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Maximal violation of Clauser-Horne-Shimony-Holt inequality for four-level systems
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Clauser-Horne-Shimony-Holt inequality for bipartite systems of four dimensions is studied in detail by
employing the unbiased eight-port beam splitters measurements. The uniform formulas for the maximum and
minimum values of this inequality for such measurements are obtained. Based on these formulas, we show that
an optimal nonmaximally entangled state is about 6% more resistant to noise than the maximally entangled
one. We also give the optimal state and the optimal angles which are important for experimental realization.
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I. INTRODUCTION fi(mn) = S=M(e(i - j)(m£n),4), 2)
Recently, the inequalitief,2] have been found that gen- whereeg(x) is the sign function
eralize the Clauser-Horne-Shimony-HOEHSH) inequality
to systems of high dimension, which give the analytic de- ) = 1 x=0
scription of previous numerical resulf8]. In this Brief Re- = 1 x<0'

port, we study the CHSH inequality for bipartite systems for . i

four dimensions by employing the unbiased eight-port bean@nd M(x,4) is defined as followsM(x,4)=(x mod 4 and
splitters measurements. The uniform formulas of the maxiO=M(x,4)=<3. Then one can consider the following Bell
mal and minimal values of this inequality are obtained.€Xpression:

Based on these formulas, we find an optimal nhonmaximally 1= Q1+ Qpp— Qpy + Q 3)
entangled state violates the inequality more strongly than the 47 RILT eIz N2l T ez

maximally entangled one, and then is about 6% more resis- Especially, if taking fi(m,n)=S-M(e(i-j)(m-n),4),
tant to noise than the maximally entangled one. Similar tcone can prove that the above expression is just the Bell ex-
what we have pointed out for three-dimensional systpdhs pression presented in Rg2].

we also find that the left hand of the inequality cannot be The authors of Ref§2,5] proved that the maximum value
violated by the maximally entangled state. However, we findof the above Bell expressions is 2 and minimum value of it is
that the left hand of the inequality can be violated by some-10/3 for local variable theories. Then we get the following
nonmaximally entangled states, and the optimal nonmaxiBell inequality:

mally entangled state for the left hand of the inequality is not 10

the optimal one for the right hand. —z=hs2 (4)

However, the inequality will be violated for some en-
tangled states by quantum predictions. For the maximally
In this section, let us recall the Bell inequality for four entangled state of two four-dimensional systenys
dimensions obtained in Reff2,5]. The scenario of the in- :%Ef=O|I)A|I>B, the authors of Refd2,5] obtained the stron-
equality involves two parties: Alice can carry out two pos-gest violation of Bell expressior, for such a state,
sible measurementsd; or A,, on one of the particles, I4(QM):§[€2+(10—\s’2)1’2]~2.896 24. In the presence of

whereas the other party, Bob can carry out two possible meancolored noise the quantum state

surementsB; or B,, on the other one. For the composed

syfsterﬂs of four.-dimen.sional parti_esr E)ipartite systems of p=(1-F)|y)yl+ ,:'__ (5)
spin S=3/2 particles with the relatiom=2S+1), each mea- 16

surement may have four possible outcomas,A;,By,B, Following Ref.[3], we define the threshold noise admixture
=0,1,2,3. Theoint probabilities are denoted (4, By), Fur (the minimal noise admixture fraction fop)) Fy,=1

which are required to satisfy the normalization condition:_ ~ .
33 _P(A/=m,B;=n)=1[6]. We define the correlation func- 2/1,(QM), then we geFy, ~0.309 45.This result equals
mn=0 j to the numerical results of Ref3].

tions Q;; as follows:

II. THE INEQUALITY

3 3
Q= }2 >, fil(mn)P(A =m,B;=n), (1) lIl. THE MAXIMAL VIOLATION

m=0 n=0 . . . .
Here, as in the previous works, we restricted our analysis

in which S=3/2, and thdunction f/(m,n) can be one of the to unbiased eight-port beam splittdi&8], more specifically
following forms, to Bell multiport beam splitter$3]. Unbiased Bell 8-port
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TABLE I. The first set of vertices, in which# j. l,= 2 aaTy (k=0,1,2§=1,2,3, (9)
k<l
Ty} Ta)  Tad  Tadd Tiog Tioal Tiea . . .
whereT,, are six continuous functions of 16 anglg§ and

Iy I’ I'y I'y I’ I's ¢Bi(i,i=1,2). Let us definepl, = ¢hi— ¢f + ¢Bi- @i, then we
-y -I'; -T's I's I'; I's can list these six functions as follows:
-, r, Ty T, T, Iy
r, -, T, Ty T, -Ts To1 = g{lcos ¢py) — cog ¢hy) — cog ¢pd) + Cog¢ha)]
Iy Iy T3 I3 -T, T3 - [sin(@dy) + sin(@3]) + sin(@32) + sin(@3d) ]}, (10)
Fl _rz _F3 _F3 _FZ F3
T e s s e e T= - Fcod ey — coseg) + cogep) +codedy)], (1)

