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Clauser-Horne-Shimony-Holt inequality for bipartite systems of four dimensions is studied in detail by
employing the unbiased eight-port beam splitters measurements. The uniform formulas for the maximum and
minimum values of this inequality for such measurements are obtained. Based on these formulas, we show that
an optimal nonmaximally entangled state is about 6% more resistant to noise than the maximally entangled
one. We also give the optimal state and the optimal angles which are important for experimental realization.
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I. INTRODUCTION

Recently, the inequalities[1,2] have been found that gen-
eralize the Clauser-Horne-Shimony-Holt(CHSH) inequality
to systems of high dimension, which give the analytic de-
scription of previous numerical results[3]. In this Brief Re-
port, we study the CHSH inequality for bipartite systems for
four dimensions by employing the unbiased eight-port beam
splitters measurements. The uniform formulas of the maxi-
mal and minimal values of this inequality are obtained.
Based on these formulas, we find an optimal nonmaximally
entangled state violates the inequality more strongly than the
maximally entangled one, and then is about 6% more resis-
tant to noise than the maximally entangled one. Similar to
what we have pointed out for three-dimensional systems[4],
we also find that the left hand of the inequality cannot be
violated by the maximally entangled state. However, we find
that the left hand of the inequality can be violated by some
nonmaximally entangled states, and the optimal nonmaxi-
mally entangled state for the left hand of the inequality is not
the optimal one for the right hand.

II. THE INEQUALITY

In this section, let us recall the Bell inequality for four
dimensions obtained in Refs.[2,5]. The scenario of the in-
equality involves two parties: Alice can carry out two pos-
sible measurements,A1 or A2, on one of the particles,
whereas the other party, Bob can carry out two possible mea-
surements,B1 or B2, on the other one. For the composed
systems of four-dimensional parties(or bipartite systems of
spin S=3/2 particles with the relationd=2S+1), each mea-
surement may have four possible outcomes:A1,A2,B1,B2
=0,1,2,3. Thejoint probabilities are denoted byPsAi ,Bjd,
which are required to satisfy the normalization condition:
om,n=0

3 PsAi =m,Bj =nd=1 [6]. We define the correlation func-
tions Qij as follows:

Qij ;
1

S
o
m=0

3

o
n=0

3

f ijsm,ndPsAi = m,Bj = nd, s1d

in which S=3/2, and thefunction f ijsm,nd can be one of the
following forms,

f ijsm,nd = S− M„«si − jdsm± nd,4…, s2d

where«sxd is the sign function

«sxd = H1 x ù 0

− 1 x , 0
,

and Msx,4d is defined as follows:Msx,4d=sx mod 4d and
0øMsx,4dø3. Then one can consider the following Bell
expression:

I4 = Q11 + Q12 − Q21 + Q22. s3d

Especially, if taking f ijsm,nd=S−M(«si − jdsm−nd ,4),
one can prove that the above expression is just the Bell ex-
pression presented in Ref.[2].

The authors of Refs.[2,5] proved that the maximum value
of the above Bell expressions is 2 and minimum value of it is
−10/3 for local variable theories. Then we get the following
Bell inequality:

− 10
3 ø I4 ø 2. s4d

However, the inequality will be violated for some en-
tangled states by quantum predictions. For the maximally
entangled state of two four-dimensional systemsc
= 1

2o j=0
3 ullAullB, the authors of Refs.[2,5] obtained the stron-

gest violation of Bell expressionI4 for such a state,
I4sQMd= 2

3fÎ2+s10−Î2d1/2g<2.896 24. In the presence of
uncolored noise the quantum state

r = s1 − Fduclkcu + F
I

16
. s5d

Following Ref.f3g, we define the threshold noise admixture
Fthr sthe minimal noise admixture fraction forucld Fthr=1
−2/I4sQMd, then we getFthr<0.309 45.This result equals
to the numerical results of Ref.f3g.

