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Constructing the nonclassical lifetime distribution of two-level systems via quantum reliability
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To characterize the aging process of quantum devices, the concept of quantum reliability has recently been
proposed as a process-based metric that quantifies the duration during which operations remain unaffected by
noise. This duration is referred to as the lifetime of a quantum system. In this paper, we investigate the lifetime
of a two-level atomic system undergoing spontaneous emission. We construct an exact statistical ensemble of
the lifetimes for two-level systems using quantum reliability theory, incorporating comprehensive information
such as mean values, fluctuations, and non-classical properties. Notably, we demonstrate that the ensemble
exhibits can be represented by a density matrix, which is recorded in the monitoring apparatus by an observation
process. Under the Born-Markov approximation, the diagonal elements decay exponentially at a state-dependent
rate related to quantum fidelity. Beyond this approximation, the off-diagonal elements arise from interference
between radiation pathways and are determined by the first-order coherence of the field. This feature indicates
that the off-diagonal elements encode spectral information beyond the Markovian decay rate, suggesting a
potential protocol for probing the environmental spectral density using two-level atoms.
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I. INTRODUCTION

The aging process is omnipresent in nature, affecting not
only living organisms but also artificial devices [1–5]. To
quantify aging processes, reliability theory introduces the life-
time distribution as a central concept in traditional industry
and engineering. These concepts have been extended to the
quantum world [6–11], providing a framework to characterize
the aging of recent quantum devices [11–15].

In quantum systems, the lifetime may be ambiguous be-
cause this quantity pertains to a process rather than being
time-local. To illustrate this, consider the simplest quantum
system, the two-level system: how long can it preserve its
initial state or remain under control?

The quantum fidelity, an important concept in quantum
physics, was first introduced by Uhlmann in 1976 [16]. It
quantifies the distinguish ability between two quantum states,
and its mathematical definition is not unique. Several al-
ternative formulations of fidelity have been proposed and
discussed [17–20]. However, the Uhlmann fidelity is the most
widely adopted, as it is naturally related to the Bures dis-
tance [21–23]. The lifetime, as a characteristic quantity, can
be defined via quantum fidelity as the reciprocal of its decay
rate.

In quantum reliability theory, the lifetime is to characterize
how long the system stays in the target state or undergoes
a target evolution. In this purpose, a non-classical lifetime
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distribution � is introduced to depict the difference between
the real system and the ideal system, The measure of the
cumulative function of lifetime distribution in quantum reli-
ability is, in a sense, an extension of quantum fidelity. This
relates closely to the recent issue of quantifying the time
spans of quantum state varies, such as quantum first passage
time [24,25], quantum tunneling time [26–30], time spans of
quantum transitions [25,31], and so on.

To illustrate explicitly the properties of the lifetime dis-
tribution, we consider a two-level atom under dissipation.
Firstly, to compare it with the process fidelity [23], we employ
the Lindblad master equation [22] within the Born-Markov
approximation to describe dissipation processes. We focus
on the effect of the measurement sequence length (i.e., the
number of measurement operations) on quantum reliability,
which characterizes the difference between the actual evo-
lution trajectory and the ideal one. Secondly, to show how
quantum reliability can capture more information about inter-
ference, we construct the full lifetime ensemble beyond the
Born-Markov approximation. This ensemble is represented
by a density matrix whose diagonal elements resemble fi-
delity, while the off-diagonal elements are determined by
the first-order coherence function [32] of radiation fields. In
this treatment, the lifetime of an atom is no longer treated
merely as a characteristic quantity; rather, it is regarded as
a measurable quantity with both mean value and fluctuations.
Finally, we demonstrate that the lifetime distribution captured
by a sequence of joint measurements contains full informa-
tion about the environmental spectral density—both on- and
off-resonance. This differs significantly from the initial-state
fidelity, which primarily reveals the spontaneous emission
rate determined by the spectral density near the resonance
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frequency. These results are based on a single two-level sys-
tem; many-body extensions are left for further investigation.

The rest of this work is organized as follows. In Sec. II, we
study the Lindblad master equation for spontaneous atomic
emission and, within the framework of consistent histories,
analyze the quantum reliability of the atom as well as the
coherence weights among different emission histories. We
highlight the limitations of the Born-Markovian approxima-
tion in studying quantum reliability for two-level systems.
In Sec. III A, we introduce the lifetime density matrix and
interpret the physical significance of its elements. Then, we
solve the atomic spontaneous emission process using the
Weisskopf-Wigner approximation and present the correspond-
ing lifetime density matrix. In Sec. III B, we examine a
radiation field characterized by a power-law spectral den-
sity and specifically analyze the physical significance of the
lifetime density matrix of two-level systems. In Sec. III C,
we demonstrate that the off-diagonal elements of the density
matrix can be obtained by observing delayed interference
patterns, from which the spectral density of the environment
can be derived. Finally, we conclude with a summary and
discussion of the results in Sec. IV.

