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Abstract In this paper, the decomposition of SU(2) gauge potential in terms of Pauli spinor is studied. Using this
decomposition, the spinor structures of Chern–Simons form and the Chern density are obtained. Furthermore, the knot
quantum number of non-Abelian gauge theory can be expressed by the Chern–Simons spinor structure, and the second
Chern number is characterized by the Hopf indices and the Brouwer degrees of φ-mapping.
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1 Introduction

In recent years the decomposition theory of gauge po-
tential has played a more and more important role in theo-
retical physics and mathematics. Since the decomposition
theory reveals the inner structure of gauge potential, it
inputs the topological and other information to the gauge
potential (i.e. the connection of principal bundle), and
establishes a direct relationship between differential ge-
ometry and topology of gauge field. From this viewpoint
much progress has been made by other authors[1,2] and by
us, such as the decomposition of U(1) gauge potential and
the U(1) topological quantum mechanics, the decomposi-
tion of SO(N) spin connection and the structure of GBC
topological current, and the decomposition of SU(N) con-
nection and the effective theory of SU(N) QCD, etc.[3−6]

In this paper, the spinor decomposition of SU(2) gauge
potential is studied. It is known that the Pauli spinor
(the complex vector) is the fundamental representation of
SU(2) gauge field which just carries the geometric infor-
mation of the manifold itself. Therefore compared with
other decomposition theories of gauge potential in non-
perturbative SU(2) gauge theory,[1,7] the decomposition
in terms of spinor is more direct when calculating some
topological quantity, such as the Chern–Simons form and
the second Chern class.

This paper is arranged as follows. In Sec. 2, the spinor
decomposition of SU(2) gauge potential is given. In Sec. 3,
we obtain the spinor structure of Chern–Simons form by
making use of this decomposition, and furthermore the
knot quantum number of non-Abelian gauge theory is ex-
pressed by this Chern–Simons spinor structure. In Sec. 4,
the spinor structure of SU(2) Chern density is obtained.

By making use of the φ-mapping topological current the-
ory, the Chern density is expressed as δ(~φ). Therefore,
the zero points of φ field are characterized by the Hopf in-
dices (βj) and Brouwer degrees (ηj) of φ-mapping, and
the second Chern number, which is directly related to
the Euler characteristic through the top Chern class on
4-dimensional manifold, is characterized by βj and ηj .

2 Spinor Decomposition of SU(2) Gauge Po-
tential
Let M be a compact oriented 4-dimensional manifold,

on which the principal bundle P (π, M , SU(2)) is defined.
It is well known that in the SU(2) gauge field theory with
spinor representation Ψ, the covariant derivative of Ψ is
defined as

DµΨ = ∂µΨ− 1
2i

Aa
µσaΨ (µ = 1, 2, 3, 4) , (1)

where

A = Aµdxµ =
1
2i

Aa
µσadxµ (2)

is the SU(2) gauge potential, i.e. the connection of princi-
pal bundle P ; and Ta = σa/2i (a = 1, 2, 3) are the SU(2)
generators with σa being the Pauli matrices. The complex
conjugate of DµΨ is

D†
µΨ† = ∂µΨ† +

1
2i

Ψ†Aa
µσa . (3)

The SU(2) gauge field tensor is given by

Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ] , (4)

where

F =
1
2
Fµν dxµ ∧ dxν , Fµν =

1
2i

F a
µνσa . (5)
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To complete the decomposition of SU(2) gauge poten-
tial, multiplying Eq. (1) with Ψ†σb and Eq. (3) with σbΨ,
respectively, and using

σaσb + σbσa = 2δabI , (6)

one can easily find

Aa
µ =

i
Ψ†Ψ

(Ψ†σa∂µΨ− ∂µΨ†σaΨ)

− i
Ψ†Ψ

(Ψ†σaDµΨ−D†
µΨ†σaΨ) . (7)

Since any 2× 2 Hermitian matrix X can be expressed
in terms of Clifford basis (I, ~σ),

X =
1
2
Tr(X)I +

1
2
Tr(Xσa)σa , (8)

from Eqs. (2), (7), and (8) we can obtain

Aµ = aµ + bµ , (9)

where

aµ =
1

Ψ†Ψ
(∂µΨΨ† −Ψ∂µΨ†)

− 1
2Ψ†Ψ

Tr(∂µΨΨ† −Ψ∂µΨ†)I , (10)

bµ = −
[ 1
Ψ†Ψ

(DµΨΨ† −ΨD†
µΨ†)

− 1
2Ψ†Ψ

Tr(DµΨΨ† −ΨD†
µΨ†)I

]
. (11)

The gauge potential Aµ should satisfy the SU(2) gauge
transformation[8]

