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Abstract
The geometric phases of cyclic evolutions for mixed states are discussed in
the framework of unitary evolution. A canonical 1-form is defined whose line
integral gives the geometric phase, which is gauge invariant. It reduces to the
Aharonov and Anandan phase in the pure state case. Our definition is consistent
with the phase shift in the proposed experiment (Sjöqvist et al 2000 Phys. Rev.
Lett. 85 2845) for a cyclic evolution if the unitary transformation satisfies the
parallel transport condition. A comprehensive geometric interpretation is also
given. It shows that the geometric phases for mixed states share the same
geometric sense with the pure states.

PACS numbers: 03.65.Vf, 03.67.Lx

1. Introduction

When a pure quantal state undergoes a cyclic evolution the system returns to its original state
but may acquire a nontrivial phase factor of purely geometric origin. This was first discovered
by Berry [1] in the adiabatic context, and generalized to non-Abelian by Wilczek and Zee [2].
A nice interpretation was given by Simon [3] in terms of a natural Hermitian connection, as
the parallel transport holonomy in a Hermitian line bundle. An extension to the nonadiabatic
cyclic case was given by Aharonov and Anandan [4]. Based on Pancharatnam’s earlier work on
interference of light [5], this concept was generalized to noncyclic evolutions and nonunitary
evolutions [6, 7]. The geometric phases for entangled states have also been discussed [8].
Applications of the geometric phase have been found in molecular dynamics [9], response
function of the many-body system [10] and geometric quantum computation [11]. In all these
developments the geometric phases have been discussed only for pure states. However, in
some applications we are interested in mixed state cases [11, 12].

0305-4470/04/113699+07$30.00 © 2004 IOP Publishing Ltd Printed in the UK 3699

http://stacks.iop.org/ja/37/3699


3700 L-B Fu and J-L Chen

Uhlmann was probably the first to address the issue of mixed state in the context of
purification, but as a purely mathematical problem [13]. Recently, Sjöqvist et al [12] gave a
new formalism of the geometric phase for mixed state in the experimental context of quantum
interferometry under parallel transport condition. It has been pointed out [14] that the latter
geometric phase can be undefined at nodal points in the parameter space where the interference
visibility vanishes. Anyway, the geometric phases for mixed states proposed in [12, 13] are
generically different in the unitary case and match only under very special conditions such as
in terms of pure states [15].

In this paper, we give a definition of the geometric phase for a cyclic evolution of mixed
quantal state in the dynamical context of a quantum system. The reasons for employing the
cyclic evolution are two: (i) the cyclic evolution of a physical system is of most interest in
physics both experimentally and theoretically, (ii) the phase shift in a cyclic evolution should
be definite. Firstly, we give a straightforward generalization of the Aharonov and Anandan
(AA) phase for the global cyclic evolution where the total phase is explicit. Though this case
seems a trivial extension of the AA phase, it contains the essence of geometric phase of mixed
state. Then, we give the discussion of the general case based on a definition of the total phase.
This geometric phase reduces to the AA phase [4], the standard geometric phase for pure state
undergoing a cyclic evolution. We find that if the evolution satisfies the parallel transport
condition the geometric phase is consistent with the result in [12]. Moreover, we give the
geometric meaning of the geometric phases of mixed states which share the same sense with
the pure states for the first time.

2. Geometric phases for mixed states

Supposing a quantum system with the Hamiltonian H(t), the density operator ρ(t) of this
system undergoes the following evolution:

ρ(t) = U(t)ρ(0)U+(t) (1)

where U(t) = T e−i
∫ t

0 H(t ′) dt ′/h̄ is a unitary transformation, here T is the chronological operator.
If U(τ) and ρ(0) are commutative: [U(τ), ρ(0)] = 0, i.e., ρ(τ) = ρ(0), we say this state
undergoes a cyclic evolution with period τ . Furthermore, if U(τ) = eiφI , this evolution can
be called the global cyclic evolution since for any ρ(0) we have ρ(τ) = ρ(0).

