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Enantioselective responses in Compton scattering of chiral hydrogen
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The study of chiral molecules using Compton scattering is an area that holds promise for further exploration.
The current paper presents a preliminary and relatively simple discussion on the possibility of applying Compton
ionization to enantiomeric recognition. By focusing on two different types of chiral hydrogen, we find that the
momentum spectrum of Compton electrons can encode chiral features, whereas the light-scattering spectra may
not necessarily do so. In particular, the momentum spectrum can also exhibit chirality. These results could
provide valuable insights and recommendations for the investigation of actual chiral molecules.
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I. INTRODUCTION

It is extremely important to understand the microstructure
of matter. To this end, modern science has developed various
detection techniques, among which the application of x rays
plays a key role [1]. As a probe based on electromagnetic
interaction, x rays are widely used in crystal structure de-
termination [2], atomic and molecular structure research [3],
plasma diagnostics [4], ultrafast imaging of electron motion
[5,6], and other fields.

Compton scattering [7,8] is one of the physical mecha-
nisms of x-ray interactions with matter. It has a significant
advantage in determining the momentum distribution of
bound electrons [3] and the corresponding fundamental prin-
ciple is the impulse approximation (IA) [9,10]. On the basis
of this approximation, a bound electron can be considered to
be in a free state when the energy transferred by the photon
is much greater than its binding energy. Consequently, the
electron’s momentum distribution is encoded in the light-
scattering spectra in a very simple form. Nevertheless, little
attention has been paid to the application value of physi-
cal quantities other than the light-scattering spectra in the
Compton scattering process since the inception of the IA.
Recently, based on the kinematically complete experiments
[11,12] of Compton scattering, some studies [13,14] dis-
cussed the possibility of using Compton ionization as a
method of dynamic spectroscopy. The central idea involves
employing the cold target recoil ion momentum spectroscopy
(COLTRIMS) technique [15,16] to perform coincidence mea-
surement of the momentum of Compton electrons and ion
fragments, enabling the reconstruction of physical charac-
teristics of the target atoms or molecules. This indicates
that in the process of Compton ionization, in comparison
to the light-scattering spectra, the momentum spectrum of
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electrons or ions is also rich in structural information about the
target.

On the other hand, chirality is one of the structural charac-
teristics of molecules. Molecules of different chirality are also
called enantiomers. They share most of their physical proper-
ties. Yet, they play significantly different roles in broad classes
of chemical reactions, biological activity, and the function of
drugs. Therefore, the effective detection of molecular chirality
is of paramount significance in the fields of medicine, phar-
maceuticals, and biochemistry. Currently, methods based on
the interaction of light with matter, such as circular dichroism
spectroscopy [17–19], optical rotatory dispersion [17–19],
Coulomb explosion imaging [20], three-wave mixing [21–23],
and enantioselective high-order harmonic generation (HHG)
[24,25], have been employed for enantiomer identification.
Compared with these methods, Compton scattering is ex-
pected to be used to reconfigure the state of bound electrons,
which is inherently chiral in chiral molecules. But to our
surprise, the application of Compton scattering in this regard
has seen scarce discussion and research.

In this paper, we explore the possibility of reading out the
chirality of bound electrons by using Compton scattering. For
simplicity, we focus on the case of chiral hydrogenic wave
functions [26], which were recently introduced as a tool to
explore the basic physical mechanisms underlying the chiral
response at the level of electrons. For chiral hydrogen with a
given spatial orientation, we will focus on analyzing the light-
scattering spectra and the momentum spectrum of Compton
electrons. Our results will demonstrate the superiority of the
momentum spectrum of Compton electrons in distinguishing
enantiomers compared to the light-scattering spectra. The chi-
ral hydrogenic wave functions can be realized in atoms by
using synthetic chiral light fields [27]. In this context, our
work can have an impact on the related area soon or in the
near future.

The paper is organized as follows. In Sec. II, the theoretical
methods are described in detail. In Sec. III, our numerical
results are presented. We summarize and discuss in Sec. IV.
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Unless stated otherwise, atomic units (a.u.) with me = h̄ =
e = 1 and c ≈ 137.036 are employed throughout this paper.
Here, e represents the elementary charge and c is the speed of
light. me refers to the mass of the electron.

