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Larmor time of a wave packet tunneling through a barrier with an infinitesimal magnetic field
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Recently, experimental measurements of the Larmor time of incident wave packets have been conducted, once
again drawing attention to such a time. These experiments measured the tunneling time of Bose-condensed 87Rb
atoms, with theoretical analyses employing free particles. In this paper, we investigate the tunneling process
of wave packets, which, unlike free particles with a definite incident energy, have a continuous distribution of
energies. We show how the Larmor time τz(y) for a wave packet tunneling through a barrier depends on the
barrier width d , the barrier’s characteristic wave vector k0, the incident wave packet’s central wave vector kc, and
its width σ in wave-number space. When the barrier width d is small, we find that τz(y) varies monotonically. For
wide barriers (d > 2.0π ), we find an anomaly where wave packets with lower incident energy or higher barriers
have shorter tunneling times, which is consistent with recent experimental results. Additionally, for narrow wave
packets in wave-number space (σ < γ ), where γ is the width of the fitted Fano peak, the results are generally
consistent with those for plane waves. However, as the wave packet widens in wave-number space, the maximum
points of τz(y) will undergo a nonlinear decrease and σ significantly affects the maximum Larmor time.
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I. INTRODUCTION

Quantum tunneling is one of the most distinctive phe-
nomena in quantum mechanics. The question of how long a
particle spends in the barrier region is not a new one. It has
troubled us for nearly a century [1], but remains far from
being resolved, primarily because time is a parameter rather
than a quantum operator [2]. Ongoing debates have generated
a significant amount of literature [3–8]. The efforts to define,
to understand, to measure, and to interpret the value of tunnel-
ing time have been ongoing, achieved through examining the
scattering process of incident waves hitting the barrier. The
early well-known research on tunneling time was conducted
by Eisenbud [9], Bohm [10], and Wigner [11], known as the
“phase time.” Moreover, Smith [12] introduced the dwell time,
which was initially introduced and defined by Büttiker [13]
in the one-dimensional case. Additionally, there are traversal
times initially reported by Büttiker and Landauer [14], as
well as the complex time proposed by Sokolovski and Baskin
[15] as a formal generalization of the classical time concept
to the quantum domain and so forth. Among them, Larmor
time [13,16–19] is measured using the Larmor precession as
a clock [20], in the case of an infinitesimal field.

The discussion of the Larmor time can indeed be traced
back to as early as 1966, when Baz [21] proposed a thought
experiment to measure the time spent in the barrier region
using a Larmor clock. Subsequently, Rybachenko [22] used
Baz’s idea in the one-dimensional case. The pioneers studied
the effects on the spin components in a plane orthogonal to
the field. However, it is not just the components in the plane
that are affected; the spin component parallel to the field is
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also influenced. Consequently, this led Büttiker to introduce
the “Larmor time” [13], based on the spin component parallel
to the field. All the considerations above relate to the Larmor
time of plane-wave incidence. Later, it was demonstrated that
the spin precession time and the dwell time of neutral spinning
particles in a one-dimensional rectangular potential well [23]
and barrier [24] are equal. Additionally, the Larmor time of
a bound electron wave packet tunneling through a barrier has
been calculated recently [25]. On the experimental side, early
measurements of the Larmor time have been conducted in
optical systems [26,27] and neutrons [28]. Notably, recent
experimental measurements of the Larmor time of tunnel-
ing atoms, regarded as wave packets, have been conducted
[16–18]. In these experiments, the time it takes for 87Rb atoms
to tunnel through an optical barrier was measured and further
investigation was conducted on the influence of incident en-
ergy on tunneling time. However, there has always been a lack
of theoretical analysis concerning the impact of wave-packet
parameters, such as the central wave vector and width in
wave-number space, on the Larmor time.