II. ANALYZE LIFETIME STATISTICS WITH MASTER
EQUATION APPROACH

Consider an atom in radiation fields. The lifetime of the
atomic excited state can be studied using the Markovian
approximation. This is characterized by the timescale 1/γ ,
where the spontaneous emission rate γ is determined by the
spectral density of the radiation fields. Physically, this lifetime
is not definite, since the atom may radiate at different times.
Can this quantity be represented by a proper distribution? To
answer this question, we construct the lifetime density matrix
� for the total atom–field system within the framework of
quantum reliability theory.

In the theory of quantum reliability, an event representing
survival is defined as a specific state at a discrete time point
ti and is associated with an orthogonal projector Ei. These
projectors and 1 − Ei represent survival and failure events, re-
spectively. A trajectory Y up to time t f constitutes a sequence
of events occurring at discrete time points t0 < t1 < · · · < t f ,
represented by

Y = E0 → E1 → · · · → E f . (1)

For a closed quantum system described by a unitary operator
U (t ′, t ), the probability weight for trajectories Y is defined
as [33]

W [Y,Y,U ] = Tr

⎡
⎣ f −1∏

i=0

P(Ei+1,Ei+1 ) ◦ U (ti+1, ti )(E0)

⎤
⎦, (2)

where two superoperators U and P(Ei,Ei ) are defined as

Uρ = UρU †, P(Ei,Ei )(ρ) = EiρE†
i , (3)

with ρ being an arbitrary operator.
Consider another sequence of events occurring at time

points t0 < t1 < · · · < t f , denoted as

Y ′ = E ′
0 → E ′

1 → · · · → E ′
f . (4)

For a closed quantum system governed by the unitary trans-
formation U (t ′, t ), the coherence between trajectory Y ′ and
trajectory Y is referred to as a coherent history, and the weight
of this coherence is given by:

W [Y,Y ′,U ] = Tr

⎡
⎣ f −1∏

i=0

P(Ei+1,E ′
i+1 ) ◦ U (ti+1, ti )(E0)

⎤
⎦. (5)

where the superoperator P(Ei,E ′
i ) is defined as

P(Ei,E ′
i )(ρ) = EiρE ′†

i ,

with ρ being an arbitrary operator.
The diagonal elements �NN are defined as the probability

that the system survives the first N − 1 measurements and
fails at the N-th measurement:

�NN = Tr

[
P(E⊥

N ,E⊥
N ) ◦ U (tN , tN−1)

×
N−2∏
i=0

P(Ei+1,Ei+1 ) ◦ U (ti+1, ti )(ρ0)

]
, (6)

where E⊥
i = 1 − Ei. The off-diagonal elements �NM with

N �= M represent the quantum interference between two
paths: one where the system fails at the N-th measurement
and the other where it fails at the M-th measurement:

�NM = Tr(1UM (δt ) · · · E⊥
N UN (δt )EN−1UN−1(δt )

× · · · E1U1(δt ) |ψ0〉
〈ψ0|U †

1 (δt )E1 · · ·U †
M−1(δt )EM−1U

†
M (δt )E⊥

M ),

N < M (7)

where the evolution operator Ui(δt ) describes evolution over
the time interval from (i − 1)δt to iδt .

From the perspective of the real model, the diagonal el-
ements of the matrix represent the probability distribution
of photon emission times, and the off-diagonal elements
capture the quantum interference between radiation fields
emitted at different intervals. It can be seen that the matrix
� = ∑

NM �NM |N〉〈M| satisfies the following properties: (i)
Tr(�) = 1, (ii) �† = �, and (iii) X T �X � 0, for all complex
vectors X . Therefore, we refer to � as the lifetime density ma-
trix. It was shown [6] that this density matrix corresponds to
the monitor’s final state after the time-sequence measurement,
and that |N〉 forms its measurement basis. We illustrate the ori-
gin of the off-diagonal terms in Fig. 1, which depicts the inter-
ference between radiation fields emitted at two distinct times.

Consider the case where survival means the system
remains in a specific state, with E0 = E1 = E2 = · · · =
|ψ0〉〈ψ0|. The diagonal elements define a classical distri-
bution, whose cumulative form R(Nδt ) = ∑∞

M=(N+1) �MM

represents the probability that the system survives up to N
steps, and is given by

R(Nδt ) = 〈ψ0| ρ(δt ) |ψ0〉N . (8)

The quantum fidelity between two density operators ρ0 and
ρ1 is defined as [16,17]

F (ρ0, ρ1) = Tr
√√

ρ0ρ1
√

ρ0. (9)
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FIG. 1. Scheme to illustrate the picture of off-diagonals, i.e., interference between different paths. Path I presents that the atom emits at
time nδt , and the radiation then splits and propagates along the positive and negative directions of x by a distance �x = c(m − n)δt . Path
II presents that the atom emits at time mδt . The rightmost image illustrates the interference between the excited radiation fields by the two
emission events.