III. THE MAXIMAL VIOLATION

Here, as in the previous works, we restricted our analysis
to unbiased eight-port beam splitters[7,8], more specifically
to Bell multiport beam splitters[3]. Unbiased Bell 2d-port
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beam splitters have the property that a photon entering into
any single port(out of d) has equal chances to exit from any
output port. In addition, for Bell 2d-port beam splitters the
elements of their unitary transition matrixUd are solely pow-
ers of thedth root of unity gd=expsi2p /dd, namely, Ui j

d

=s1/Îddgd
si−1ds j−1d.

Let us now imagine spatially separated Alice and Bob
who perform the Bell-type experiment via the eight-port
beam splitters on the state

ufl =
1

2o
i=0

3

aiuilAuilB, s6d

with real coefficientsai, where, e.g.,uilA describes a photon
in mode i propagating to Alice. One hasxki ui8lx=dii8, with
x=A,B. The overall unitary transformation performed by
such a device is given by

Uij
4 = 1

2g4
i jeiw j, i, j = 0,1,2,3, s7d

whereg4=eip/2 and j denotes an input beam to the device,
andi an output one;w j are the four phases that can be set by
the local observer, denoted aswW =sw0,w1,w2,w3d. The trans-
formations at Alice’s side are denoted aswW A

=sw0
A,w1

A,w2
A,w3

Ad andwW B=sw0
B,w1

B,w2
B,w3

Bd for Bob’s side. In
this way the local observable is defined. The quantum pre-
diction for the joint probabilityPQMsAi =m,Bj =nd to detect a
photon at themth output of the multiportA and another one
at thenth output of the multiportB calculated for the state
s6d is given by

PQMsAi = m,Bj = nd = o
k=0

3

o
l=0

3

akalg4
sk−ldsm+ndeiswk

Ai+wk
Bj−wl

Ai−wl
Bjd.

s8d

For convenience, we use the definition of the correlation
functions Qij with the function f ij =S−Mf«si − jdsm+nd ,dg.
By substituting Eq.(8) into Eq. (3), after some elaboration,
we can obtain

I4 = o
k,l

akalTkl, sk = 0,1,2;l = 1,2,3d, s9d

whereTkl are six continuous functions of 16 angleswW Ai and
wW Bjsi , j =1,2d. Let us definewab

ij =wa
Ai −wb

Ai +wa
Bj −wb

Bj, then we
can list these six functions as follows:

T01 = 1
6hfcossw01

11d − cossw01
21d − cossw01

12d + cossw01
22dg

− fsinsw01
11d + sinsw01

21d + sinsw01
12d + sinsw01

22dgj, s10d

T02 = − 1
6fcossw02

11d − cossw02
21d + cossw02

12d + cossw02
22dg, s11d

T03 = 1
6hfcossw03

11d − cossw03
21d − cossw03

12d + cossw03
22dg

+ fsinsw03
11d + sinsw03

21d + sinsw03
12d + sinsw03

22dgj, s12d

T12 = 1
6hfcossw12

11d − cossw12
21d − cossw12

12d + cossw12
22dg

− fsinsw12
11d − sinsw12

21d + sinsw12
12d + sinsw12

22dgj, s13d

T13 = − 1
6fcossw13

11d − cossw13
21d + cossw13

12d + cossw13
22dg, s14d

and

T23 = 1
6hfcossw23

11d − cossw23
21d − cossw23

12d + cossw23
22dg

− fsinsw23
11d − sinsw23

21d + sinsw23
12d + sinsw23

22dgj. s15d

We can know thatuTkluø fs10−Î2d1/2s2+3Î2d /21g. How-
ever, they are strongly correlated, soTkl cannot reach their
maximum value at the same time. As has been proved in Ref.
[4], the maximum(minimum) values ofI4 can only be found
on the vertices of the polyhedron formed byTkl. There are
three sets of the vertices of the polyhedron. By denoting
G1=fs10−Î2d1/2s2+3Î2d /21g<0.87104, G2= Î2/3
<0.4714, andG3=fs10−Î2d1/2s4−Î2d /21g<0.3608, we list
them in Tables I–III.