II. METHODS

A. The fundamental description of the Compton
scattering of chiral hydrogen

By neglecting the nuclear motion effects, the Hamiltonian
of the hybrid system of a single-electron atom and x rays can
be written as

H = (p + A)2

2
+ Vc(r) +

∑
q,ε

ωqaq,εa
†
q,ε, (1)

where

A =
∑
q,ε

√
2π

ωqV
(eiq·rεaq,ε + H.c.). (2)

In the above equations, ε and q represent the polarization
vector and wave vector of the photon, respectively. Here,
the Coulomb gauge is employed, hence q · ε = 0. The an-
nihilation operator for photons is given as aq,ε. The angular
frequency of the photon is given as ω = c|q|. V is the normal-
ized volume of the light field, and we can conveniently set it
to 1. Vc(r) = −1/r represents the Coulomb potential energy.

Thus, the interaction term is

HI = p · A + A2

2
. (3)

When Compton scattering occurs, the initial state φi and final
state φ f of the system are as follows,

φi = ψ0(r) ⊗ |1k1〉 ⊗ |0k2〉 e−i(E0+ω1 )t ,

φ f = ψp(r) ⊗ |0k1〉 ⊗ |1k2〉 e−i(E f +ω2 )t . (4)

Here, k1 and k2 are the wave vectors of the incident and
scattered photons, respectively. ψ0(r) is the wave function for
a bound electron in the atom and E0 is the corresponding
energy eigenvalue. ψp(r) is the Coulomb wave function and
E f = p2/2. For the chiral hydrogen [26], there are

ψ0(r) =
∑
(nlm)

Rnlm(r)Ylm(r̂) (5)

and E0 = −1/(2n2), where Ylm(r̂) is the spherical harmonic
and r̂ represents the solid angle. Rnlm(r) refers to the radial
wave function. Note that the parentheses below the summation
symbol indicate that nlm represents a single variable index.

We only consider the A2 term in the interaction, which is
the so-called A2 approximation. This approximation is highly
valid in the nonrelativistic Compton scattering of atoms [9].
As a result, the differential cross section for Compton scatter-
ing of chiral hydrogen is given by

dσ = |ε1 · ε2|2
ω1ω2

|M|2δ(ω1 + E0 − ω2 − E f )dk2d p, (6)

where ε1 and ε2 are the polarization vectors of incident
photons and scattered photons, respectively, and the matrix

element M is given by the following expression,

M = 〈ψp|eik·rS (α, β, γ )|ψ0〉
=

∑
(nlm)m′

Dl
m′m(α, β, γ )〈ψp|eik·r|ψlmm′ 〉. (7)

In Eq. (7), S (α, β, γ ) is the spatial rotation operator acting
on the wave function ψ0(r), with α, β, and γ representing
the three Euler angles. It is introduced for the convenience of
discussing the space orientation of chiral hydrogen in the sub-
sequent text. k = k1 − k2, which is the transferred momentum
from the incident photon to the chiral hydrogen. ψlmm′ (r) =
Rnlm(r)Ylm′ (r̂). Dl

m′m(α, β, γ ) is the Wigner D-matrix element
[28]. For convenience, we will abbreviate Dl

m′m(α, β, γ ) as
Dl

m′m later in this paper.
Now, the key is how to calculate the matrix element

〈ψp|eik·r|ψlmm′ 〉. First, through series expansion, we obtain

eik·r = 4π

∞∑
l1=0

l1∑
m1=−l1

il1 jl1 (kr)Y ∗
l1m1

(k̂)Yl1m1 (r̂) (8)

and

ψp(r) = 4π

pr

∞∑
l2=0

l2∑
m1=−l2

il2 e−iσl2 Fl2 (r)Y ∗
l2m2

( p̂)Yl2m2 (r̂). (9)

Here, jl1 is the spherical Bessel function of the first kind. σl2
is called the Coulomb phase shift and it is given by

σl2 = arg[�(l2 + 1 − i/p)]. (10)

Fl2 (r) represents the Schrödinger-Coulomb function, which
satisfies the following equation,

−1

2

d2Fl2

dr2
+

[
Vc(r) + l2(l2 + 1)

2r2

]
Fl2 = E f Fl2 . (11)