If one of the operators, for instance ρ0 = |ψ0〉 〈ψ0|, is a pure
state, then

√
ρ0 = ρ0. Consequently, the fidelity simplifies to

F (ρ0, ρ1) =
√

〈ψ0| ρ1 |ψ0〉. (10)

It follows that quantum reliability can be expressed in terms
of the fidelity as

R(Nδt ) = F [ρ(0), ρ(δt )]2N . (11)

In other words, the reliability equals the fidelity between the
states at times 0 and δt raised to the 2N-th power.

Next, we consider the general form of the Lindblad master
equation

ρ̇ = −i[H, ρ] +
L∑

μ=1

D(cμ)ρ, (12)

in which,

D(cμ)ρ = cμρc†
μ − 1

2 {c†
μcμ, ρ}. (13)

where, cμ denotes the Lindblad operator associated with the
μ-th decay channel.

Assuming the atom is initially in an excited state with
zero photons in the field; then cμ = √

γ σ−, and the quantum
reliability is given by

R(t ) =e−γ t . (14)

Since the Born approximation neglects the field dynamics,
the off-diagonal elements vanish:

�NM = 0. (15)

(The detailed derivation is presented in Appendix A).
These results suggest that, for spontaneous emission from

two-level atoms, quantum reliability and fidelity-based infor-
mation exhibit very similar behavior under the Born–Markov
approximation. The sole distinction is that quantum reliability
partitions the evolution into discrete segments. In the follow-
ing sections, we demonstrate that the two concepts diverge
significantly once the Born–Markov approximation is relaxed.

III. ANALYZE LIFETIME STATISTICS BEYOND
MARKOVIAN MASTER EQUATION

Because the off-diagonal elements of the lifetime den-
sity matrix for a two-level atomic system vanish under the
Markov master equation, we employ the Weisskopf–Wigner
approximation instead of the Born–Markov approximation to
analyze this system and elucidate its physical significance. We
then consider the full Hamiltonian describing the interaction
between a single atom and a multimode optical field. By
analyzing the resulting lifetime density matrix, we reveal the
physical insights it provides.

A. Lifetime density matrix

We again assume the system remains in the excited state.
The total Hamiltonian is given by

H = Hatom + Hfield + Hint. (16)

Here, the Hatom = ω0σ+σ− is the atom’s free Hamiltonian
with resonance frequency ω0; the second term Hfield =∑

k ωkâ†
k âk is the free Hamiltonian of the radiation field,

where âk denotes the annihilation operator for the k-th mode
of the radiation field; and Hint describes the atom–field
interaction.

We proceed by making the rotating-wave approximation
(RWA), and expressing the atom–field interaction Hamilto-
nian as follows:

Hint =
∑

k

(gkσ+âk + H.c.), (17)

where the gk denotes the atom–field coupling strength.
Assuming the system is initially in the excited state and

the radiation field is in the vacuum state, the total state at time
t > 0 can be written as

|ψ (t )〉 = b(t )σ+ |g, 0〉 +
∑

k

ck (t )â†
k |g, 0〉 , (18)

where b(t ) and ck (t ) are the probability amplitudes for the
atomic excitation and the photon in mode k,respectively.
Moreover, |g, 0〉 denotes the combined ground state, with |g〉
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the atomic ground state and |0〉 the field vacuum state. From
the Schrödinger equation, the time evolution of b(t ) and ck (t )
obeys

ḃ(t ) = −i
∑

k

gkck (t ) − iω0b(t ),

ċk (t ) = −ig∗
kb(t ) − iωkck (t ). (19)

Assuming that the initial state is |ψ0〉 = |e, 0〉. By applying
the Weisskopf–Wigner approximation, the solution becomes

b(t ) = e−iω0t− γ t
2 ,

ck (t ) = −ig∗
k

e−iω0t− γ t
2 − e−iωkt

i(ωk − ω0) − γ

2

. (20)

where, the Lamb shift is neglected, and the dissipation rate γ

is given by

γ

2
= Re

∫ ∞

0

∑
k

|gk|2e−i(ωk−ω0 )τ dτ. (21)

This leads to Fermi’s golden rule γ = 2πJ (ω0), where the
spectral density J (ω) is defined as

J (ω) =
∑

k

|gk|2δ(ω − ωk ). (22)

Then, the lifetime density matrix can be expressed as:

�NM = Tr(1U ′(δt ) · · · E⊥
0 U (δt )E0U (δt ) · · · E0U (δt ) |ψ0〉

〈ψ0|U †(δt )E0 · · ·U †(δt )E0U
†(δt )E⊥

0 )

= 〈ψ0|U (δt ) |ψ0〉N−1 〈ψ0|U †(δt ) |ψ0〉M−1

× 〈ψ0|U †(δt )E⊥
0 U ((M − N )δt )E⊥

0 U (δt ) |ψ0〉 (23)

where E0 = |ψ0〉〈ψ0|. And we define an overlap function as

Tδt ((M − N )δt ) = �NM√
R((N − 1)δt )R((M − 1)δt )

. (24)

To reveal their physical meaning, we further neglect the
reabsorption process, yielding

�NM ≈ b(N−1)(δt )b∗(M−1)(δt )

×
∫ ∞

−∞
G(1)

δt (x, x; (M − N )δt, 0)dx

= e− γ δt (M+N−2)
2 e−iω0δt (N−M )

∫ ∞

0
J (ω)e−iω(M−N )δt

× (e−γ δt − 2e− γ δt
2 cos((ω − ω0)δt ) + 1)

γ 2

4 + (ω − ω0)2
dω. (25)

These off-diagonal elements represent interference between
radiation fields across the entire spatial domain. This equa-
tion shows that the off-diagonal elements can be expressed in
terms of the first-order coherence function, G(1)

δt (x, x′; t, 0) ≡
〈ψ (δt )|E (−)(x, t )E (+)(x′, 0)|ψ (δt )〉, where E (±)(x, t ) denote
the annihilation (creation) operators of the radiation field
at the space-time point (x, t ), and |ψ (δt )〉 = U (δt )|ψ0〉 (see
Appendix B for details). Thus, the off-diagonal terms are
determined by the spectral density of the radiation field.

The off-diagonal element �NM represents interference be-
tween field excitations at times Nδt and Mδt over the entire

spatial domain. This interference is directly determined by the
time interval between the two emission events. The exponen-
tial factor exp[−γ δt (M + N − 2)/2] governs the interference
strength. For a fixed difference M − N , larger values of M and
N correspond to weaker interference. Due to time-translation
symmetry, the remaining part depends only on the time dif-
ference and is denoted by the value of the overlap function
Tδt ((M − N )δt ), defined as

Tδt
(
(M − N )δt

) ≈ e−iω0δt (N−M )

×
∫ ∞

−∞
G(1)

δt (x, x; (M − N )δt, 0)dx. (26)

Next, we consider the continuous limit δt → 0
and fix Nδt = t, Mδt = t ′. In this limit, the lifetime
density matrix takes the form

∑
N,M �NM |N〉〈M| →∫ ∞

0 dt
∫ ∞

0 dt ′�(t, t ′)|t〉〈t ′|, with

�(t, t ′) = e−iω0t− γ t
2 +iω0t ′− γ t ′

2

∫ ∞

0
J (ω)eiω(t−t ′ )dω

=
√

R(t )R(t ′)e−iω0(t−t ′ )
∫ ∞

0
J (ω)eiω(t−t ′ )dω, (27)

where the cumulate function R(t ) ≡ ∫ ∞
t �(t ′, t ′)dt ′.

B. Atomic lifetime density matrix in Ohmic spectral density

In this section, we focus on the Ohmic-type spectral den-
sity. We show that these matrix elements correspond to the
coherence function of the radiation field. Specifically, we
consider the Ohmic spectral density for the radiation field,
although this property of the off-diagonal elements does not
depend on the specific form of the spectral density.

The Ohmic-type spectral density is given as

J (ω) = ηω1−s
c ωse− ω

ωc 
(ω), (28)

where η is a dimensionless constant, and ωc is the cutoff
frequency. The exponent s characterizes the environment as
super-Ohmic (s > 1), Ohmic (s = 1), or sub-Ohmic (s < 1).
We set ωc � ω0 in the following analysis to ensure that side-
band effects can be neglected.

The diagonal elements are simplified as

�NN = e−(N−1)γ δt (1 − e−γ δt ), (29)

From Eq. (29), the atom’s lifetime exhibits an exponential
decay, with the emission rate given by γ = 2πJ (ω0). This
result coincides with the prediction from the Born-Markov
approximation.

We demonstrate in Fig. 2(a) the overlap between radiation
fields emitted at different times. As shown in the figure, the
field excited in the first interval (N = 1, red curve) propagates
in both directions and overlaps with the field excited in the in-
terval (M = 2). This non-vanishing overlap indicates that the
corresponding off-diagonal elements of the lifetime density
matrix are non-zero.