In these tables, we have used the stipulations, e.g.,Tfabg
=Tab for a,b or Tfabg=Tba for b,a. As has been proved in
Ref. [4], for each vertices of the polyhedron one can obtain
an extreme value of theI4, and the maximum(or minimum)
value can be obtained by comparing the values among them.

Assuming hAi ,si =0,1,2,3dj=hua0u , ua1u , ua2u , ua3uj, where
“=” means the equality of two sets, andAi are in decreasing
order, i.e.,A0ùA1ùA2ùA3. For convenience, we denote
G1=fs10−Î2d1/2s2+3Î2d /21g, G2= Î2/3, and G3=fs10
−Î2d1/2s4−Î2d /21g. Let us define

B1sufld = sA0A1dG1 + sA0A2 + A1A3dG2

+ sA0A3 + A1A2 + A2A3dG3, s16d

and

B2sufld = sA0A1dG3 + sA0A2 + A1A3dG2

+ sA0A3 + A1A2 − A2A3dG1. s17d

Then, the maximum value ofI4 for ufl must be

I4
maxsufld = maxfB1sufld,B2sufldg. s18d

TABLE I. The first set of vertices, in whichi Þ j .

hTij j Tfabg Tfacg Tfadg Tfbcg Tfbdg Tfcdg

G1 G2 G3 G3 G2 G3

−G1 −G2 −G3 G3 G2 G3

−G1 G2 G3 −G3 −G2 G3

G1 −G2 G3 −G3 G2 −G3

G1 G2 −G3 G3 −G2 −G3

G1 −G2 −G3 −G3 −G2 G3

−G1 G2 −G3 −G3 G2 −G3

−G1 −G2 G3 G3 −G2 −G3
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From Eq.(18), one can immediately get that for the maxi-
mally entangled states, i.e.,uaiu=1 si =0,1,2,3d, the maxi-
mum value ofI4 for such states are

I4
max= G1 + 2G2 + 3G3 = 2

3sÎ2 +Î10 −Î2d. s19d

This is just the result obtained in Refs.f2,5,9g, and gives
Fthr<0.309 45 which equals to the numerical results of
Ref. f3g.

Considerai as variables, we can obtain the maximal value

of I4
max, denoted asĪmax. The value of Eq.(18) should be

maximum forA0=A1 and A2=A3. One can easily find that
B1sufld.B2sufld for any state. For this case, by calculating
the extreme value ofB1sufld with A0=A1 and A2=A3, after
some elaboration, we get

Īmax= Ā+
2G1 + 2Ā+Ā−sG2 + G3d + Ā−

2G3, s20d

where

Ā± = [1 ± ( 1
791h357 + 7Î2 − 20s10 −Î2d1/2

− 58f2s10 −Î2dg1/2j)1/2]1/2

with Ā+=A0=A1 and Ā−=A2=A3. We then haveS̄max
<2.9727,and the threshold amount of noise is aboutFthr
<0.3272, which was also obtained in Ref.f9g by calculat-
ing the maximum eigenvalue of the Bell operatorf10g.
One can see this optimal nonmaximally entangled state is
about 6% more resistant to noise than the maximally en-
tangled one. One can check the above results with the

following optimal angles forai .0 si =0,1,2,3d:

wW A1 = S0,
p

6
,− p,

4p

9
D, wW A2 = S0,−

5p

9
,
5p

9
,−

p

3
D;

s21d

and

wW B1 = S0,−
p

2
,
13p

18
,−

11p

18
D, wW B2 = S0,

7p

36
,−

27p

36
,−

7p

18
D .

s22d

On the other hand, we can also calculate the minimum
value of I4. Let us define

S1sufld = − sA0A1 + A0A3 + A1A2dG1 − sA0A2 + A1A3dG2

+ sA2A3dG3, s23d

and

S2sufld = − 2sA0A1 + A0A3 + A1A2 + A2A3d/3

− sA0A2 + A1A3d/3. s24d

The minimum value ofI4 for ufl should be

I4
minsufld = minfS1sufld,S2sufldg. s25d

Then, for the maximally entangled state, the minimum value
of I4 is

I4
min = − 10

3 . s26d

One sees that the maximally entangled state does not violate
the left hand of the inequalitys3d. However, for a nonmaxi-
mally entangled state withA0=A1=K+ and A2=A3=K−
where