A′
µ = SAµS† + ∂µSS† , (12)

where S is the transformation matrix, S† = S−1 (S ∈
SU(2)). In the following it can be proved that aµ and bµ

satisfy the gauge transformation and the vectorial trans-
formation, respectively,

a′µ = SaµS† + ∂µSS† , (13)

b′µ = SbµS† . (14)

Noticing D′
µΨ′ = SDµΨ and Ψ′ = SΨ, from Eq. (11) the

transformation (14) can be proved. Defining the projec-
tion operator

P̂ =
ΨΨ†

Ψ†Ψ
=

1
2
(I + n̂) , (15)

where

n̂ = naσa, na =
ΨσaΨ†

Ψ†Ψ
, (16)

we can prove

a′µ = [SaµS† + ∂µSS†] +
1
2

[
Lµ −

1
2
Tr(Lµ)

]
, (17)

where
Lµ = (∂µS)n̂S† − Sn̂(∂µS†) . (18)

But we have

Lµ −
1
2
Tr(Lµ) =

1
2
Tr[(Lµ)σa]σa = 0 , (19)

so the transformation formula (13) is proved to be true.
Therefore the transformation (12) is satisfied, and we ob-
tain the result that the expression (9) with Eqs. (10)
and (11) is just the spinor decomposition of SU(2)
gauge potential. Compared with other gauge potential
decompositions,[17] the expression (9) is more direct when
calculating some SU(2) topological quantity, such as the
Chern–Simons form and the second Chern class. This will
be detailed in Secs. 3 and 4.

3 Spinor Structures of Chern–Simons Form
and Knot Quantum Number
The Chern–Simons 3-form is defined as[8−10]

Ω =
1

8π2
Tr

(
A ∧ dA− 2

3
A ∧A ∧A

)
, (20)

i.e.

Ω = − 1
16π2

εµνλ
[
Aa

µ∂νAa
λ −

1
3
εabcAa

µAb
νAc

λ

]
d3x . (21)

The traditional decomposition theory of gauge poten-
tial (including Riemann geometry) always uses the parallel
field condition[1,4,11]

DµΨ = 0 , (22)

so the solution is then bµ = 0, and Aa
µ can be solved in

terms of Ψ

Aa
µ = aa

µ =
i

Ψ†Ψ
(Ψ†σa∂µΨ− ∂µΨ†σaΨ) . (23)

Since Aµ has been solved as Eq. (23), the parallel field
condition (22) can certainly be taken.

In the above text the spinor Ψ is a 2× 1 matrix

Ψ =
(

φ0 + iφ1

φ2 + iφ3

)
, (24)

where φa (a = 0, 1, 2, 3) are real functions, φaφa =
|φ|2 = Ψ†Ψ. For simplicity, we introduce a unit vector
na (a = 0, 1, 2, 3),

na =
φa

|φ|
, nana = 1 . (25)

Obviously the zero points of φa are just the singular points
of na. We also introduce a normalized spinor Ψn,

Ψn =
1√
Ψ†Ψ

Ψ =
(

n0 + in1

n2 + in3

)
. (26)

In the following, without danger of confusion, we can still
use the symbol “Ψ” instead of “Ψn” to denote the nor-
malized spinor. Thus equation (23) becomes

Aa
µ = i(Ψ†σa∂µΨ− ∂µΨ†σaΨ) . (27)

Then we can use Eqs. (21) and (27) to study the spinor
structure of Ω. Noticing that the Pauli matrix elements
satisfy the formulas

σαβ
a σα′β′

a = 2δαβ′δα′β − δαβδα′β′ , (28)

εabcσ
αβ
a σα′β′

b σα′′β′′

c
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= −2i(δαβ′δα′β′′δα′′β − δαβ′′δα′′β′δα′β) , (29)

we arrive at

Ω = − 1
4π2

Ψ†dΨ ∧ dΨ† ∧ dΨ . (30)

This is just the spinor structure of Chern–Simons 3-form
of SU(2) gauge field theory.

The above spinor structure of Chern–Simons form can
be applied in studying the knot quantum number of non-
Abelian gauge theory. The quantum number of Faddeev–
Niemi knot is given by the integration in 3-dimension[12,13]

QFN =
1

32π2

∫
εijkCiHjk d3x (i, j, k = 1, 2, 3) , (31)

where Hij is an Abelian gauge field tensor

Hij = −~m·(∂i ~m×∂j ~m) = ∂iCj−∂jCi (~m·~m = 1) , (32)

and ~m is the non-linear σ-model field, in SU(2) gauge
theory ma = Ψ†σaΨ (a = 1, 2, 3). Here QFN ∈ π3(S2)
(π3(S2) = Z), so it is the Hopf invariant. It is known
that[14]

1
4
εijkCiHjk = εijkTr

(
Ai∂jAk −

2
3
AiAjAk

)
, (33)

therefore equation (31) is

QFN =
∫

Ω =
1

8π2

∫
εijkTr

(
Ai∂jAk −

2
3
AiAjAk

)
. (34)

In this paper, using the spinor expression of Chern–Simons
form (30), from Eq. (34) the knot quantum number can
be directly expressed as

QFN =
∫

Ω = − 1
4π2

∫
εijkΨ†∂iΨ∂jΨ†∂kΨd3x . (35)

Since the complex vector field Ψ is the fundamental field
on manifold and just describes the topological property of
the manifold itself, the expression (35) is obviously more
direct than Eq. (34) in the study of Faddeev–Niemi knot
in non-Abelian SU(2) gauge field theory.