-Iy - I3 I3 -I -I's

Tos= {lcog pge) — o33 — cod @) + cog 39|

beam splitters have the property that a photon entering into +[sin(¢, %)Jr sin(g %)Jr Sm(%g) + S|r‘(po§)]} (12)
any single por{out of d) has equal chances to exit from any
output port. In addition, for Bell @port beam splitters the

elements of their unitary transition mati¥ are solely pow- 2= sllcos¢1) — codef)) — cod i) + cogpi))]

; = : d
er(s,llo%)thg:_q)t(rjw_lr)oot of unity yy=expli2w/d), namely, Uj; — [sin(¢1d) - sin(¢2d) + sin(e12) + sin(¢?9) ]}, (13
= \ Y4 )

Let us now imagine spatially separated Alice and Bob T..= [cos( %) cog 3)+cos{ 1§)+c05{ 2§)] (14)
who perform the Bell-type experiment via the eight-port 137 1 1 1 MEESE
beam splitters on the state and

. T2s= 5{[Co9¢33) — COL33) — cod p33) + Cod 53]
1 o
|4) = 52 aili)alide, (6) ~[sin(¢33) = sin(¢53) + sin(¢33) +sin(¢391}. (15)
i=0

We can know thatT,|<[(10-12)Y2(2+3y2)/21]. How-
ever, they are strongly correlated, $g cannot reach their
with real coefficientsa;, where, e.g.|i), describes a photon maximum value at the same time. As has been proved in Ref.
in modei propagating to Alice. One hagili’),=6;:, with  [4], the maximumminimum) values ofl, can only be found
x=A,B. The overall unitary transformation performed by on the vertices of the polyhedron formed By. There are

such a device is given by three sets of the vertices of the polyhedron. By denoting
I1=[(10-\2)Y%(2+3/2)/21]~0.87104, r,=12/3
1 e s ~0.4714, and"3=[(10—2)4(4-2)/21]~0.3608, we list
=2%€%, 1,j=0,1,2,3, (7)  them in Tables I-II.

In these tables, we have used the stipulations, &g

where y,=€™? and | denotes an input beam to the device, Tab for a<b or Tray =Ty, for b<a. As has been proved in

andi an output oneg; are the four phases that can be set byRef. [4], for each vertices of the polyh_edron one can obtain
the local observer, denoted @s(¢g, ¢1, @2, 3). The trans- &N extreme value _of thig, and the maximungor minimum
formations at  Alice’s S|de are denoted as” value can be obtained by comparing the values among them.

ASSUming {AI ' (I =0 Il 1 ’ 2 ’ 3}:{|a0| ' |a1| ' |a2| ) |a3|}1 where

=(¢h, ¢, ¢h, ¢3) ande®=(¢p, ¢F, @5, ¢5) for Bob’s side. In o _ . ;
this way the local observable is defined. The quantum pre-— means the equality of two sets, ad are in decreasing

der, i.e.,, Ao=A;=A,=Az. For convenience, we denote
diction for the joint probabilityP?M(A;=m, B;=n) to detect a or 2 /-2 3:
photon at themth output of the multiporiA and another one 11Z [5120_\2) (2+3(2)/21), T=12/3, and I';=[(10
at thenth output of the multiporB calculated for the state ~\2)"%(4-12)/21]. Let us define

(6) is given by B1(|#)) = (AcADT 1 + (AgAg + AlA)T

s + (AgAz + AtAs + AA) T3, (16)
PM(A=mB =) =3 3 agmrei- P and
k=0 1=0
(8) Ba(| ) = (AADT '3+ (AcAr + AiAT,
For convenience, we use the definition of the correlation + (AcAg*+ Ay~ AATy. 17

functions Q; with the functionf!=S-M[s(i-j)(m+n),d].  Then, the maximum value df, for |#) must be
By substituting Eq(8) into Eq. (3), after some elaboration,

we can obtain 17| #)) = max{ By (| ), Ba(|p))]. (18)
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TABLE Il. The second set of vertices, in which# j. following optimal angles forl;>0 (i=0,1,2,3:
(T} T T T T T T B 4m) . Sm Sm
i [ab] [ad] [ad] [bc] [bd] fcd] = o 2 Fe=0,-—,—,-— |
1 9 1 1 9 1 9 H 3 1
O
1 2 1 1 2 3
Fl _FZ _Fl Fl FZ F3 and
T o A s 713 1\ . [ Im 207 Im
A P SR TR TY %36 36 18
-y I, Iy Iy I, Iy
Fl _Fz Fl Tl _Fz —F3 (22)
Iy I, -T'y -y I, -I' On the other hand, we can also calculate the minimum