In this paper, we investigate the spin change of the wave
packet after tunneling is completed, especially in the small
field. It is important to note that we are not considering ar-
bitrary wave packets, but rather incoming wave packets that
meet certain conditions: the incoming wave packet is initially
far from the barrier and the distribution of momentum is
almost negligible for negative values. Therefore, the initial
wave packet only has a forward component, which greatly
simplifies the calculations. Subsequently, by applying the
small-field approximation and defining the structure factors
in the y and z directions, we ultimately derive the integral
representation of the Larmor time τz(y) for the tunneling of a
wave packet. We find that the Larmor time of the wave-packet
tunneling depends strongly not only on the parameters of the

2469-9926/2025/112(4)/042208(9) 042208-1 ©2025 American Physical Society

https://orcid.org/0000-0001-9305-4179
https://orcid.org/0000-0003-1525-740X
https://ror.org/03p41qy95
https://crossmark.crossref.org/dialog/?doi=10.1103/bm9q-r6j9&domain=pdf&date_stamp=2025-10-14
https://doi.org/10.1103/bm9q-r6j9


DUO WANG AND LIBIN FU PHYSICAL REVIEW A 112, 042208 (2025)

wave packet, such as its width in wave-number space and
central wave vector, but also on the barrier height and width.
This is actually the result of the competition between two
parameters: the width of the wave packet in wave-number
space and the width of the structure factor f z(y), which is
defined in Sec. IV. Additionally, when the width of the wave
packet in wave-number space is small, its tunneling results are
consistent with those of plane waves, which is in agreement
with the numerical simulation results of the time evolution of
the Gaussian wave packet [29].

II. LARMOR TUNNELING TIME
OF INCIDENT PLANE WAVES

In the study of tunneling of incident plane waves through
potential barriers, we consider particles with mass m and
kinetic energy E , which can be represented by the wave vec-
tor k such that E = h̄2k2/2m, interacting with a rectangular
barrier of height V0 and width d . The particles move along
the y direction with the barrier centered at y = 0 and, in this
context, the transmitted wave can be expressed as Deiky. It is
well known that [30] the amplitude of the transmitted wave
can be written as D = T 1/2ei�φe−ikd , where

T =
[

1 + (k2 + κ2)2

4k2κ2
sinh2(κd )

]−1

(1)

is the transmission probability and the phase increase across
the barrier, �φ, satisfies tan(�φ) = k2−κ2

2κk tanh(κd ). Here,
we similarly use the barrier’s characteristic wave vector
k0 to represent V0 = h̄2k2

0/2m. Consequently, we have κ =√
2m(V0 − E )/h̄ =

√
k2

0 − k2 for energies E < V0.
However, the study of Larmor times for incident plane

waves relies on a weak magnetic field localized within the bar-
rier region, oriented along the z axis, and represented as B0 =
B0ẑ. When particles with spin s = 1

2 are in the magnetic-field
region, they will begin Larmor precession with a frequency
of ωL = e|B0|/mc, where e is the electron charge and c is the
speed of light, and the component of spin parallel to the field
will have a higher energy. In other words, the effect of the
magnetic field B0 is to change the height V0 of the barrier to
V+ = V0 − h̄ωL/2 (V− = V0 + h̄ωL/2) for the spin-up (spin-
down) component. Thus, the total Hamiltonian of the system
under consideration, which is also mentioned in the textbook
[31], is

H =
⎧⎨
⎩

( p2

2m + V0
)
I − h̄ωL

2 σz, |y| � d/2,

p2

2mI, |y| � d/2,
(2)

where I is the unit 2 × 2 matrix and σx, σy, σz are the Pauli
spin matrices. The incident particles are polarized along the x
axis, with ψ = 1√

2
(1 1)Teiky. Since H is diagonal in the spinor

basis, the spinor wave function of the transmitted particle is

ψ = 1√
|D+|2 + |D−|2

(
D+
D−

)
, (3)

where D+ and D− are the amplitudes of the transmitted wave
with κ replaced by κ± = √

2m(V± − E )/h̄, respectively. This
transmitted spinor wave function reveals the particle’s spin
behavior: it not only undergoes Larmor precession in the x-y

plane, but also acquires a polarization component parallel to
the field while tunneling through the barrier, as expressed by

