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Germany

Received 14 May 2004
Published 7 July 2004
Online at stacks.iop.org/JPhysA/37/7395
doi:10.1088/0305-4470/37/29/N02

Abstract
We show that the geometric phase for mixed state during a cyclic evolution
suggested in 2004 J. Phys. A: Math. Gen. 37 3699 is U(1) gauge invariant
and can be observed by modern techniques.

In the proceeding comment [1], Sjöqvist states that the concept of mixed state geometric phase
in cyclic evolution suggested in our recent work [2] is not gauge invariant.

To justify our concept and clarify the issue involved, we have to review the concept
of geometric phase. In general, it means that the geometric phase is invariant under U(1)

transformation if it is gauge invariant, i.e. the geometric phase is a U(1) gauge invariant. The
non-Abelian gauge geometric phase has been suggested only if a set of quantum states remains
degenerate as the Hamiltonian varies [3]. The definition of geometric phase of mixed states
suggested in our recent work [2] is a U(1) gauge invariant.

Supposing a quantum system with the Hamiltonian H(t), the density operator ρ(t) of
this system will undergo the following evolution:

ρ(t) = U(t)ρ(0)U+(t) (1)

where U(t) = T e−i
∫ t

0 H(t ′)dt ′/h̄, here T is the chronological operator. If [U(τ), ρ(0)] = 0,

i.e. ρ(τ) = ρ(0), we say this state undergoes a cyclic evolution with period τ . In [2], we
suggested the geometric phase φg as

φg = φ − φd (2)

where

φ = arg Tr [ρ(0)U(τ)] (3)

is the total phase and

φd = −i
∫ τ

0
dt Tr

[
ρ(0)U+(t)

dU(t)

dt

]
(4)

is just the dynamical phase during the cyclic evolution.
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The geometric phase can also be expressed as

φg =
∮

β (5)

and

β = iTr [ρ(0)Ũ+(t) dŨ (t)] (6)

where Ũ (t) = e−iφ(t)U(t) such that φ(τ) = φ. β is a canonical one-form in the parameter
space. The U(1) invariant property of equation (5) has been discussed in detail in [2, 4, 5].

If U(τ) = eiφI , i.e. U(τ) is a global cyclic evolution, we proved in [2] that the geometric
phase can be expressed as

φg = φ −
∑

k

wkφ
k
d =

∑
k

wkφ
k
g. (7)

However, if we take the transformation suggested in the comment [1],

V (t) =
∑

e−iαk(t) |ψk〉 〈ψk| (8)

with αk(τ ) − αk(0) = 2πnk, then the corresponding unitrary transformation is U ′(τ ) |ψk〉 =
U(τ)V (τ) |ψk〉 = ei(φ+2πnk) |ψk〉 . So, U ′(τ ) is no more a global cyclic evolution, hence the
φg cannot be expressed as

∑
k wkφ

′k
g unless nk is a constant for any k.

In fact, (8) is not a U(1) transformation when nk is not a constant for any k. One does not
need the definition of geometric phase would be a gauge invariant under such a non-Abelian
transformation, since the geometric phase is only a U(1) gauge invariant in general.

In [6], Sjöqvist et al proposed a definition of geometric phase for mixed states under the
parallel transport condition. We have proven in our work [2] that our definition is similar to
their definition when U(t) satisfies the parallel transport condition. Using nuclear magnetic
resonance technique, Du et al have observed the geometric phase when U(t) satisfies the
parallel transport condition [7]. In [2], we have shown that our predictions are similar to what
have been observed by Du and his co-workers. Unfortunately, Du and his co-workers have
not designed to measure the geometric phase for general cases (for the cases that U(t) is not
a parallel transport). In fact, the dynamic phase can be eliminated by the ‘spin echo’ method
if U(t) is not a parallel transport [8], so the geometric phase suggested by equation (2) can be
observed experimentally.

In summary, the geometric phase suggested in [2] is U(1) gauge invariant and can be
observed by recent techniques. It is improper to demand the geometric phase as a non-Abelian
structure in general.
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