

4.2. The 2-membranes

In this subsection, it is shown that from K ,, one can also derive a 2-dimensional
topological current, and the 2-membrane structures are inhering in this 2-dimension-
al current.

The K, tensor can also be expressed in an Abelian field tensor form [31,19]

Kiw= eabcniaﬂnbiévn; =0, Wi — 0 Wy, (35)

Here, W, is the Wu-Yang potential: W, = é,, - 0,€.», where €,; and €., are two
unit vectors, respectively, normal to n%, ie., (€.),€4,,7:) forms an orthogonal
frame: Ej:l 'E:tZ = éj:l 'ﬁi = éj:Z . ﬁi =0 and gj:l . Ej:l = Ej:Z . éig: ﬁi 'ﬁi =1.

Consider another 2-component vector in SU(2), space: &, = (ili,éi), which
resides in the plane formed by the unit vectors €., and é.,, satisfying

a i a a gh 112 a za

= ¢ = (60 = &8 ab=1.2) (36)
It can be proved that this expression of €., and Eig satisfies the above restriction of
orthogonal frames. Obviously, the zero points of &, are the 2-dimensional singular
points of €., and é4y. Using ¢, field, the Wu-Yang potential can be expressed as

ab C
Wi, = EabHCiHa'LLHé o and the field tensor K ,, becomes K., = 2¢“ 6”@'6‘”%”
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Similar to Section 3, one can prove that

ot e 0 = IR EDP(E ) (@b =1,2), (37)
€]l ”éi”
where D* (&, /x) = L €460, 5.0, & o is the Jacobian tensor. Then, K, is expressed

in a é-function form Kiw= 4rcew,,52(éi)D’“’(§i /x). According to the ¢-mapping
theory [23], the 2-dimensional topological current is defined as

’ 1 1 a b 1
;jz:\ ;u/peaba;L éi ap éi -
2n/g 2 IEell " leell VB

so in K, there exists a 2-dimensional topological current: K, = 41r\/§em,]Ji"
The expression (38) provides

=0 iff E£o0,
J*;{ 7

8 (EL)D" (£, /x) (38)

£0 iff £=0,

so it is necessary to study the zero points of fi to determine the non-zero solutions of
J%'. Since the number of the zero point equations

') =0 (a=12) (39)

is two but the base manifold .# is 4-dimensional, the solutions of (39) will be ex-
pressed with two parameters denoting the two surplus dimensions of .#. The implicit
function theory shows [29] that under the regular condition D*(£./x) # 0, the gen-
eral solutions of (39) can be expressed as

M =x(c,0d) (u=0,1,2,3; k=1,2,...,L.), (40)

which represents L. 2-dimensional isolated surfaces Py, (k=1,2,...,L1) on ./,
with ¢! and o2 the intrinsic coordinates of P. These singular surfaces are the
L4 2-membranes in 4-manifold .# [19].

Then, we should expand J*" onto these L. singular surfaces P;’s. First, it can be
proved that in the 4-manifold .# there exists another 2-dimensional surface X
which is transversal to every P, at the section point p, (and similarly a X_ trans-

versal to every P_j):

ox* ox"

+ +

g,uv

Pxk

where 1! and 2 are the intrinsic coordinates of ... Thus, on X, one can prove that
[30,23]

L) = Z ﬁik'/’:tkéz(?i = 2(pss))- (42)

Second, since every p., is related to a singular surface P.,, the above two-dimen-
sional d-function 6*(7 — 7(p.,)) must be expanded to the 5-function on singular sur-
face Py [i.e., 0(Pix)]. Meanwhile, in o-function theory it has been given [30,23] that
O(Pw) = [ Pk54(x" —x}(0+))\/gz, d’o, where g, is the determinant of the metric
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gurs of Pp: gy, =det(gy,)(I,J =1,2; g,y = g,2755). So, third, J%' is expanded
onto L. singular surfaces P,: o

v 1 Y é < n
g :ﬁDl (;) Zﬂ:&:k’/lik/l) &* (xt _xik(o-i))\/gj:adzai' (43)
k=1 k

This means that in the SO(4) gauge field there exists the 2-dimensional topological
current, while the 2-membranes are inhering in this current with the topological
charges B

In the end of this section, we would briefly discuss the integral of this current J%'
on ./ . In analogy with the form of the Nielsen’s Lagrangian in classical dual string
theory [32] one can define

gi = \/ %g;tigvp‘]lj:v‘]j:p' (44)

Then, from (42) it can be proved that ¥, = ﬁé“(zi), and the integral of J/\ on .4
becomes

Fy= | ZiJgdx= [ §CE) d* (45)
M M

Noticing (42), we arrive at the important result

Ly Ly
Sy = Zﬁik”ik/ VEitos dPos = Zﬂik”ikyi/ﬂ (46)
k=1 P k=1

where & = f . V8% d’s. is the area of 2-membrane P.,. It can be seen that the
expression (46) takes the same form as the Nambu action [32], and & is quantized
and characterized by the ¢-mapping topological numbers S, and #..

5. Conclusion

In this paper, we use the ¢-mapping topological theory to directly derive three
kinds of topological excitations from the SO(4) gauge field of condensed matter sys-
tems in 4-dimension: the instantons and anti-instantons, the ’t Hooft-Polyakov
monopoles, and the 2-membranes. In Section 2, the SO(4) gauge field is fractionali-
zed into two parts SU(2)+ and SU(2)_. In Section 3, it is revealed that there is a
4-dimensional topological current J.. inhering in the SU(2). gauge field, while the
instanton and anti-instanton structures are acquired from J., whose topological
charges underlie the second Chern number ¢,4 and the signature t(.#) of 4-manifold
. In Section 4, we generalize the 't Hooft—Polyakov theory and obtain the U(1)
sub-field tensor f,,, in the SO(4) gauge field. We show that from the topological
term K., of fi,,, one can derive both the 3-dimensional topological current J*
and the 2-dimensional topological current J%, and the 't Hooft-Polyakov monopoles
and 2-membranes are, respectively, existing in J% and J%'. Moreover, it is shown that
the topological charges of these three kinds of excitations are all characterized by the
¢-mapping topological numbers Hopf indices and Brouwer degrees.
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