〈Sz〉 = h̄

2
〈ψ |σz|ψ〉 = h̄

2

T+ − T−
T+ + T−

, (4)

〈Sy〉 = h̄

2
〈ψ |σy|ψ〉 = −h̄ sin(�φ+ − �φ−)

(T+T−)1/2

T+ + T−
. (5)

In the limit of an infinitesimal field, Büttiker [13] intro-
duced the characteristic times τy,z such that 〈Sz〉 �= (h̄/2)ωLτz

and 〈Sy〉 �= −(h̄/2)ωLτy, and derived them through first-order
expansion of the spin expectation value with respect to the
Larmor frequency ωL:

τy = − (m/h̄κ )∂�φ/∂κ, (6)

τz = − (m/h̄κ )∂ ln T 1/2/∂κ. (7)

III. LARMOR TUNNELING OF A WAVE PACKET

In this section, we consider Larmor tunneling of a wave
packet and the system’s Hamiltonian can still be expressed
by Eq. (2). The incident particle with spin s = 1

2 is po-
larized in the x direction and represented as ψ (t = 0) =

1√
2
(1 1)Tψin(y) in the spinor basis, where the initial state

ψin(y) of the particle is a Gaussian wave packet with a center
at y0, a central wave vector of kc, and a width of σ in k space
(In fact, the width of the wave packet in real space is not
involved here; for simplicity, we will refer to the width of the
wave packet in k space as simply the wave-packet width in the
following discussions, which will not cause any confusion.),
which can be expanded in the following form:

ψin(y) =
∫ ∞

−∞
ϕ(k)

[
1√
2π

eiky

]
dk, (8)

where ϕ(k) = 1

(2πσ 2 )
1
4

e−iky0 e− (k−kc )2

4σ2 , satisfying the following

conditions:

ψin(y � −d/2) � 0, ϕ(k � 0) � 0, (9)

as shown in Fig. 1. In other words, the incident wave packet
is localized in the region of real space where y < −d/2, and
in momentum space it is localized near kc, with the distribu-
tion for k < 0 being negligible. Under these conditions, the
expansion coefficients of the initial state in the eigenstates
of backward propagation are approximately zero, while those
in the eigenstates of forward propagation are approximately
ϕ(k). Thus, Eq. (8) can be approximated as follows:

ψin(y) �
∫ ∞

0
ϕ(k)

(
1√
2π

ψ
(+)
k (y)

)
dk, (10)

where ψ
(+)
k (y) is the eigenstate and the corresponding eigen-

value is E (k) = h̄2k2

2m of the system under the condition of zero
magnetic field (ωL = 0).

After time t , the wave function of the transmitted particle
can be expanded as:

ψ±
T (y, t ) =

∫ ∞

0
ϕ(k)D±(k)eikye− i

h̄
h̄2k2

2m t dk, (11)

where ± corresponds to the case of potential energy V = V±,
respectively.
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in

FIG. 1. Larmor clock. Sketch of wave-packet tunneling: a spin-
1/2 particle is initially polarized along the x axis and tunnels through
a square barrier with width d and height V0. A magnetic field B0

pointing along the z axis is confined within the barrier. When the
particle enters the magnetic-field region, it begins to undergo Larmor
precession.

The spinor wave function of the transmitted particle is

ψT (t ) = N

⎛
⎝∫ ∞

0 ϕ(k)D+(k)eikye− i
h̄

h̄2k2

2m t dk∫ ∞
0 ϕ(k)D−(k)eikye− i

h̄
h̄2k2

2m t dk

⎞
⎠, (12)

where the normalization coefficient N is

N = 1√
2π

1√∫ ∞
0 |ϕ(k)|2(|D+|2 + |D−|2)dk

. (13)

Following an approach analogous to Büttiker’s plane-wave
treatment [13], we derive the expectation values

〈Sz〉 = h̄

2
〈ψT |σz|ψT 〉

= h̄

2
N 2

∫ ∞

−∞
(|ψ+

T (y, t )|2 − |ψ−
T (y, t )|2)dy

= h̄

2

∫ ∞
0 |ϕ(k)|2(T+ − T−)dk∫ ∞
0 |ϕ(k)|2(T+ + T−)dk

, (14)

〈Sy〉 = h̄

2
〈ψT |σy|ψT 〉

= h̄

2

∫ ∞
0 |ϕ(k)|2(−2)

√
T+T− sin(�φ+ − �φ−)dk∫ ∞

0 |ϕ(k)|2(T+ + T−)dk
.