In Fig. 2(b), we illustrate the effect of the time delay τ

between different emission intervals on the absolute value
of the Tδt ((M − N )δt ) for different values of s. This quan-
tity depicts the overlap between the fields excited in time
difference |M − N |δt . It is observed that Tδt ((M − N )δt ) is
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FIG. 2. (a) Radiation field interference of the atomic emission fields corresponding to the paths N = 1 and M = 2 with ωc = 25, ω0 = 1,
δt = 0.1, η = 0.002, and the speed of light is c = 1, the upper cutoff frequency chosen as ωd = 250 under the sub-Ohmic spectral density
(s = 0.5). The blue line represents the radiation field excited at time Nδt , and the red line corresponds to the radiation field excited at time Mδt .
(b) The absolute value of the overlap |Tδt ((M − N )δt )|/(δt )2 varies with the Ohmic spectrum exponent s and the time interval τ = |M − N |δt
between two paths, with ωc = 25, ω0 = 1, δt = 0.001, η = 0.002. And in the numerical simulations, the frequency integral is truncated at an
upper limit of ωd = 250, with a discretization step of �ω = 0.2. The red (dashed) line indicates the exact (simulated) value of s for each τ to
give the minimum of |Tδt (τ )|/(δt )2.

non-monotonic with s, i.e., with fixed |M − N | there is mini-
mum for the overlap that is achieved by some particular s.

Following with Eq. (27), the minimum value of the overlap
occurs at

∂s|T0(τ )| = η
(
τ 2 + 1

ω2
c

)− s+1
2 ω1−s�(1 + s)[

�(0, 1 + s) − 1
2 ln

(
ω2

cτ
2 + 1

)] = 0. (30)

where τ = |M − N |δt , �(1 + s) indicates the Gamma func-
tion, while �(0, 1 + s) stands for the Polygamma function.
This non-monotonic behavior highlights the subtle influence
of the spectral density exponent s on quantum coherence at
short timescales.

To validate the approximations made in our analysis,
we further perform numerical simulations of the system’s

FIG. 3. Image of Tδt ((M − N )δt ), the yellow bars present the simulated results, the red bars represent results that neglecting the
reabsorption and the blue bars present the result neglecting the reabsorption and considering Weisskopf-Wigner approximation: (a) real part,
(b) imaginary part, and (c) absolute value. In these numerical calculation, we choose the sub-Ohmic spectrum with s = 0.5, ωc = 25, ω0 = 1,
η = 0.002 δt = 0.001. And in the numerical simulations, the frequency integral is truncated at an upper limit of ωd = 250, with a discretization
step of �ω = 0.2.
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evolution. Specifically, we present three sets of results: (i)
the full simulation, (ii) the result obtained by neglecting re-
absorption, and (iii) the result under the Weisskopf-Wigner
approximation. The corresponding values of Tδt ((M − N )δt )
for each case are plotted in Fig. 3. This comparison illustrates
the discrepancies introduced by each approximation and pro-
vides insight into their respective accuracies.

C. Estimate spectral density via lifetime density matrix

The connection between the lifetime density matrix and
the spectral density suggests that the former can be utilized
for quantum bath spectral estimation. To briefly illustrate this
idea, we recall Eq. (27).

If the lifetime density matrix is fully measured, the spectral
density of the bath can be reconstructed from the data via

J (ω) = 1

2π

∫ ∞

0

�(τ, 0)ei(ω0−ω)τ + �(0, τ )ei(ω−ω0 )τ

√
R(τ )

dτ.

(31)

This equation shows that lifetime distribution captures full
information of the environmental spectral density, since to
access the lifetime distribution requires a joint measurement
on the system state at a sequence of time points [6]. Therefore,
it provides more information than the fidelity, which capture
the spectral density near the resonance frequency. This sug-
gests a potential approach to probe the spectral density of
the environment by measuring the lifetime distribution of the
atom in the Markovian regime.

We simulate the measurement results and apply Eq. (31)
to estimate the spectral density. In Fig. 4, we present a
comparison between the original spectral density used in the
simulation and the one reconstructed from the lifetime den-
sity matrix obtained by measuring atomic lifetimes. Different
sampling intervals δt are considered.

From Fig. 4, we observe that when the sampling interval
δt is too large, the low sampling resolution introduces signif-
icant errors in the estimation, as illustrated by the red curve.
Conversely, when δt is too small, the Zeno effect suppresses
the off-diagonal elements, leading to a failure in extracting
meaningful interference information, as shown by the yellow
curve. However, for a properly chosen sampling interval—
small enough compared to 1/γ , yet not too small relative to
1/ωc to avoid the Zeno effect—the reconstructed data (blue
curve) closely match the original spectral density.