4 Spinor Structure of Chern Density and
Inner Structure of the Second Chern
Number
The definition of Chern–Simons form (20) leads to the

second Chern class[15]

c2(P ) = dΩ , (36)

c2(P ) =
1

8π2
Tr(F ∧ F ) = ρ(x)d4x , (37)

where ρ(x) is the SU(2) Chern density. From Eqs. (36)
and (30) we can obtain the spinor structure of the second
Chern class,

c2(P ) = − 1
4π2

dΨ† ∧ dΨ ∧ dΨ† ∧ dΨ , (38)

and the spinor structure of SU(2) Chern density,

ρ(x) = − 1
4π2

εµνλρ∂µΨ†∂νΨ∂λΨ†∂ρΨ . (39)

In terms of the unit vector na, the Chern density ρ(x)
in Eq. (39) can be expressed as[6]

ρ(x) =
1

12π2
εµνλρεabcd∂µna∂νnb∂λnc∂ρn

d . (40)

By making use of our φ-mapping topological current
theory,[4,6,16−19] we can use Eq. (25) and the Green func-
tion relation in φ-space

∂2

∂φa∂φa

( 1
||φ||2

)
= −4π2δ4(~φ) (41)

to reexpress Chern density ρ(x) in a δ-function form,[16,17]

ρ(x) = δ4(~φ)D
(φ

x

)
, (42)

where D(φ/x) is the Jacobi determinant,

εabcdD
(φ

x

)
= εµνλρ∂µφa∂νφb∂λφc∂ρφ

d . (43)

The implicit function theory shows that,[20] under the reg-
ular condition[21]

D(φ/x) 6= 0 , (44)

the general solutions of

φa(x0, x1, x2, x3) = 0 (a = 0, 1, 2, 3) , (45)

can be expressed as N isolated points

xµ = xµ
j (µ = 0, 1, 2, 3; j = 1, . . . , N) . (46)

In δ-function theory,[22] one can prove

δ4(~φ) =
N∑

j=1

βjδ
4(xµ − xµ

j )
|D(φ/x)|xµ

j

, (47)

where the positive integer βj is the Hopf index of φ-
mapping. In topology it means that when the point xµ

covers the neighborhood of the zero point xµ
j once, the

vector field φa covers the corresponding region in φ-space
βj times. Introducing the Brouwer degree of φ-mapping

ηj =
D(φ/x)

|D(φ/x)|xµ
j

= sign[D(φ/x)]xµ
j

= ±1 , (48)

equation (42) can be expressed as

ρ(x) =
N∑

j=1

βjηjδ
4(xµ − xµ

j ) . (49)

Equation (49) directly shows that the Chern density does
not vanish only at the N 4-dimensional zero points of φa,
i.e. the singular points of na, which are characterized
by the Hopf indices βj and the Brouwer degrees ηj of φ-
mapping.

Furthermore, when integrating the second Chern class,
one obtains the second Chern number,

C2 =
∫

c2(P ) =
∫

ρ(x)d4x =
N∑

j=1

βjηj . (50)

Since the base manifold M is 4-dimensional, the second
Chern class c2(P ) is just the top Chern class on P ; on
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the other hand, there is a direct relation between the top
Chern class and the Euler class[23]

c2(P ) = e(E) , (51)

where E is a real vector bundle which is the real counter-
part of complex vector bundle P , and e(E) is the Euler
class on E. Therefore the Euler characteristic, which is
just the sum of indices of zero points of vector field φa on
M , is obtained through the Gauss–Bonnet theorem

χ(M) =
∫

e(E) =
N∑

j=1

βjηj . (52)

So the indices of zero points of φa field can be composed
of the topological numbers βj and ηj .

At last there are three points which should be stressed.
Firstly, besides the application in this paper, the spinor
decomposition of SU(2) gauge potential can also be ap-
plied in studying the U(1) field tensor in SU(2) gauge
field. Secondly, when the regular condition (44) fails, the
bifurcation processes will occur.[21] Thirdly, when the self-
duality condition[8]

F ∗
µν = Fµν (53)

is satisfied (where F ∗
µν = εµνλρFλρ/2 is the dual tensor

of Fµν), the corresponding zero points of φa field on R4

are just the instantons, so their topological numbers can
also be studied. These three points will be detailed in our
other papers.
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