Substituting Eqs. (8) and (9) into Eq. (7) yields

M =
∑

(nlm)l1l2m1m2m′
A BDl

m′mYl2m2 ( p̂), (12)

where

A = (−1)m2

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

×
(

l2 l1 l
0 0 0

)(
l2 l1 l

−m2 m1 m′

)
(13)

and

B = 16π2(−1)l2 i(l1+l2 )eiσl2 Y ∗
l1m1

(k̂)/p

×
∫ ∞

0
Fl2 (r)Rnlm(r) jl1 (kr)rdr. (14)

In Eq. (13), we employed the Wigner 3- j symbols. In addition,
because the integral in Eq. (14) cannot be given by an ele-
mentary function, we choose to perform numerical processing
on it. Specifically, we first solved Eq. (11) numerically using
the code package RADIAL [29] to obtain the function Fl2 (r).
Subsequently, in accordance with the convergence properties
of the radial wave function Rnlm(r), we truncated the upper
limit of the integral. Ultimately, the numerical integration
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result was obtained through the 20-point Gaussian-Legendre
quadrature.

Then, we can derive the expression for the light-scattering
spectrum by combining Eqs. (5) and (6), that is,

dσ

d�k̂2
dω2

= |ε1 · ε2|2 pω2

ω1

∑
l2m2

∣∣∣∣∣∣
∑

(nlm)l1m1m′
Dl

m′mA B

∣∣∣∣∣∣
2

, (15)

where

p =
√

2(ω1 + E0 − ω2). (16)

In Eq. (15), we utilize the orthogonality of spherical harmon-
ics: ∫ 2π

0

∫ π

0
Y ∗

l2m2
( p̂)Yl ′2m′

2
( p̂)d�p̂ = δl2l ′2δm2m′

2
. (17)

Similarly, the momentum spectrum ϕ(p) of the ionized elec-
tron is given by

ϕ(p) = d3σ

dpxdpydpz
=

∫
ω2

ω1
|ε1 · ε2|2

×
∣∣∣∣∣∣

∑
(nlm)l1l2m1m2m′

A BDl
m′mYl2m2 ( p̂)

∣∣∣∣∣∣
2

d�k̂2
, (18)

where

ω2 = ω1 + E0 − p2/2. (19)

B. Remarks on photon polarization

Reviewing the above derivations, we retained the polariza-
tion of both incident and scattered photons. For the interaction
between chiral molecules and light, the polarization of light
generally plays a crucial role [17–19,26,30]. However, due to
the interaction in Compton scattering being controlled by A2,
this results in the polarization vector of photons not entering
the matrix element M, hence remaining uncoupled with the
initial and final states of the electron. This observation is
evident from Eqs. (15) and (18). Therein, the polarization
information resides entirely in the term |ε1 · ε2|2, independent
of the subsequent modulus squared. Particularly for the light-
scattering spectrum, |ε1 · ε2|2 merely furnishes a function
related to the direction of the scattered photon. Nevertheless,
as Eq. (18) necessitates integration over the direction of the
scattered photon, considering different polarizations may have
certain effects on the momentum spectrum ϕ(p). In addition,
measuring the momentum of scattered photons is currently a
highly challenging task, let alone measuring the polarization
of scattered photons. Given these reasons, we do not intend
to consider the polarization of incident photons and scattered
photons in this paper, but rather average the polarization of
the incident photons and sum the polarization of the scattered
photons, that is,

|ε1 · ε2|2 → (1 + cos2 θ ). (20)

Here, θ is the angle between k1 and k2.

C. Averaging orientation

If considering the average of space orientation, there is

dσ

d�k̂2
dω2

= 1

8π2

∫ 2π

0
dα

∫ 2π

0
dγ

∫ π

0
sin βdβ

× (1 + cos2 θ )
pω2

ω1

∑
l2m2

∣∣∣∣∣∣
∑

(nlm)l1m1m′
Dl

m′mA B

∣∣∣∣∣∣
2

.

(21)

Due to ∫ 2π

0
dα

∫ 2π

0
dγ

∫ π

0
sin βdβD j1∗

m1k1
D j2

m2k2

= 8π2

2 j1 + 1
δ j1 j2δk1k2δm1m2 , (22)

thus

dσ

d�k̂2
dω2

= (1 + cos2 θ )
ω2

pω1

∑
l2m2

∑
(nlm)m′

∣∣∣∣∣∣
∑
l1m1

C D

∣∣∣∣∣∣
2

. (23)

Here, we redefine two coefficients, with

C =
√

(2l1 + 1)(2l2 + 1)

(
l2 l1 l
0 0 0

)(
l2 l1 l

−m2 m1 m′

)
(24)

and

D = il1Y ∗
l1m1

(k̂)
∫ ∞

0
Fl2 (r)Rnlm(r) jl1 (kr)rdr. (25)

By the way, in order to make the expression concise, we
omit the constant factor in Eq. (23), which will not affect the
qualitative results.