At first, we study the case of the global cyclic evolution. Now define Ũ (t) = e−iφ(t)U(t)

such that Ũ (τ ) = I. We define the geometric phase for such a state during the global cyclic
evolution as

φg = i
∫ τ

0
Tr

[
ρ(0)Ũ+(t)

dŨ (t)

dt

]
dt. (2)

Using the transformation between Ũ (t) and U(t), one can have

φg = φ − φd (3)

and

φd = −i
∫ τ

0
dt Tr

[
ρ(0)U+(t)

dU(t)

dt

]

= −1

h̄

∫ τ

0
dt Tr[ρ(t)H(t)]. (4)

Obviously φd is just the dynamical phase during the cyclic evolution.
We can prove that if ρ(t) is the density operator of a pure state the geometric

phase defined by equation (2) is just the Aharonov and Anandan phase [4]. Assuming
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ρ(0) = |ψ(0)〉〈ψ(0)|, |ψ(t)〉 = U(t)|ψ(0)〉. Let |ϕ(t)〉 = e−iφ(t)|ψ(t)〉, then we have
|ϕ(t)〉 = Ũ (t)|ϕ(0)〉. So, equation (2) can be written as φg = i

∫ τ

0 〈ϕ(t)|ϕ̇(t)〉 dt which is just
the result of [4].

An initial state can always be diagonalized, namely,

ρ(0) =
∑

k

wk|k〉〈k| (5)

where |k〉 are bases for the system and wk are classical probability of finding a member of the
ensemble in the corresponding state. For the global cyclic evolution we have U(τ)|k〉 = eiφ|k〉,
then the AA phase of |k〉 is φk

g = φ − φk
d , where φk

d = − 1
h̄

∫ τ

0 dt Tr[|k〉〈k|U+(t)U̇ (t)].
Substituting (5) into (4), and from (3) we obtain

φg = φ −
∑

k

wkφ
k
d =

∑
k

wkφ
k
g. (6)

So, for the global cyclic evolution the geometric phases of mixed states have explicit meanings:
the geometric phases of a mixed state are the weighted average of the geometric phases of the
constituent pure states.

Example I. Suppose that a qubit (a spin- 1
2 particle) with a magnetic moment is in a homogenous

magnetic field B along the z-axis. Then the Hamiltonian in the rest frame is H = −µBσz.

Suppose the initial state is

ρ(0) = 1
2 [I + r(sin θσx + cos θσz)] (7)

where r is a constant and 0 � r � 1. So we have ρ(t) = U(t)ρ(0)U+(t) with

U(t) = exp(iµBtσz/h̄). (8)

This unitary evolution is periodic with period τ = πh̄/µB, i.e., ρ(τ) = ρ(0). It is easy to see
that U(τ) = exp(iπ)I. Let Ũ (t) = e−iµBt/h̄U(t), then Ũ (τ ) = U(0). From equation (2), and
after some elaboration we can obtain the geometric phase

φg = π(1 − r cos θ). (9)

Obviously, if r = 1, we get φg = π(1 − cos θ) which is just the AA phase [4].
On the other hand, we can have two pure states ρ1(0) = 1

2 [I + (sin θσx + cos θσz)] and
ρ2(0) = 1

2 [I + (sin(π + θ)σx + cos(π + θ)σz)], which can construct a set of orthonormal
bases. From (7), we have ρ(0) = 1+r

2 ρ1(0) + 1−r
2 ρ2(0). Obviously, this is a diagonal

representation of the initial state ρ(0). Then from equation (6), we can obtain φg =
1+r

2 π(1 − cos θ) + 1−r
2 π(1 − cos(π + θ)) = π(1 − r cos θ).

The above discussion of the general cyclic evolution seems a trivial extension of the AA
phase, but it contains the essence of geometric phase of the mixed state.