(15)

In the infinitesimal field, we can obtain the imbalance
T+ − T−, of the transmission coefficients as ∂T

∂V0
(V+ − V−),

and we obtain T+ + T− ∼= 2T and T+ − T− ∼= −mωL
h̄κ

∂T
∂κ

, where
we use the equation ∂T

∂V0
= ∂T

∂κ
∂κ
∂V0

= ∂T
∂κ

m
κ h̄2 . Consequently, we

find that for E < V0

〈Sz〉 ≈ − mωL

4

∫ ∞
0 |ϕ(k)|2Tκκdk∫ ∞
0 |ϕ(k)|2T dk

, (16)

〈Sy〉 ≈mωL

2

∫ ∞
0 |ϕ(k)|2T �φκκdk∫ ∞

0 |ϕ(k)|2T dk
, (17)

where

Tκκ = 1

κ

∂T

∂κ
∝ ∂T

∂V0

= −4k2
0k2

[
2(κ2 − k2)sinh2(κd ) + k2

0dκ sinh(2κd )
]

[4k2κ2 + (k2 + κ2)2sinh2(κd )]
2 ,

�φκκ = 1

κ

∂�φ

∂κ
∝ ∂�φ

∂V0

= − k

κ

k2
0sinh(2κd ) + 2κd (κ2 − k2)

4k2κ2 + (k2 + κ2)2sinh2(κd )
. (18)

For E > V0, we have to replace κ by iK, where K =√
2m(E − V0)/h̄.
In the following calculations, we respectively set the

characteristic wave vector to k0 = √
2mV0/h̄ = 1 a.u. (cor-

responding to V0 = 0.5 a.u.) and the central wave vector to
kc = 1 a.u. for convenience. We check that it exhibits linear
response when B0 = 1.2 a.u., indicating a small field. Atomic
units are used throughout the paper unless stated otherwise.

IV. LARMOR TIMES FOR TRANSMITTED PARTICLES

In the previous section, we calculated the spin expectation
value for transmitted particles. Accordingly, we can derive the
Larmor time τz(y) for the tunneling of a wave packet, which
can be expressed as follows:

τz
�= 〈Sz〉

(h̄/2)ωL
= 1

2

∫ ∞
0 |ϕ(k)|2 f zdk∫ ∞
0 |ϕ(k)|2T dk

, (19)

τy
�= 〈Sy〉

−(h̄/2)ωL
=

∫ ∞
0 |ϕ(k)|2 f ydk∫ ∞
0 |ϕ(k)|2T dk

, (20)

where the structure factors in the y and z directions are defined

as f z �= −Tκκ and f y �= −T �φκκ , respectively, and they are
related to the barrier parameters (k0, d).

From Eqs. (19) and (20), we find that when compared to
plane waves, the Larmor time τz(y) for wave-packet tunneling
arises from averaging the Larmor times of the constituent
plane-wave components, which are proportional to the vari-
ation rate of the transmission probability T and that of the
phase increase �φ, respectively. Furthermore, we know that
the Larmor time τz(y) depends not only on the incident wave
packet ϕ(k), but also on the transmission probability T and
the structure factor f z(y). Next, we will analyze these variables
individually and examine how f z(y) significantly affects the
Larmor times.