In addition, for the momentum spectrum, we obtain

ϕ(p) =
∫

ω2

ω1
(1 + cos2 θ )

∑
(nlm)

⎛
⎜⎝ 1

2l + 1

×
∑

m′

∣∣∣∣∣∣
∑

l1l2m1m2

A BYl2m2 ( p̂)

∣∣∣∣∣∣
2
⎞
⎟⎠d�k̂2

. (26)

III. RESULTS

In Sec. II, we present the derivation of the light-scattering
spectrum and ionization momentum spectrum in Comp-
ton scattering of chiral hydrogen. In this section, we will
take two different types of chiral hydrogen as examples to
show the corresponding numerical simulation results. For
convenience, we might as well set the z axis along the di-
rection of k1 in the following discussions. Meanwhile, the
energy of the incident photon is set to a fixed value, i.e.,
ω1 = 1.5 keV.
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FIG. 1. The variation of the probability distribution |ψL/R(r, r̂)|2
[given by Eq. (27)] with respect to the solid angle as r = 16 a.u.
Here, blue means ψL/R < 0, while red indicates the opposite.

A. The ρ-type chiral wave functions

Let us first discuss a so-called ρ-type chiral hydrogen [26],
whose left- and right-handed wave functions can be written as

ψL = 1
2 R4d (Y21 − Y2−1) + 1

2 iR4 f (Y31 + Y3−1),

ψR = 1
2 R4d (Y21 − Y2−1) − 1

2 iR4 f (Y31 + Y3−1). (27)

In the above equation, Rnl represents the radial wave function
in the energy eigenstate of the hydrogen atom. Note that both
ψL and ψR are real numbers. In order to demonstrate the chi-
rality of such wave functions more intuitively, we present the
spatial probability distributions of the left- and right-handed
wave functions in Fig. 1. It is evident from the figure that
ψL and ψR are mirror symmetric about the x-z plane and
cannot be made to coincide through spatial rotation. For
these two wave functions, we numerically simulate their cor-
responding light-scattering spectrum dσ/d�k̂2

by integrating
ω2 in Eq. (15). The specific results are shown in Fig. 2.
Surprisingly, the light-scattering spectra for both are identical.
Here, it is important to emphasize that the three Euler angles
(αβγ ) corresponding to the wave functions in Eq. (27) are
all equal to 0. However, through our calculations, we find
that even if α, β, and γ are changed arbitrarily, that is, the
spatial orientation of the left- and right-handed wave func-
tions is adjusted in any direction, the light-scattering spectra
still exhibit no differences for ψL and ψR. This implies that
in Compton scattering of ρ-type chiral hydrogen with any
spatial orientation, the chirality cannot be determined from
the light-scattering spectrum. As analyzed in Ref. [26], ρ-type
chiral hydrogen can effectively simulate the electronic states
of actual chiral molecules. Therefore, its Compton scattering
may provide some qualitative insights into that of the latter.
Unfortunately, our above results suggest that measuring the
light-scattering spectral signal may not be a suitable approach
when using Compton scattering to probe the chirality of
molecules.

In view of the above, we may now consider focusing on
an alternative signal—the momentum spectrum of ionized

FIG. 2. The light-scattering spectrum obtained with the help of
Eq. (27). Here, φ is the azimuth angle of k2. The data in the fig-
ure have been normalized such that the maximum value is 1.

electrons. As depicted in Fig. 3, we obtain the momen-
tum spectrum of the ionized electron generated in Compton
scattering of ρ-type chiral hydrogen through Eq. (18). By
comparing Fig. 3(a) with Fig. 3(b) [or Fig. 3(c) with Fig. 3(d)],
it is shown that, unlike the light-scattering spectra, the mo-
mentum spectrum is sensitive to chirality. To highlight this
enantiosensitivity more clearly, we can quantify the differ-
ences between the signals of two enantiomers by defining a
dissymmetry factor w, where

w = ϕL − ϕR

ϕL + ϕR
. (28)

For instance, Fig. 3(e) illustrates the difference between
Figs. 3(a) and 3(b), and the results indicate an asymmetry
of up to 24.2%. Meanwhile, we note that ϕL(px, py, pz ) =
ϕR(px,−py, pz ), that is, ϕL(p) and ϕR(p) also show mirror
symmetry about the x-z plane. This suggests that the momen-
tum spectrum might possess chirality as well. However, such
evidence is insufficient to determine chirality definitively, as
achiral three-dimensional (3D) distributions could also exhibit
these characteristics.