For the general case of a cyclic evolution, the density matrix and transformation satisfy
[U(τ), ρ(0)] = 0. We cannot find the total phase explicitly from this condition. To factor out
the total phase, we use the Pancharatnam’s brilliant idea, i.e., the Pancharatnam connection
[5]. We define the total phase of the mixed state during a cyclic evolution with the initial state
ρ(0) and the unitary transformation U(t) as

φ = arg Tr[ρ(0)U(τ)]. (10)

Let Ũ (t) = e−iφ(t)U(t) such that φ(τ) = φ. Based on this definition, the geometric phase
of the cyclic evolution can also be defined by equation (2). Obviously, the geometric phase
for a cyclic evolution takes the same form as in equation (3). Indeed equation (2) defines a
canonical 1-form in the parameter space

β = i Tr[ρ(0)Ũ+(t) dŨ (t)]. (11)
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It is not difficult to prove that β is a real number. The geometric phase can be obtained by its
line integral, i.e.,

φg =
∮

β. (12)

The equivalent of the above formula for the pure states case is well known [7, 16].
The geometric phase defined above is manifestly gauge invariant: it does not depend on

the dynamics, but depends only on the geometry of the close unitary path given by the unitary
transformation U(t). Assuming α is a dynamic parameter of this system, the nature of the
cyclic evolution requires α(0) = α(τ) [1]. Under the transformation Ũ (t)′ = eiδ(α)Ũ (t), we
can have β ′ = β − dδ. It is easy to prove that

∮
β ′ = ∮

β since δ(a(τ )) = δ(a(0)). Indeed
the quantity β = i Tr[ρ(0)Ũ+(t) dŨ (t)] can be regarded as a gauge potential on the space of
density operators pertaining to the system.

Example II. Consider a spin- 1
2 particle is initially in the state

ρ(0) = 1
2 (I + rσz) (13)

where r � 1 is a constant. Suppose this particle is in a magnetic field B(t) with

B(t) =



−(ωh̄/µ)̂ey 0 � t � t1

−(ωh̄/µ)̂ez t1 � t � t2

−(ωh̄/µ)(sin ϕ̂ex − cos ϕ̂ey) t2 � t � τ

(14)

in which ω is a constant and t1 = θ
2ω

, t2 = θ+ϕ

2ω
and τ = 2θ+ϕ

2ω
. So, the unitary transformation is

U(t) =




e−iωtσy 0 � t � t1

e−iω(t−t1)σz e−i θ
2 σy t1 � t � t2

e−iω(t−t2)(sin ϕσx−cos ϕσy)e−i ϕ

2 σz e−i θ
2 σy t2 � t � τ.

(15)

Then, U(τ)= exp
(−i θ

2 (sin ϕσx− cos ϕσy) e−i ϕ

2 σz e−i θ
2 σy

)
. We can prove that U(τ)ρ(0)

U+(τ )= ρ(0). Under this unitary transformation, the state undergoes a cyclic evolution with
a closed path of the corresponding Bloch vector as shown in figure 1, where the vectors at
points B and C are rB = (r sin θ, 0, r cos θ) and rC = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ),
respectively. From equations (10) and (4), we have the total phase of this cyclic evolution
φ = −arctan

[
r tan ϕ

2

]
, and the dynamic phase φd = − ϕ

2 r cos θ. Then, the geometric phase of
this cyclic evolution is

φg = −arctan
[
r tan

ϕ

2

]
+

ϕ

2
r cos θ. (16)

We know that if θ = π
2 the closed path on the Bloch sphere is geodesic [17], i.e., the

dynamical phase is zero. At this time the geometric phase is −arctan
[
r tan ϕ

2

]
, which has also

been pointed out in [12] and verified by the recent experimental observations [18].
If ϕ = 2π, i.e., the points B and C in figure 1 are the same. Obviously, the geometric

phase for such a path should be equal to the case in example I except for the direction of
magnetic field reversed. From (16), we have φg = π(1 + r cos θ) which is consistent with
equation (9).