A. Structure factors f z(y)

In our study, we first fix the barrier’s characteristic wave
vector at k0 = 1. Consequently, the transmission probability
T depends on both the barrier width d and the incident energy
E = k2/2. In Fig. 2, we have plotted the transmission proba-
bility T as a function of k for various barrier widths. For small
barrier widths like d = 0.1π or d = 0.6π , the transmission
probability increases smoothly and monotonically. However,
for larger barrier widths (d > 2.0π ), the transmission proba-
bility rapidly increases from 0 to 1 near k = k0 and then begins
to oscillate, with 1 as its maximum value. Additionally, as

042208-3



DUO WANG AND LIBIN FU PHYSICAL REVIEW A 112, 042208 (2025)

FIG. 2. Transmission probabilities for k0 = 1 a.u. at barrier
widths d = 0.1π, 0.6π, 2.0π , and 4.0π a.u.

the barrier width d increases, the oscillations become more
pronounced.

The structure factor f z is proportional to the partial deriva-
tive of the transmission probability T with respect to the
barrier height V0, characterizing the responsive behavior of the
transmission probability. We have plotted its variation with k
using black curves in Fig. 3, for various barrier widths at a
fixed characteristic wave vector k0 = 1. We find that, as the
barrier width d increases, the structure factor f z gradually
exhibits a significantly asymmetric line shape profile. There-
fore, we attempt to fit f z using the Fano formula, which is

FIG. 3. Black curves represent the structure factor f z changing
with k for k0 = 1 a.u., while the red lines represent the fitting curves
of f z using the Fano formula. Panels (a) to (d) correspond to barrier
widths d = 0.1π, 0.6π, 2.0π , and 4.0π a.u. The inset in subfigure
(d) is a magnified view of the green-boxed region.

FIG. 4. Black curves represent the structure factor f y changing
with k for k0 = 1 a.u., while the red lines represent the fitting curves
of f y using the Fano formula. Panels (a) to (d) correspond to barrier
widths d = 0.1π, 0.6π, 2.0π , and 4.0π a.u. The inset in subfigure
(d) is a magnified view of the green-boxed region.

expressed as:

F (k) = R

[ (
q γ

2 + k − kres
)2(

γ

2

)2 + (k − kres )2
+ a

]
, (21)

where γ represents the width of the fitted Fano peak, kres

represents the peak center, and the fitted curve F (k) is plotted
together with f z on the same graph. Similarly, the results for
f y are shown in Fig. 4. Please note that the data range used
to fit the structure factor f z(y) is not the entire interval (0, 2),
but only the single peak region represented by the red line in
the figure. This is because this peak region has the greatest
influence on the Larmor time.

In Figs. 3 and 4, we observe that the red dashed line and the
black solid line almost overlap in the fitting region, indicating
a good fit of the Fano peak to f z(y). Additionally, we observe
that, as the barrier width d increases, the variation range
of f z(y) also expands, from approximately 1 at d = 0.1π to
about 100 at d = 4.0π . Regarding the shape of the structure
factor f z(y), specifically the fitting parameters γ and kres that
determine its width and center, they also exhibit certain trends
as d increases. To more intuitively observe how γ and kres

change with d , we plot the curves of kres and γ as functions of
d in Fig. 5.

In Fig. 5, we observe that the width γ of the Fano peak
initially increases and then decreases towards zero with in-
creasing barrier width d , while the center kres of the Fano
peak initially increases and gradually stabilizes around k0.
This behavior is readily understandable since kres corresponds
to the maximum of the structure factor f z(y). Recall that f z and
f y are proportional to the variation rate of the transmission
probability T and that of the phase increase �φ, respectively.
For larger barrier widths (d > 2.0π ), both T and �φ undergo
significant variations near k0, resulting in the maximization
of f z(y) in the vicinity of k0. It can be inferred that when
d > 2.0π , both γ and kres remain almost unchanged.
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FIG. 5. Center kres and width γ changing with the barrier width
d , in units of π , for k0 = 1 a.u. Panels (a) and (b) respectively show
the results of fitting the structure factor f z and f y using Fano line
shape. The green dashed lines mark the center kres and width γ of the
fitted Fano peak at d = 2π a.u.