value ofl,. Let us define

From Eq.(18), one can immediately get that for the maxi-  Si(|¢h)) = = (AoA1 + AgAg + AA)T'; = (Aghp + AAT,
mally entangled states, i.ga]=1(i=0,1,2,3, the maxi- + (AAYT (23)
mum value ofl, for such states are 2

and
IM¥=T, + 2T, + 3= 2(\2 +110-12). (19

S| ) = = 2(AcA; + AgAg + AjAg + AAq)/3

This is just the result obtained in Ref2,5,9,, and gives _
Fur=0.309 45 vhich equals to the numerical results of (Ao + AAg)f3. (24)
Ref. [3]. The minimum value of, for |¢) should be

Considerg; as variables, we can obtain the maximal value min o
of 17% denoted ad . The value of Eq(18) should be 147(1¢)) = min[S,(16)), S| D] (25)
maximum for Ag=A; and A,=A;. One can easily find that Then, for the maximally entangled state, the minimum value
Bi(|#)) >B,(|¢)) for any state. For this case, by calculating of 1, is
the extreme value oB,(|¢)) with Aj=A; and A,=A;, after

min _ _ 10
some elaboration, we get la7=-73. (26)
2r One sees that the maximally entangled state does not violate
ax= AZT, + 2AA (T, + T'g) + AP, (20)  the left hand of the inequalit{3). However, for a nonmaxi-
where mally entangled state withAj=A;=K, and A,=Az;=K_
where
A, =[1+ (75357 + /2 - 2010 -2)1”2 K. =[1# ({357 - 12 - 80110 —2)2
- 5g2(10 —2) 142222 + 6[2(10 —2) M2 12 27

with A,=Ag=A; and A =A,=A;. We then haveS;,  we find the minimum value of}", denoted as,,:
~2.9727and the threshold amount of noise is ab&yy _

~0.3272, vhich was also obtained in Ref9] by calculat- Imin=— K2I'; = 2K, K_(['; + ) + K3 = - 3.464 24.

ing the maximum eigenvalue of the Bell opera{di]. (28)
One can see this optimal nonmaximally entangled state is

about 6% more resistant to noise than the maximally enObviously, such states violate the left hand of the inequality.
tangled one. One can check the above results with the

TABLE lll. The third set of vertices, in which# j. IV. DISCUSSION
In summary of the present paper, we study the CHSH
Ty} Ta)  Tlad  Tag  Tig o) Tiea inequality ford=4 in details on the Bell-type experiment via
2 1 2 2 1 2 the eight-port beam splitters which is realizable for nowa-
> 2 > 3 3 3 days technique. We give the analytic formulas of the maxi-
3 3 3 2 2 3 mum and minimum values of this inequality for such an
3 T3 3 3 3 E] experimental consideration. The maximal violations we ob-
-2 3 -2 z -3 z tained are the same as R¢®]. We also give the optimal
-2 -2 z -2 3 z state and the optimal angles which are important for experi-
_2 1 2 2 1 _2 mental realization.
P 2 3 3 2 > It is well known that for bipartite systems of two dimen-
3 P 3 5 2 3 sions, the CHSH inequality is symmetry. For any entangled
3 3 3 3 3 3 state the inequality is violated symmetrically, and will be
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maximally violated by the maximally entangled states. How-for the left hand of the inequality is not the optimal one for
ever, for the higher-dimensional systems, namelythe right hand.

d-dimensional system& > 2), the inequality is asymmetry In fact, the relationg29) and(3) define two inequalities,
(see in Refs[2,59]), namely, the right ones and the left ones. The right inequali-
ties are optimal and tight but the left ones are not tight. The
~2(d+1) <|l.,<? (29) asymmetry of the CHSH inequalities is due to the asymmetry

(d-12) d ' of Hilbert space for higher-dimensional systejhg]. For the

systems of two dimensions, the Hilbert space is symmetry, so

the CHSH inequalities are symmetry as well. But for the

hand of the above inequality for mgximally ent'angled State?ﬂgher-dimensional systems, the Hilbert space is asymmetry,
and reproduced the results of previous numerical wigks so the inequalities which are optimal for the right hand will

Ford:_3, one can _|mmed|at_ely obtain that the I.Eft hand of thebe not optimal for the left. In other words, we cannot find an
above inequality is —4, which can never be violated by an

.. “inequality for higher-dimensional systems which is optimal
state[2,5]. In Ref.[4], the authors have shown that the mini for both sides.

mal values ofl; for maximally entangled states is just —4.
They also found that an optimal nonmaximally entangled
state violates the inequality more strongly than the maxi-
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