From our definition of the geometric phase, we can obtain a theorem for a composite
quantum system.

Theorem. Let ρAB be a density operator of a composite quantum system of A and B. If the
system evolves under the unitary transformation U(t) = IA ⊗UB with UB = T e−i

∫ t

0 H(t ′) dt ′/h̄
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C 

Y

X 

Z 

Figure 1. A path with cyclic evolution of the Bloch vector. The solid line represents a geodesic
path of the unitary pure state case and defines a spherical triangle enclosing the solid angle π/2.

The dashed line represents the closed path of the mixed state with the unitary evolution defined by
(15), where the initial state is given in equation (13).

and [ρAB,U(τ)] = 0, then the geometric phase of such a composite system equals one of the
subsystem B, i.e., φAB

g = φB
g .

The density operator of such a system can be expressed by

ρAB = 1

NANB

[
IA ⊗ IB + rA · �λA ⊗ IB + IA ⊗ rB · �λB + βijλ

A
i ⊗ λB

j

]
(17)

where NA and NB are the orders of density matrices for each subsystems, �λA = (
λA

i ; i =
1, 2, . . . , N2

A − 1
)

and �λB = (
λA

i ; i = 1, 2, . . . , N2
B − 1

)
are the generators of SU(NA) and

SU(NB) respectively, rA = (
rA
i ; i = 1, 2, . . . , N2

A − 1
)

and rB = (
rB
i ; i = 1, 2, . . . , N2

B − 1
)

are two vectors, and βij are
(
N2

A − 1
)(

N2
B − 1

)
real numbers. Because Tr

(
λ

A,B
i

) = 0,

one can have φAB = arg Tr[ρABU(τ)] = arg Tr[ρBUB(τ)] where ρB is the reduced
density operator for B, i.e., ρB = 1

NB
[IB + rB · �λB]. From (4), we can also obtain

φAB
d = −i

∫
Tr[ρABU+(t)U̇ (t)] = −i

∫
Tr[ρBUB+

(t)U̇B(t)]. So the geometric phase
for ρAB is φAB

g = φAB − φAB
d = φB − φB

d , where φB = arg Tr[ρBUB(τ)] and φB
d =

−i
∫

Tr[ρBUB+
(t)U̇B(t)]. The geometric phase of the subsystem B is φB

g = φB − φB
d = φAB

g .

We know that for a pure state of an entangled composite quantum system ρAB, the
reduced density operators ρA,B are mixed states. So this theorem may have some important
applications, at least to observe the geometric phase for mixed state, since the geometric phase
for a pure state can be acquired by methods known before.

3. Geometric phase and parallel transport

Recently, Sjöqvist et al have also proposed geometric phases for mixed states under the parallel
transport condition [12]. If the unitary transformation U(t) satisfies a parallel condition we
can prove that the geometric phase given by equation (2) is consistent with what was obtained
in [12]. The parallel transport condition for a mixed state undergoing unitary evolution is

Tr[ρ(t)U+(t)U̇ (t)] = 0. (18)

Under this condition, from the definition in [12] the geometric phase of the cyclic evolution
can be expressed as φg = arg Tr[ρ(0)U(τ)].
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Indeed, for the unitary operator U(t) we can always obtain another unitary operator
by a U(1) transformation, U ′(t) = eiξ(t)U(t), so that Tr[ρ(t)U ′+(t)U̇ ′(t)] = 0. From this
condition, it is easy to prove that

ξ̇ (t) = i Tr[ρ(0)U+(t)U̇(t)]. (19)

So ξ(τ ) = −φd. From (10) and (3), φg = arg Tr[ρ(0)U(τ)] + ξ(τ ) = arg Tr[ρ(0)U ′(τ )].
Obviously, such a parallel transport U ′(τ ) is unique for an initial state ρ(0) and the unitary
operator U(t). So, if U(t) satisfies the parallel transport condition, the dynamical phase in
equation (3) vanishes identically, so φg = φg, i.e., under the parallel transport condition our
definition of the geometric phase is consistent with the definition in [12].