B. Larmor times

From the previous analysis with the fixed characteristic
wave vector k0 = 1, we know that the Larmor time τz(y) for a
wave packet tunneling through a barrier is sensitively depen-
dent on the barrier width d and the parameters kc and σ of the
incident wave packet. Figure 6 presents the contour map of the
Larmor time τz(y) as a function of the wave-packet parameters
(kc/k0, σ ) for different barrier widths d . When the barrier
width d is small, we find that τz(y) varies monotonically, as
shown in Figs. 6(a) and 6(d). From the previous analysis,
it is evident that when the barrier width d < 2.0π , both the
center kres and the width γ vary sensitively with changes
in the barrier width d , unlike when d > 2.0π , where they
remain almost constant. Furthermore, the range of f z(y) is
comparable to that of the transmission probability T in the
denominator of Eqs. (19) and (20), implying that their coupled
influence on the Larmor time τz(y) must be considered jointly.
Overall, while the analysis of Larmor time τz(y) for narrow
barriers is relatively complex, it is noteworthy that the vari-
ation in Larmor time τz(y) ultimately follows a simple trend,
changing monotonically with the wave-packet parameters kc

and σ .
As the barrier width d increases (e.g., d = 2.0π ), we find

that τz(y) does not vary monotonically with the parameters kc

and σ . For particularly narrow wave packets (e.g., σ = 0.01),

the Larmor time for a wave packet tunneling through a barrier
closely matches that of a plane wave, as seen in Fig. 7. This
result is expected. When the wave packet is very narrow in
k space, its momentum distribution becomes highly localized
around the central wave vector kc, resulting in quantum tun-
neling behavior nearly indistinguishable from a plane wave
characterized by wave vector kc and energy E = h̄2k2

c /2m.
From Figs. 6(b) and 6(e), as σ increases, τz(y) initially

increases and then decreases. Furthermore, for a given
width of the incident wave packet, we find that τz(y) initially
increases monotonically with kc, indicating that lower incident
energy leads to faster tunneling, and then gradually decreases.
This behavior is well known, as shown in Fig. 7(b), where
the Larmor time τz(y) for plane-wave tunneling also follows
this trend. Moreover, for wave packets, the transition point of
this trend, the incident central wave vector kc corresponding
to maximum Larmor time, can be characterized by the center
kres of the Fano peak. Specifically, when the wave-packet
width σ is less than the Fano peak width γ (σ < γ ), the
maximum Larmor time τz(y) approximately occurs at kc = kres

(a result that evidently holds for plane waves as well). Figure
7(b) clearly illustrates this result, showing cases of both
plane-wave incidence and wave-packet incidence with widths
(σ = 0.01 < γ = 0.063, 0.089). Indeed, when d > 2.0π , the
range of Fano peaks extends beyond the range of transmission
probability T , which typically ranges from 0 to 1. Therefore,
we should first consider the influence of f z(y) in the numerator
of Eqs. (19) and (20). When kc approaches kres, this ensures
that the overlap between the initial wave-packet distribution
|ϕ(k)|2 and the f z(y) is maximized, thereby guaranteeing
that the integrals in the numerator of Eqs. (19) and (20) are
maximized.

Due to the variable sign of f z, which is not always positive,
as shown in Figs. 3(c) and 3(d), the transition point kc of τz

should decrease as σ increases, to ensure that the integral
term of the numerator is not excessively canceled out by
positive and negative contributions. The transition point kc of
τy follows a similar changing pattern because the transmission
probability T is nearly zero for k < 1. Decreasing kc in this
case can make the denominator nearly zero, thereby allowing
τy to achieve a maximum. In Figs. 6(b) and 6(e), we can
clearly see that, on the left side of σ = γ , the transition point
kc of τz(y) approximately occurs near kres, whereas, on the
right side of σ = γ , the transition point kc of τz(y) decreases
gradually with increasing σ .