K± = [1 ± ( 1
791h357 − 7Î2 − 80s10 −Î2d1/2

+ 6f2s10 −Î2dg1/2j)1/2]1/2 s27d

we find the minimum value ofI4
min, denoted asĪmin:

Īmin = − K+
2G1 − 2K+K−sG1 + G2d + K−

2G3 < − 3.464 24.

s28d

Obviously, such states violate the left hand of the inequality.

IV. DISCUSSION

In summary of the present paper, we study the CHSH
inequality ford=4 in details on the Bell-type experiment via
the eight-port beam splitters which is realizable for nowa-
days technique. We give the analytic formulas of the maxi-
mum and minimum values of this inequality for such an
experimental consideration. The maximal violations we ob-
tained are the same as Ref.[9]. We also give the optimal
state and the optimal angles which are important for experi-
mental realization.

It is well known that for bipartite systems of two dimen-
sions, the CHSH inequality is symmetry. For any entangled
state the inequality is violated symmetrically, and will be

TABLE II. The second set of vertices, in whichi Þ j .

hTij j Tfabg Tfacg Tfadg Tfbcg Tfbdg Tfcdg

−G1 −G2 −G1 −G1 −G2 G3

G1 G2 G1 −G1 −G2 G3

G1 −G2 −G1 G1 G2 G3

−G1 G2 −G1 −G1 −G2 −G3

−G1 −G2 G1 −G1 G2 −G3

−G1 G2 G1 G1 G2 G3

G1 −G2 G1 G1 −G2 −G3

G1 G2 −G1 −G1 G2 −G3

TABLE III. The third set of vertices, in whichi Þ j .

hTij j Tfabg Tfacg Tfadg Tfbcg Tfbdg Tfcdg

−2
3 −1

3 −2
3 −2

3 −1
3 −2

3
2
3

1
3

2
3 −2

3 −1
3 −2

3
2
3 −1

3 −2
3

2
3

1
3 −2

3

−2
3

1
3 −2

3
2
3 −1

3
2
3

−2
3 −12

3
2
3 −2

3
1
3

2
3

−2
3

1
3

2
3

2
3

1
3 −2

3
2
3 −1

3
2
3

2
3 −1

3
2
3

2
3

1
3 −2

3 −2
3

1
3

2
3
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maximally violated by the maximally entangled states. How-
ever, for the higher-dimensional systems, namely
d-dimensional systemssd.2d, the inequality is asymmetry
(see in Refs.[2,5]),

− 2sd + 1d
sd − 1d

ø Id ø 2. s29d

The authors of Refs.f2,5g studied the violation of the right
hand of the above inequality for maximally entangled states
and reproduced the results of previous numerical worksf3g.
For d=3, one can immediately obtain that the left hand of the
above inequality is −4, which can never be violated by any
statef2,5g. In Ref. f4g, the authors have shown that the mini-
mal values ofI3 for maximally entangled states is just −4.
They also found that an optimal nonmaximally entangled
state violates the inequality more strongly than the maxi-
mally entangled one. Ford=4, we also find that the left hand
of the inequality can be violated by some nonmaximally en-
tangled states, and the optimal nonmaximally entangled state

for the left hand of the inequality is not the optimal one for
the right hand.

In fact, the relations(29) and (3) define two inequalities,
namely, the right ones and the left ones. The right inequali-
ties are optimal and tight but the left ones are not tight. The
asymmetry of the CHSH inequalities is due to the asymmetry
of Hilbert space for higher-dimensional systems[11]. For the
systems of two dimensions, the Hilbert space is symmetry, so
the CHSH inequalities are symmetry as well. But for the
higher-dimensional systems, the Hilbert space is asymmetry,
so the inequalities which are optimal for the right hand will
be not optimal for the left. In other words, we cannot find an
inequality for higher-dimensional systems which is optimal
for both sides.
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