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We generalize the correlation functions of the Clauser-Horne-Shimony-Holt (CHSH) inequality to
arbitrarily high-dimensional systems. Based on this generalization, we construct the general CHSH
inequality for bipartite quantum systems of arbitrarily high dimensionality, which takes the same
simple form as CHSH inequality for two dimensions. This inequality is optimal in the same sense as
the CHSH inequality for two-dimensional systems, namely, the maximal amount by which the
inequality is violated consists of the maximal resistance to noise. We also discuss the physical meaning
and general definition of the correlation functions. Furthermore, by giving another specific set of the
correlation functions with the same physical meaning, we realize the inequality presented by Collins

et al. [Phys. Rev. Lett. 88, 040404 (2002)].
DOI: 10.1103/PhysRevLett.92.130404

Since the foundations of quantum mechanics were laid,
one of the most remarkable aspects of quantum mechan-
ics is its predicted correlations. The quantum correlations
between outcomes of measurements performed on quan-
tum entangled states of systems composed of several
parts have no classical analog. Historically, this became
known as the Einstein-Podolsky-Rosen paradox [1] and
was formulated in terms of measurable quantities by Bell
[2] as the now famous Bell inequalities. Subsequently, a
vast amount of literature has covered lots of aspects,
ranging from philosophy to experimental physics. One
of the most common forms of Bell inequalities is known
as the Clauser-Horne-Shimony-Holt (CHSH) inequality
[3] which is described in terms of correlation functions by
considering the correlations between measurements per-
formed on two entangled spin-1/2 particles.

Recently, two kinds of inequalities [4,5] have been
found that generalize the CHSH inequality to systems
of higher dimension. The authors of Ref. [4] developed a
new Bell inequality, denoted here as CGLMP inequality,
for arbitrarily high-dimensional systems in terms of joint
probabilities. Based on this inequality, the authors gave
the analytic description of previous numerical results [6].
For the two-dimensional systems (systems composed of
two spin-1/2 particles), this inequality reduces to the
familiar CHSH inequality. As an alternative to this in-
equality, the authors of Ref. [5] obtained an inequality for
three-dimensional systems in terms of correlation func-
tions. These two inequalities are equivalent for three-
dimensional systems [7,8].

In this Letter, inspired by the previous efforts [4,5], we
generalize the correlation functions of the CHSH in-
equality for bipartite two-dimensional systems to arbi-
trarily high-dimensional systems. Then we construct a
new Bell inequality for the arbitrarily high-dimensional
system by using these correlation functions. The new
inequality is not only of the same form, but also optimal
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in the same sense as the CHSH inequality, i.e., the maxi-
mal amount by which the inequality is violated consists
with the maximal resistance to noise. Furthermore, we
give a physical interpretation of the correlation function,
and discuss the possible equivalent definitions of the
correlation functions with the same physical meaning.
By employing a specific set of correlation functions, we
obtain the CGLMP inequality.

The scenario of the inequality involves two parties:
Alice, can carry out two possible measurements, A; or A,,
on one of the particles, whereas the other party, Bob, can
carry out two possible measurements, B; or B,, on the
other one. For the composed systems of d-dimensional
parties (or bipartite systems of spin § particles with the
relation d = 2S5 + 1), each measurement may have d pos-
sible outcomes: A, Ay, B, B, =0,...,d — 1. The joint
probabilities are denoted by P(A;, B;), which are required
to satisfy the normalization condition: Y 4°' (P(A; =
m, B; = n)=1.

The CHSH inequality [3] for two entangled spin-1/2
particles reads

(A1B) + (A1By) — (A3B)) + (A,B,) = 2, (1)

where the functions (A;B;) are the expectation values of
products A; ® B; measured on pairs, known as the corre-
lation functions. The inequality will never be violated by
a local hidden variable theory, but will be maximally
violated with the factor +/2 by quantum predications of
a maximally entangled state. On the other hand, the
correlation functions can be expressed in terms of joint
probabilities by

1

1
(AiBY =3 > (~1)""P(A;=m B;=n). ()

m=0n=0

More recently, the authors of Ref. [5] gave a CHSH-
type inequality for three-dimensional systems (for spin-1
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particles), which reads
I=Re[Q) + Q1p — 0 + 0]
1 _ - - _
+ —Im - - +
7 [Q11 = Q12 = Oo1 + O]
=2 3)

where the correlation functions Qij are defined as follows:

2
Q= > a"""P(A;=mB;=n), 4)
m,n=0

in which @ = ¢27/3, Let us reform it as follows. Since the

joint probabilities are real, we can simplify (3) to
[=011t0np 0y t0pn=2 )

by defining Q;; = Re[Q_U] + 1/\/§Im[Qij] for i = j, and
01, =Re[0,] — 1/+/3Im[Q,,]. Obviously, (5) has the
same form of the CHSH inequality (1). Furthermore,
from (4), we can prove that the new correlation functions
Q;; can be written in the following form:

d—1d—1

1 .
;=35> > flmmP@ =mB=n), ©

m=0n=0

in which § = 1, the spin of the particle for the three-
dimensional system, f¥(m,n) =S — M[e(i — j)(m +
n),d], and e(x) is the sgn function: e(x)=
{_]1 iig M(x, d) is defined as follows: M(x, d) =
(xmod d) and 0 = M(x, d) = d — 1. Comparing (6) with
(2), we find that the correlation functions for two en-
tangled spin-1/2 particles can also be expressed with (6)
by substituting S = 1/2 and d = 2, correspondingly.

Obviously, the formula (6) generalizes the correlation
function to arbitrarily dimensional systems.

At the same time, we assume the CHSH inequality
expression for arbitrarily dimensional systems takes the
same form as the CHSH inequality for two-dimensional
systems, namely

I;= Q1+ Qi — 0y + On. @)

1, is upper bounded by 4. This follows immediately from
the fact that the extreme values of Q;; are =1. However,
these four functions are strongly correlated, so I; can
never reach this value. In a local hidden variable theory,
only three of the four pairs of operators: (A, B;), (A}, B,),
(A,, By), and (A,, B,) can be freely chosen, the last one is
constrained. We can prove the maximum value of [, for
local hidden variable theories is 2, i.e., [; = 2.

The proof consists of enumerating all the possible
relations between pairs of operators allowed by the local
hidden variable theory. Defining r;; = A; + By, rp =
A; + By, 15y = Ay + By, and 1y, = A, + B,. Obviously,
they obey the constraint

ri Tt ryp = rp t . (8)
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The correlation functions (6) for a given choice of ryy, ry»,

o1, and ry are Qi = gi(ry1), Qpp = 82(71.2), 0y =
gi1(r21), and @,y = g;(ry,), where gl,z(x) are given by
S — M(x, d) Mx,d)—S—1
g1(x) = ——75—7, &) =—"—— .
S S
&)
Then we immediately have
7 = M(rip, d) + M(ryy, d) — M(ryy, d) — M(ry, d) — 1
d - .
S

(10)

Now, we consider different cases according to the values
of ri1s 12 215 and .

Case 1. Both r;; and r,, are less than d. From (8),
there are two cases for the rest: (i) none of r;, and ry; is
larger than d, (ii) one of them is larger than d. Then from
(10), if none of ry, and ry; is larger than d, we get I; =
[ria+ 1y —(ryy +rp—d) —1]/S=2 (keeping in
mind d = 2§ + 1); if one of r;, and r,; is larger than d,
then I, = —1/8.

Case 2. One of ry; and ry, is larger than d. There are
three cases for the rest: (i) none of ry, and r,; is larger
than d, (ii) one of them is larger than d, and (iii) both r{,
and r,; are larger than d. On can find that there are three
possible results for I;: I, =2, I,=—1/§, and I, =
—-2(S + 1)/8S.

Case 3. Both r; and r,, are larger than d. Then (8)
implies the following: (i) both r;, and r,; are also larger
than d, (ii) one of them is larger than d. From (10), one
finds I, is either I, = —1/Sor I, = 2.

Thus, for all possible choices of r;;, I; = 2 for local
realism. (Note that for d = 2, not all the possibilities
enumerated above can occur. One can prove that the
only possible values are I, = *2.) Here, we must point
out that the proof is also valid for nondeterministic local
hidden variable theories for the convexity of the correla-
tion polytope.