These results demonstrate that the quantum reliability
framework provides a viable method for extracting infor-
mation about system correlation functions and the spectral
density of the environment.

.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we applied the framework of quantum
reliability to the lifetime distribution of two-level systems
under spontaneous emission. We demonstrate that the result-
ing ensemble can be represented by a density matrix with
a clear physical interpretation: its diagonal elements exhibit
exponential decay determined by the initial state, while the
off-diagonal elements capture interference between distinct

0 5 10 15 20
0

1

2

3

4

5

6

J(
)

10-3

Exact Value
Sampling interval  t=0.16
Sampling interval  t=0.05
Sampling interval  t=0.40

FIG. 4. Spectral density estimation, where the spectrum is
Ohmic with s = 0.5, and other parameters are set as ωc = 5, ω0 =
0.1, η = 0.001. And in the numerical simulations, the frequency in-
tegral is truncated at an upper limit of ωd = 20, with a discretization
step of �ω = 0.10. In the estimation, we have used the discrete
Fourier transformation.

emission events. Specifically, we derive an explicit relation
between the lifetime density matrix and the spectral density
of the radiation field. Given that the lifetime density matrix
is experimentally accessible, this relation offers a potential
method for estimating the spectral density in the Markovian
regime. These results imply that quantum reliability, as an ex-
tension of fidelity, provides more comprehensive information
by capturing the full spectral density of the two-level system.

In quantum theory, quantifying the time span of a quan-
tum transition is a fundamental issue. This topic has been
addressed in various contexts, with different definitions pro-
posed to characterize temporal aspects of quantum systems.
In contrast, quantum reliability offers an alternative approach
by treating the time span as an observable determined by the
measurement outcomes of the quantum system. This method
not only explicitly describes the mean value but also captures
fluctuations and quantum properties. Our further investigation
aims to extend beyond the two-level system and explore the
time–energy uncertainty relation [34,35], which can be ac-
cessed via different measurement protocols in open quantum
systems.
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APPENDIX A: QUANTUM RELIABILITY AND COHERENT
HISTORIES OF SPONTANEOUSLY RADIATING ATOMS

UNDER THE LINDBLAD MASTER EQUATION

For a general form of the Lindblad master equation

ρ̇ = −i[H, ρ] +
L∑

μ=1

D(cμ)ρ, (A1)

The spontaneous emission of the atom is described using
the Lindblad master equation

ρ̇(t ) = γ0(1 − n̄)D(σ−)ρ + γ0n̄D(σ+)ρ

= αD(σ−)ρ + βD(σ+)ρ, (A2)

where γ0 characterizes the decoherence strength and σ− =
σ

†
+ = |↓〉 〈↑| with |0〉 and |1〉 being the up and down lev-

els, respectively. The mean fermionic number n̄ is given by
n̄ = 1/[exp(ω/T ) + 1] satisfying

0 � n̄ � 0.5, (A3)

and it depends on the temperature T and the characteristic
frequency ω of the fermionic environment. The two dynamical
decoherence rates α and β satisfy

α + β = γ0, α − β = (1 − 2n̄)γ0. (A4)

Comparing Eqs. (13) and (A2), we have

c1 =
√

γ0(1 − n̄)σ−, c2 = √
γ0n̄σ+. (A5)

To study the reliability under decoherence described by
the master equation in Eq. (A2), we use three superoperators
given by

J−ρ(t ) = σ−ρ(t )σ+,

J+ρ(t ) = σ+ρ(t )σ−,

J0ρ(t ) = 1
2 [σ+σ−ρ(t ) + ρ(t )σ+σ− − ρ(t )]. (A6)

One can verify that they satisfy the su(2) commutation re-
lations [J+,J−] = 2J0, [J0,J±] = ±J±. Then the master
equation in terms of three superoperators is obtained as

ρ̇(t ) = [βJ+ + αJ− + (β − α)J0 − 1
2 (α + β )]ρ(t ).

(A7)
The formal solution immediately follows as

ρ(t ) = V (t )[ρ(0)] = e[βJ++αJ−+(β−α)J0− 1
2 γ0]tρ(0), (A8)

where the notation γ0 denotes the sum of the two dynamical
rates γ0 = (α + β ), and V (t ) is the decoherence evolution

operator of the system. To solve the master equation, we need
to decompose the following exponential operator

V (t ) = e(α+J++α−J−+α0J0 )t . (A9)

Formaly, the operator V (t ) is decomposed as

V (t ) = e f+(t )J+e f0(t )J0 e f−(t )J− , (A10)

where f+(t ), f0(t ), f−(t ) are time dependent coefficients.
Making derivative of V with respect to time and using the
Baker-Hausdorff formula, we could get the following system
of differential equations:

ḟ+(t ) − f+(t ) ḟ0(t ) − e− f0 (t ) f 2
+(t ) ḟ−(t ) = α+,

ḟ0(t ) + 2e− f0 (t ) f+(t ) ḟ−(t ) = α0,

e− f0(t ) ḟ−(t ) = α−. (A11)

Time dependent coefficients f+(t ) f0(t ) f−(t ) can be obtained
by solving the differential equations as

f+(t ) = 2α+ sinh |ε0t |
2ε0 cosh |ε0t | − α0 sinh |ε0t | ,

f−(t ) = 2α− sinh |ε0t |
2ε0 cosh |ε0t | − α0 sinh |ε0t | ,

f0(t ) = 2 ln
2ε0

2ε0 cosh |ε0t | − α0 sinh |ε0t | , (A12)

where ε0 =
√

α2
0/4 + α+α−.

The formal solution of the master equation (A2) is given
by

ρ(t ) = V (t )ρ0 = e[βJ++αJ−+(β−α)J0− 1
2 γ0]tρ(0)

= e− 1
2 γ0t ex+J+e(ln x0 )J0 ex−J−ρ(0). (A13)

Direct application of Eq. (A12) leads to

x+(t ) = β(e
1
2 γ0t − e− 1

2 γ0t )

αe
1
2 γ0t + βe− 1

2 γ0t
,

x−(t ) = α(e
1
2 γ0t − e− 1

2 γ0t )

αe
1
2 γ0t + βe− 1

2 γ0t
,

x0(t ) =
(

αe
1
2 γ0t + βe− 1

2 γ0t

α + β

)2

. (A14)

Due to J 2
− = 0, J 2

+ = 0, and [J+,J−] = 2J0, we could
get

ex−J−ρ(t ) = (1 + x−J−)ρ(t ),

ex+J+ρ(t ) = (1 + x+J+)ρ(t ),

e(ln x0 )J0ρ(t ) = ρ(t ) + (
√

x0 − 1)P0ρ(t )P0

+
(

1√
x0

− 1

)
P1ρ(t )P1, (A15)

where P0 = |↑〉 〈↑| and P1 = |↓〉 〈↓|. Now we see the evo-
lution of the projector |↑〉 〈↑|. By using Eq. (A15), after the
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three actions, we obtain

e
γ0t
2 V (t )P0 =

(√
x0 + x+x−√

x0

)
|↑〉 〈↑| + x−√

x0
|↓〉 〈↓| .

(A16)

Substituting the values of x+, x−, and x0 given by Eq. (A14)
into the above equation, we get

V (t )P0 = [1 − G(α, β, t )]P0 + G(α, β, t )P1. (A17)

This evolution operator can be further decomposed into three
consecutive operators (see Appendix A), and finally we obtain

V (t )(|↑〉 〈↑|) = [1 − G(α, β, t )] |↑〉 〈↑| + G(α, β, t ) |↓〉 〈↓| ,
V (t )(|↓〉 〈↓|) = [1 − G(β, α, t )] |↓〉 〈↓| + G(β, α, t ) |↑〉 〈↑| ,
V (t )(|↓〉 〈↑|) = e− 1

2 γ0t |↓〉 〈↑| ,
V (t )(|↑〉 〈↓|) = e− 1

2 γ0t |↑〉 〈↓| , (A18)

where the function

G(α, β, t ) = α(1 − e−γ0t )

α + β
. (A19)

By using Eq. (A19) and the explicit form of the initial density
matrix in |↑〉 〈↑|, one obtains the density matrix at time t as

ρ(t ) =
[

cos2 θ

2
e−γ0t + G(β, α, t )

]
|↑〉 〈↑|

+ 1

2
e−iφ sin θe− 1

2 γ0t |↑〉 〈↓|

+ 1

2
eiφ sin θe− 1

2 γ0t |↓〉 〈↑|

+
[

sin2 θ

2
e−γ0t + G(α, β, t )

]
|↓〉 〈↓| . (A20)

We see that damping rate is two times of the dephasing rate,
and this will lead to interesting behaviors of the reliability
loss.

By direct calculation from Eq. (A20), the Bloch vector at
the time t could be written as

rx(t ) = sin θ cos φe− 1
2 γ0t ,

ry(t ) = sin θ sin φe− 1
2 γ0t ,

rz(t ) = cos θe−γ0t + (1 − 2n̄)(e−γ0t − 1). (A21)

By plugging the Bloch vector at t0 = 0 and t ′ = δt in Eq. (8),
one has

R(t ) = 1

2N
[1 + sin2 θe−γ0t/2N + cos2 θe−γ0t/N

+ (1 − 2n̄) cos θ (e−γ0t/N − 1)]N . (A22)

From this equation, we can obtain the expression for the quan-
tum reliability of an atom initially in the excited state, with no
photons in the excitation field (n̄ = 0 and θ = 0 φ = 0).