As the barrier width increases from d = 2.0π to d =
4.0π , we observe a leftward shift in the green lines mark-
ing the width γ of f z(y), accounting for the differences
between panels (b) and (c), (e) and (f) in Fig. 6. What is
remarkable is that for wide barriers [as shown in Figs. 6(b)
and 6(c)], such as d = 2.0π and 4.0π , the Larmor time
τz exhibits negative values. The fundamental reason for the
occurrence of negative Larmor times is that, as the bar-
rier width increases, the transmission probability oscillates
sharply with incident energy, while, for narrow barriers,
the transmission probability increases monotonically. For
particles entering the barrier region, their wave-number com-
ponents will be described by different wave numbers k± =√

k2 ± mωL
h̄ . Due to the sharp oscillations in the transmission

probability, a measurable range may occur where the
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FIG. 6. Panels (a) to (c) are Larmor times τz(kc/k0, σ ) for d = 0.1π, 2.0π, and 4.0π a.u. at k0 = 1 a.u., and (d) to (f) are Larmor times
τy. The green lines (vertical and horizontal) represent the width γ and center kres of f z(y), respectively. The maximum points of τz(y) in the kc

k0
-σ

plane are mapped by the green dashed curves.

transmission probability decreases, i.e., T (k+) − T (k−) < 0,
which leads to the appearance of negative peaks in the struc-
ture factor f z and negative regions in the Larmor time τz.
Therefore, the existence of negative Larmor times could re-
flect the trend of variation in the transmission probability for
different barrier widths.

FIG. 7. Blue lines (solid, dashed) represent the Larmor times (τy,
τz) for plane waves with incident energy E = h̄2k2/2m, with k0 = 1
a.u., whereas the red lines (dashed, solid) represent the Larmor times
(τy, τz) for wave packets centered at kc with a width of σ = 0.01
a.u. The position of the center kres is marked by the green lines in
panel (b).

All the conclusions presented above concerning the Lar-
mor time were obtained with k0 = 1 while varying the central
wave vector kc of the wave packet from 0 to 2. How-
ever, the constraints prescribed by Eq. (9) for incident wave
packets make the region with small kc computationally in-
accessible due to large errors. To address this challenge, we
fixed kc = 1 and increased k0, effectively exploring the low-
incident-energy region (kc/k0 < 0.5), with the corresponding
results shown in Fig. 8. This figure reveals that, in the low-
incident-energy region, the maximum Larmor time exhibits
significantly different behavior compared to the previously
discussed case with fixed k0, motivating our focus on it in
subsequent discussion.

C. Maximum Larmor time

In Fig. 8, similarly, we observe that, as the barrier width
increases (e.g., d = 2.0π ), the Larmor time τz(y) no longer
changes monotonically with the barrier’s characteristic wave
vector k0. Instead, it first increases and then decreases as
k0 increases. It is easy to see that the recent experimental
conclusions [18] are consistent with the results in the regions
below the green dashed curves in Figs. 6 and 8, suggesting
that the wave packets used in the experiment are not too wide.

We have plotted the curves drawn from the maximum
points (σ, 1

k0
) of the Larmor time τz(y) in Fig. 9 for different

barrier widths at a fixed central wave vector kc = 1 a.u. We
find that these curves exhibit a typical “gradual transition”
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FIG. 8. Panels (a) to (c) are Larmor times τz(kc/k0, σ ) for d = 0.1π, 2.0π, and 4.0π a.u. at kc = 1 a.u., and (d) to (f) are Larmor times
τy. The maximum points of τz(y) in the kc

k0
-σ plane are mapped by the green dashed curves.

behavior; therefore, we attempt to fit them using the logistic
function, which is expressed as:

L(σ ) = A1 − A2

1 + (σ/σ0)p + A2, (22)

where A1 and A2 represent the boundary values of the logistic
curves, σ0 is the characteristic point where L(σ0) = A1+A2

2 ,
p (ranging from 1.5 to 4.5) controls the steepness of the
transition from A1 to A2, and the fitted curves L(σ ) are also
plotted on the same graph, with an excellent fitting quality
characterized by the coefficient of determination R2 � 0.996.
Notably, Eq. (22) describes a nonlinear decrease behavior,

FIG. 9. Maximum points (σ, 1
k0

) of the Larmor time τz(y) for kc =
1 a.u. with barrier widths d = 1.5π, 2.0π, 2.5π, 3.0π, 3.5π , and
4.0π a.u. The red dashed line represents the fitting results using the
logistic function.

where the rate of change undergoes a significant shift at the
characteristic point σ0, ultimately tending toward a steady
state. According to Table I, the position of the characteristic
points σ0 shifts to smaller values with the increase in the bar-
rier widths, suggesting that the decrease behavior described
by the curves in Fig. 9 begins to accelerate.