Currently, there is no universal and single method to define
the chirality of a 3D distribution [27,31,32]. For example, one
could define a parameter [27,33]

χ = minR
∫ ∣∣ϕR

L (p) − ϕR(p)
∣∣d p∫

ϕR(p)d p
. (29)

Here, R represents Euler angles, and ϕR
L (p) denotes the result

of performing an Euler rotation on ϕL(p). Clearly, accord-
ing to this definition, when χ = 0, ϕ(p) is achiral, whereas
when χ 
= 0, it exhibits chirality. However, considering the
computational complexity involved, this method may not be
practical. However, considering the actual computational ef-
fort here, this method is not practical. We might as well find
another way. In fact, Fig. 3 displays 2D slices at various py

values. Imagine that if these slices are put back into the 3D
space, ϕL(p) and ϕR(p) cannot coincide by rotation. Hence,
we can directly conclude that Compton scattering maps the
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FIG. 3. 2D slices of the momentum spectrum obtained with the
help of Eq. (27): (a) py = 0.1 a.u., (b) py = 0.1 a.u., (c) py = −0.1
a.u., (d) py = −0.1 a.u. (e) Distribution of dimensionless dissymme-
try factor w at py = 0.1 a.u. Here, the normalization method of the
data in (a)–(d) is consistent with that in Fig. 2.

chirality features of the ρ-type chiral hydrogen into its corre-
sponding ionization momentum spectrum.

In addition, it can also be observed from Fig. 3
that ϕL(R)(px, py, pz ) = ϕL(R)(−px,−py, pz ). For this phe-
nomenon, we may find an explanation from the wave
functions satisfying ψL(R)(x, y, z) = −ψL(R)(−x,−y, z) in
Eq. (27). Of course, this explanation is a bit far-fetched
here, but we will provide a more detailed argument for it in
Sec. III B.

B. The sp3 hybrid orbital

Now, we introduce another type of chiral hydrogen, and the
corresponding left- and right-handed wave functions are given
by

ψL = g1R2sY00 + R2p(g2Y11 + g3Y10 − g4Y1−1),

ψR = g1R2sY00 + R2p(g4Y11 + g3Y10 − g2Y1−1), (30)

where g1 = 0.93, g2 = 0.3/
√

2, g3 = 0.3, and g4 = 0.1/
√

2.
Such wave functions can represent the lowest-energy sp3

hybrid orbitals in the simplest chiral molecule [34], and their
spatial probability distribution is shown in Fig. 4. Clearly,

FIG. 4. The variation of the probability distribution |ψL/R(r, r̂)|2
[given by Eq. (30)] with respect to the solid angle as r = 2.1 a.u.
Here, color represents the magnitude of the phase of the wave
function.

ψL and ψR still exhibit mirror symmetry about the x-z plane
and are a pair of enantiomers. But it should be noted that the
chirality here depends on the phase of the wave function, not
the probability density.

Next, we can also define the dissymmetry factor W corre-
sponding to the light-scattering spectra, that is,

W =
⎛
⎝ dσ

d�k̂2

∣∣∣∣∣
ψL

− dσ

d�k̂2

∣∣∣∣∣
ψR

⎞
⎠/⎛

⎝ dσ

d�k̂2

∣∣∣∣∣
ψL

+ dσ

d�k̂2

∣∣∣∣∣
ψR

⎞
⎠.

(31)

It could be employed to quantitatively characterize the light-
scattering spectral differences between two enantiomers.
Obviously, for the ρ-type chiral hydrogen discussed in
Sec. III A, W = 0. However, for ψL and ψR in Eq. (30),
there are significant light-scattering spectral differences, as
illustrated in Fig. 5. This phenomenon also holds true for other
spatial orientations. Although we currently lack a fundamental
theoretical understanding of why this is the case, the results
obtained so far are intriguing and valuable. This is because
it suggests that the phase of the wave function also plays
an important role when investigating chirality using Compton
scattering.