R(Nδt ) = e−γ0Nδt . (A23)

As for the weights of different historical interferences, after
a path becomes invalid at time nδt , the state changes from
|↑〉 〈↑| to |↓〉 〈↑|.Then, if the failure occurs at mδt during the
evolution, the projection result will become 1 |↓〉 〈↑ | ↓〉 〈↓|.
Therefore, the weights for all interference histories should be

�NM = 0. (A24)

APPENDIX B: FIRST-ORDER COHERENCE FUNCTION
REPRESENTATION OF THE OFF-DIAGONAL ELEMENTS

The quantized radiation field can invariably be separated
into positive- and negative-frequency components:

E (x, t ) = E (+)(x, t ) + E (−)(x, t ), (B1)

where, E (+)(x, t ) = ∑
k ake−iωkt eikx and E (−)(x, t ) =

[E (+)(x, t )]†.
When we detect the radiation field of the atom, it essen-

tially corresponds to the process of absorbing photons from
the field, that is, to the positive-frequency component of the
radiation field. Assuming the initial state of the radiation field
is |i〉 and the final state is | j〉, the transition probability from
the initial to the final state can be expressed as:

|〈 j|E (+)(x, t ) |i〉|2. (B2)

Since what we are concerned with is the detection outcome
rather than the final state of the radiation field, we consider all
possible final states:∑

j

|〈 j| E (+)(x, t ) |i〉|2 = 〈i| E (−)(x, t )
∑

j

| j〉 〈 j| E (+)(x, t ) |i〉

= 〈i| E (−)(x, t )E (+)(x, t ) |i〉 , (B3)

where, we consider the completeness condition
∑

j | j〉
〈 j| = 1.

Since the initial state of the atomic radiation field is rep-
resented by |ψ (δt )〉, and the two radiation fields are identical
and emitted at the same position with a time delay of (M −
N )δt , then the quantized radiation field operator can be written
as

E (+)(x, t ) = E (+)(x, t ) + E (+)(x, t + (M − N )δt ). (B4)

Consequently, the measurable intensity of the radiation
field is given by

I (x, t ) = 〈ψ (δt )| [E (−)(x, t ) + E (−)(x, t + (M − N )δt )][E (+)(x, t ) + E (+)(x, t + (M − N )δt )] |ψ (δt )〉
= 〈ψ (δt )| E (−)(x, t )E (+)(x, t ) |ψ (δt )〉 + 〈ψ (δt )| E (−)(x, t + (M − N )δt )E (+)(x, t + (M − N )δt ) |ψ (δt )〉

+ 2Re(〈ψ (δt )| E (−)(x, t )E (+)(x, t + (M − N )δt ) |ψ (δt )〉)

= G(1)
δt (x, x; t, t ) + G(1)

δt (x, x; t + (M − N )δt, t + (M − N )δt ) + 2G(1)
δt (x, x; t, t + (M − N )δt ). (B5)
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where, G(1)
δt (x, x; t, t ′) denotes the first-order correlation function; the first two terms in the above expression represent the

individual intensities of the two radiation fields, while the third term corresponds to the interference between them.
Next, based on the definition of the off-diagonal elements, they can be expressed as

�NM = b(N−1)(δt )b∗(M−1)(δt ) × 〈ψ0|U †(δt )E⊥
0 U ((M − N )δt )E⊥

0 U (δt )|ψ0〉 = b(N−1)(δt )b∗(M−1)(δt )F ((M − N )δt ), (B6)

where, F ((M − N )δt ) can be expressed as

F ((M − N )δt ) = 〈ψ0|U †
M (δt )E⊥

0 U ((M − N )δt )E⊥
0 UN (δt ) |ψ0〉

= 〈ψ (δt )| E⊥
0 U ((M − N )δt )E⊥

0 |ψ (δt )〉
≈ 〈ψ (δt )|

∑
k′

a†
k′

∑
k

ake−iωk (M−N )δt |ψ (δt )〉

=
∫ ∞

−∞
dx 〈ψ (δt )|

∑
k

a†
ke−ikx

∑
k

e−iωk (M−N )δt eikxak |ψ (δt )〉

=
∫ ∞

−∞
dx 〈ψ (δt )| E (−)(x, 0)E (+)(x, (M − N )δt ) |ψ (δt )〉

=
∫ ∞

−∞
dxG(1)

δt (x, x; (M − N )δt, 0), (B7)

where, the off-diagonal elements represent interference between different histories, and only the temporal effect is relevant,
an integration over the entire space is performed. Therefore, the off-diagonal elements can be associated with the first-order
correlation function.
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