Furthermore, in Fig. 8, when d > 2π a.u., there exists a
maximum Larmor time τmax

z(y) for each given wave packet width
σ , and its variation with σ is plotted in Fig. 10, with mapping
formula (y − ymin)/(ymax − ymin). In Fig. 10, we observe that
τmax

z(y) increases monotonically with barrier width d , which
is as expected. As the wave-packet width σ increases, τmax

z
decreases monotonically, while τmax

y exhibits a nonmonotonic
trend (decreasing then increasing), which is a rather surprising
behavior. In the inset of Fig. 10(b), the zero points of the
six curves, ordered from smallest to largest, correspond to
barrier widths of d = 4.0π, 3.5π, 3.0π, 2.5π, 2.0π , and
1.5π a.u., respectively, suggesting that the larger the barrier
width, the earlier τmax

y reaches its minimum. Thus, to reduce
the tunneling time in experiments, we can choose to increase
the wave-packet width σ appropriately to lower τmax

z(y) . For τy,
the choice of σ is related to the barrier width d . In any case,

TABLE I. Characteristic point σ0 for barrier widths d =
1.5π, 2.0π, 2.5π, 3.0π, 3.5π , and 4.0π a.u., fitted using the lo-
gistic function L(σ ) to the maximum points (σ, 1

k0
) of the Larmor

time τz(y). The upper and lower rows correspond to the cases of τz

and τy, respectively.

d/π (a.u.) 1.5 2.0 2.5 3.0 3.5 4.0

τz : σ0 0.289 0.230 0.182 0.161 0.144 0.132
τy : σ0 0.270 0.189 0.154 0.136 0.126 0.118
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FIG. 10. (a) Maximum Larmor time τmax
z with respect to

wave-packet width σ , for kc = 1 a.u. and barrier widths d =
1.5π, 2.0π, 2.5π, 3.0π, 3.5π , and 4.0π a.u. (b) Corresponding
results for τmax

y . The insets show normalized results of mapping them
to the range (0, 1).

these adjustments can be made to reduce the upper bound of
tunneling time τz(y), as shown in the results of Fig. 10.

V. SUMMARY AND DISCUSSION

In summary, under the condition of infinitesimal fields, we
studied the tunneling times of Gaussian wave packets and
compared them with the results of plane waves. When the
width σ of the incident Gaussian wave packet approaches
zero, the Larmor time for tunneling through the barrier is
essentially the same as that for plane waves. However, as σ

increases, we need to consider the unique effects of the wave
packet, which can be analyzed by the structure factor f z(y),
and we determined its width γ by fitting it with a Fano peak.
When σ < γ , the incident wave packet can be considered
narrow; otherwise, it is wide. From this, we found that the
transition points kc of Larmor time τz(y) for narrow wave
packets are determined by the center kres of the Fano peak and,
as the wave packet widens, the transition points kc decrease.

The above shows the variation of Larmor time τz(y) when
the barrier’s characteristic wave vector k0 is kept constant
while changing the wave-packet parameters. When the central
wave vector kc is kept constant and k0 is varied, the Larmor
time τz(y) exhibits a surprising behavior in the low-incident-
energy region. Further calculations reveal that the maximum
points (σ, 1

k0
) of τz(y) can be fitted by a logistic function,

which describes a nonlinear decrease behavior. Additionally,
the analysis of τmax

z(y) shows that it can be used to reduce the
tunneling time in experiments.
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