Let us now consider the maximum value that can be
attained for the Bell expression /,; for quantum measure-
ments on an entangled quantum state. For the maximally
entangled state of two d-dimensional systems ¢ =
(1//d Z;i;ol |41, we therefore first recall the optimal
measurements performed on such a state described in
[4,6]. Let the operators A; i = 1,2, measured by Alice
and Bj, j = 1, 2, measured by Bob, have the nondegener-
ate eigenvectors

1< 2
), N IZ exp|:l y I(m + a,):||l>A,

_ O

14 2 (b
o

7))y, = — ) ex |:i—ln+ ~j||l ,

>Bj \/EIZ(:) p d ( B/) >B

where a; =0, a, =1/2, B, =1/4, and B, = —1/4.

Thus the joint probabilities are [4]
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1
2d3sin’[7w(m +n + a; + ﬂj)/d]‘
(12)

These joint probabilities have several symmetries. First of
all we can have the relation

PQM(Al = m,B~

j=n)=

PQM(Al=m,BJ=n)=PQM(Alzmic,sznIC)

for any integer c.

For convenience, in the following we use the symbol =
to denote equality modulus d. Let us define the probabil-
ities P(A; * B; = k) by

d—1
m=0

13)
Then, from (12) we have
PQM(AI + Bl = C) = dPQM(Al = C,Bl = O) (14)

Let us define S, = S — M(e(i — j)(m + n), d). One can
prove that S, = —§, —S + 1,...,§ — 1, S for all the pos-
sible values of m and n. By denoting ¢(S,) = Pyy(A, +
B, =S —5,) = {1/[2d*sin’[#(S — S, + 1/4)/d]]}, and
using the above formula, we can prove: Q; = Q, =
0y = =0y = Q4. Where

1 S
Qu=75 > S:4(5). (15)

S.=—$

Then, we can obtain the quantum prediction of Bell
expression for the maximally entangled state 1,(QM),
namely

1,(0M) = 4Q,. (16)

One can prove that this result is the same as that obtained
in [4], and it consists with the numerical work in [6]. So,
the measurements defined by (11) are optimal for the
maximally entangled states and I,(QM) is the strongest
violation of Bell expression /; for the maximally en-
tangled states of bipartite d-dimensional systems. From
the numerical work of [6] and analytical result of [4], we
conclude that the general CHSH inequality (7) is optimal
in the same sense as the CHSH inequality is optimal for
two-dimensional systems.

At the same time, we obtain the optimal correlation
matrix Q = {Q,;} for the maximally entangled state for
d-dimensional systems, which is Q = Qd< _11 i ) This
matrix is well known for d = 2 [Q, = (+/2/2)].

In fact, one can formulate other versions of Bell in-
equality for a given experimental setup. In the interesting
paper [9], Pitowsky and Svozil have presented the general
method for the derivation of all Bell inequalities for each
given experimental setup, in which two specific cases
have also been discussed. Actually, the inequality sug-
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gested in Ref. [5] was obtained by searching the optimal
inequality on the correlation polytope corresponding to
the unbiased six-port beam splitters measurements.

The CHSH inequality for two-dimensional system is
the most popular form of Bell inequality among physi-
cists, due to its simplicity and optimality. Another im-
portant reason is that it demonstrates the nature of
quantum correlations clearly. As shown in (1), the corre-
lation functions of CHSH inequality for two-dimensional
systems have explicit physical meaning, namely, the cor-
relation functions are the expectation values of products
A; ® B; measured on pairs. Obviously, the general corre-
lation functions (for arbitrary dimensionality) cannot be
understood in such a sense. Nevertheless, the correlation
functions, in general, imply some kind of correlation
between the measurements on pairs.

Indeed, the normalization condition of joint probabil-
ities can be rewritten as Y ¢ P(A; + B; =k) = 1.
Naturally, the d real numbers P(A; + B; = k) (k=
0,1,...,d — 1) can be regarded as the probabilities of
eigenvalues S, (S, = —S, =S+ 1,...,5) of a spin S sys-
tem, P(S,), under the relations

P(S)=PA+B=5-35,). (17)

We define the correlation function of the two measure-
ments A and B as follows:

S ~
CAB) = Y S.P(S.)=(S)ap (18)
S,=-S§

The meaning of the above formula is apparent, i.e., the
correlation of the two measurements A and B can be
interpreted as the average of spin projection for the
imaginary system with spin S defined by (17).