In addition, we still simulate the ionization momentum
spectrum, and the outcome in Fig. 6(e) suggests that the mo-
mentum spectrum remains sensitive to chirality. In particular,
by comparing Fig. 6 with Fig. 3, we observe that the character-
istic feature ϕL(R)(px, py, pz ) = ϕL(R)(−px,−py, pz ) does not
exist in Fig. 6, while the chirality feature ϕL(px, py, pz ) =
ϕR(px,−py, pz ) remains intact. This, to some extent, corrobo-
rates our assertion in Sec. III A (see the penultimate sentence).
Because, with regard to the chiral hydrogen discussed in this
section, there exists no inherent special association between
ψL(R)(x, y, z) and ψL(R)(−x,−y, z), hence the relationship
between ϕL(R)(px, py, pz ) and ϕL(R)(−px,−py, pz ) is no
longer special.
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FIG. 5. Angular distribution of the dissymmetry factor W . The
results are obtained with the help of Eq. (30).

Finally, let us briefly discuss the issue of orientation
averaging, which is a general concern. For instance, the
light-scattering spectrum is obtained through Eq. (23). We
note that for the two types of chiral hydrogen discussed above,

FIG. 6. 2D slices of the momentum spectrum obtained with the
help of Eq. (30): (a) py = 0.1 a.u., (b) py = 0.1 a.u., (c) py = −0.1
a.u., (d) py = −0.1 a.u. (e) Distribution of dimensionless dissymme-
try factor w at py = 0.1 a.u.

the difference between ψL and ψR lies in the different con-
stant coefficients in Rnlm(r) [see Eq. (5)]. Additionally, the
summation over the index (nlm) in Eq. (23) occurs outside
the modulus operation, and the modulus square term is inde-
pendent of the magnetic quantum number m. Consequently,
whether ψR or ψL is used for calculations, the light-scattering
spectrum remains identical. Such a conclusion also applies to
the momentum spectrum [see Eq. (26)].

IV. SUMMARY AND DISCUSSION

In summary, we have conducted a study on the Compton
scattering of chiral hydrogen. Our aim is to demonstrate the
differences in the response of two enantiomers to x rays dur-
ing the process of Compton ionization. By considering two
different types of chiral hydrogen as examples, our calcu-
lations regarding the dissymmetry factors indicate that there
are significant distinctions between the ionization momentum
spectrum corresponding to the two enantiomers. It is also
found that the light-scattering spectra are incapable of chi-
ral discrimination for ρ-type enantiomers with any specific
spatial orientation. This outcome suggests there may be limi-
tations in the application of Compton light-scattering spectra
for enantiomeric recognition, despite its established effective-
ness in investigating the momentum distribution of electrons
in atoms or molecules.

Additionally, the wave functions of the chiral hydrogen
employed in this paper are somewhat special, which also
results in no chiral responses in the light-scattering spectra and
the momentum spectrum when the enantiomers are isotropic.
Nevertheless, we anticipate that the situation would vary for
actual enantiomers with more complex wave functions. It
should also be noted that experiments investigating chiral
samples via Compton ionization are lacking. In fact, due to
the maturity of COLTRIMS technique and the fact that the
photon energy (1.5 keV in the present work) of the required
x rays is not as high as demanded by the IA, we believe that
relevant experiments should be feasible.

It should also be emphasized that the current Compton
ionization method with the use of COLTRIMS still has many
shortcomings, and it cannot completely replace the well-
known electron momentum spectroscopy (EMS) [35] method,
which has long been used for structural investigations in
atomic and molecular physics. For example, the measurement
of final photons in Compton scattering still faces signifi-
cant difficulties, although indirect measurements could be
achieved through coincidence measurement techniques [12].
Therefore, in the current context, this paper is just a simple
attempt to apply Compton scattering to chiral discrimination,
and we look forward to further theoretical and experimental
explorations.

ACKNOWLEDGMENTS

This work is supported by the Innovation Program for
Quantum Science and Technology (No. 2023ZD0300700) and
National Natural Science Foundation of China (Grants No.
12088101, No. 12105011, and No. U2330401).