However, for an initial state ρ(0) and the unitary operator U(t), one can construct
alternative parallel transport by a unitary transformation, except for a U(1) transformation,
i.e., the parallel transport corresponding to the initial state and the unitary operator U(t) is
not unique [12, 19]. We must emphasize that only for the parallel transport obtained by the
U(1) transformation (which is unique), U ′(τ ) = eiξ(t)U(t) determined by equation (19), the
geometric phase can be expressed as φg = arg Tr[ρ(0)U ′(τ )]. For example, we consider
the case of example I. For the state ρ(0) given in (7), one can have two pure states ρ± =
1
2 [I ± (sin θσx + cos θσz)] such that ρ(0) = 1+r

2 ρ+ + 1−r
2 ρ−. For the unitary operator U(t) =

exp(iµBtσz/h̄), by unitary transformation exp(−i[µBt(cos θ)(sin θσx + cos θσz)/h̄]), we can
construct U ′′ = exp(i(µBtσz/h̄)) exp(−i[µBt(cos θ)(sin θσx + cos θσz)/h̄]) which satisfies
Tr[ρ±(U ′′)+U̇ ′′(t)] = 0. Obviously, this is a parallel transport of ρ(t) = U ′′(t)ρ(0)U ′′+(t) =
U(t)ρ(0)U+(t). It is easy to obtain arg Tr[ρ(0)U ′′(τ )] = π − arctan[r tan(π cos θ)] which
does not equal the geometric phase given by equation (9).

In fact, the set of density operators constructs a base spaceM (the subspace corresponding
to pure states is isomorphic to the projective Hilbert space). The unitary transformations U
just define a line bundle F on the base space with the projection map � as �−1(ρ) = {ρ :
ρ → c = Tr(Uρ)/|Tr(Uρ)|, c ∈ U(1)}. Then the cyclic evolution discussed in this paper
just defines a closed curve C : [0, τ ] → M on the base space, but on the bundle space the
path is not closed with the final point lifted by a U(1) factor c(τ ). On the other hand, using
U(1) transformations, we can always obtain a unitary transformation U ′(t) determined by
equation (19) which satisfies the parallel transport condition for a given closed path C. Then,
the geometric phase defined in equation (3) can be expressed by the phase factor of the parallel
lift: φg = arg Tr[ρ(τ)U ′(τ )]. Under this consideration the geometric phases of mixed states
share the same geometric sense with the pure states for the cyclic evolution.

4. Conclusion

In summary, we give a definition of the geometric phase for a mixed state during a cyclic
evolution. Our definition is consistent with the prescription proposed in [12] when the
evolution satisfies parallel transport condition. We first give the geometric meaning of the
geometric phases for mixed states which share the same sense with the pure states. Although
our definition is only for cyclic evolution, the discussion can be straightforwardly generalized
to noncyclic evolution except for a gauge condition4 (for the pure states see [7]) which is
automatically satisfied in cyclic evolution.

4 Under a U(1) transformation Ũ (t)′ = eiδ(α)Ũ (t), we can have β ′ = i Tr[ρ(0)Ũ ′+(t) dŨ ′(t)] = β − dδ. So the
gauge function should satisfy: δ(τ ) = δ(0) + 2nπ where n is an integer number. The phase angle will be invariant
mod 2π .
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[8] Sjöqvist E 2000 Phys. Rev. A 62 022109
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Tidström J and Sjöqvist E 2002 Preprint quant-ph/0211187

[16] Page D N 1987 Phys. Rev. A 36 3479
[17] Ananda J S 1988 Phys. Lett. A 129 201
[18] Du J, Zou P, Shi M, Kwek L C, Pan J-W, Oh C H, Ekert A, Oi D K L and Ericsson M 2003 Phys. Rev. Lett.

91 100403
[19] Wagh A G and Rakhecha V C 1995 Phys. Lett. A 197 107