In analogy, we can imagine another system which is
dual to the former one by

P (S)=PA+B=—(5—5). (19)

Consequently, we have another corre’lation funcLion. To
distinguish these two, we substitute P+(SZ) for P(S,) in
Eq. (17). Then the two kinds of correlation functions can
be labeled as C*(A, B) = 35 __(S.P™(S,) = (S,)%5.

It is not difficult to prove that the CHSH inequality can
be rewritten by this kind of correlation function as

é[c+<A1,Bl>+C-(AI,BZ)—C+<A2,A1)+c+(Az,Bz)]s2.
20)

Comparing with (7), we have Q;, = C*(A,, By)/S,
0y = C"(Ay, B))/S, 0y =C"(A, B,y)/S, and Q), =
C (Ay, By)/S.

In fact, the labels of d possible outcomes for each side
(A and B) are arbitrary. So, in general, if we have a
mapping: g:(A,B) — (0,1,...,d — 1), namely, g(A, B) =
c(c=0,1,...,d — 1), which is a one to one mapping
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for fixed value of A (or B). Let P(g(A, B) = k) be the sum
of all the joint probabilities P(A, B) which satisfy
g(A, B) = k. We can define the correlation functions
of the pa1r measurements A and B as C*(A,B) =
ZS ——sS; P (S.) =(S.)xp with P” (S,) = P(g(A, B) =

+($ —S,)). Then from (20), a CHSH-type inequality
can be established by employing these correlation
functions.

Espemally, let us consider g(A, B) = (A — B)mod d.
Defining P (S.))=PA—-B=*(S—-S5)), one can
prove that the sum Zs sS; P (S ) can be split into

two parts as Zs -5, S [P (S,) — P* (—S,)], where Sy =
1/2 for even d1mens10n (fermions) or S, = 1 for odd
dimension (bosons). Then from (13) and (20), and letting
k=S —S§,, we can get

[d/2]—1 X
Q= | [P(Ai_Bj
3 (175)
= ke(i — j)) = P(A; = B; = (=k = De(i = j))]
(21)

in which [d/2] denotes the integer part of d/2 and we
have used the formula 25 — k = —k — 1. Then from the
expression of (7), we can obtain the CGLMP inequality
[4]. So, the CGLMP inequality can be converted into the
standard form of CHSH inequality for arbitrarily high
dimensionality by introducing the general correlation
functions.

From the above discussion, we know that the correla-
tion function has specific physical meaning, namely, each
pair of measurements can be cast into the spin projection
of an imaginary spin S system, and the correlation func-
tion is the expectation value of the spin projection of the
imaginary system. Especially, for the bipartite system
composed by two spin 1/2 particles, the correlation
functions can also be expressed by the expectation values
of products A; ® B; measured on pairs. We do not know so
far, for the arbitrarily high-dimensional systems, if the
correlations functions can be expressed by expectation
values of products of some kinds of general measurements
of pairs. However, we think the correlation functions of
arbitrary dimensionality are worth further study.

In summary, we have constructed the general CHSH
inequality for arbitrarily high-dimensional systems by
generalizing the correlation functions of the CHSH in-
equality for bipartite two-dimensional systems to arbi-
trarily high-dimensional systems. The general CHSH
inequality is of the same form and optimal in the same
sense as the CHSH inequality for two-dimensional sys-
tems. We also discussed the physical meaning of the
correlation functions and gave a general description of
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the correlation functions. The facts that the Bell inequal-
ity as well as the correlation functions have the unified
forms and physical meaning for arbitrary dimensionality,
suggest that the quantum correlations should have some
common properties for arbitrary dimensionality, which
will be useful for discussing entanglement of systems
of higher dimensionality as they have had for two-
dimensional systems [10]. Furthermore, the general de-
scription of correlation functions makes it possible for us
to construct some alternative CHSH-type inequalities
which may be convenient to realize in experimental
setups for higher dimensional systems. We hope that the
general CHSH inequality and the general correlation
functions presented here will draw much more attention
of physicists on studying Bell inequality and entangle-
ment of systems of large dimensionality.
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