053104-6



ENANTIOSELECTIVE RESPONSES IN COMPTON … PHYSICAL REVIEW A 109, 053104 (2024)

[1] J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray
Physics (Wiley, Hoboken, NJ, 2011).

[2] M. F. C. Ladd, R. A. Palmer, and R. A. Palmer, Structure De-
termination by X-Ray Crystallography (Springer, Berlin, 1977),
Vol. 233.

[3] M. J. Cooper, Compton scattering and electron momentum de-
termination, Rep. Prog. Phys. 48, 415 (1985).

[4] S. H. Glenzer and R. Redmer, X-ray Thomson scattering in high
energy density plasmas, Rev. Mod. Phys. 81, 1625 (2009).

[5] G. Dixit, O. Vendrell, and R. Santra, Imaging electronic quan-
tum motion with light, Proc. Natl. Acad. Sci. USA 109, 11636
(2012).

[6] G. Dixit, J. M. Slowik, and R. Santra, Proposed imaging of
the ultrafast electronic motion in samples using x-ray phase
contrast, Phys. Rev. Lett. 110, 137403 (2013).

[7] A. H. Compton, A quantum theory of the scattering of x-rays
by light elements, Phys. Rev. 21, 483 (1923).

[8] A. H. Compton, The spectrum of scattered x-rays, Phys. Rev.
22, 409 (1923).

[9] P. Eisenberger and P. M. Platzman, Compton scattering of x rays
from bound electrons, Phys. Rev. A 2, 415 (1970).

[10] P. Eisenberger, Electron momentum density of He and H2;
Compton x-ray scattering, Phys. Rev. A 2, 1678 (1970).

[11] M. Kircher, F. Trinter, S. Grundmann, G. Kastirke, M. Weller, I.
Vela-Perez, A. Khan, C. Janke, M. Waitz, S. Zeller, T. Mletzko,
D. Kirchner, V. Honkimaki, S. Houamer, O. Chuluunbaatar,
Y. V. Popov, I. P. Volobuev, M. S. Schoffler, L. P. H. Schmidt,
T. Jahnke et al., Ion and electron momentum distributions from
single and double ionization of helium induced by Compton
scattering, Phys. Rev. Lett. 128, 053001 (2022).

[12] M. Kircher, F. Trinter, S. Grundmann et al., Kinematically
complete experimental study of Compton scattering at helium
atoms near the threshold, Nat. Phys. 16, 756 (2020).

[13] O. Chuluunbaatar, S. Houamer, Y. Popov, I. Volobuev, M.
Kircher, and R. Dörner, Compton ionization of atoms as a
method of dynamical spectroscopy, J. Quant. Spectrosc. Radiat.
Transfer 272, 107820 (2021).

[14] O. Chuluunbaatar, S. Houamer, Y. Popov, I. Volobuev, M.
Kircher, and R. Dörner, Compton double ionization of the he-
lium atom: Can it be a method of dynamical spectroscopy of
ground state electron correlation? J. Quant. Spectrosc. Radiat.
Transfer 278, 108020 (2022).

[15] R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich,
R. Moshammer, and H. Schmidt-Böcking, Cold target recoil
ion momentum spectroscopy: a momentum microscope to view
atomic collision dynamics, Phys. Rep. 330, 95 (2000).

[16] J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L. P. H.
Schmidt, and H. Schmidt-Böcking, Recoil-ion and electron mo-
mentum spectroscopy: reaction-microscopes, Rep. Prog. Phys.
66, 1463 (2003).

[17] L. D. Barron, Molecular Light Scattering and Optical Activity,
2nd ed. (Cambridge University Press, Cambridge, UK, 2004).

[18] G. D. Fasman, Circular Dichroism and the Conformational
Analysis of Biomolecules (Springer, Berlin, 2013).

[19] P. J. Stephens, Theory of vibrational circular dichroism, J. Phys.
Chem. 89, 748 (1985).

[20] P. Herwig, K. Zawatzky, M. Grieser et al., Imaging the absolute
configuration of a chiral epoxide in the gas phase, Science 342,
1084 (2013).

[21] D. Patterson, M. Schnell, and J. Doyle, Enantiomer-specific de-
tection of chiral molecules via microwave spectroscopy, Nature
(London) 497, 475 (2013).

[22] D. Patterson and J. M. Doyle, Sensitive chiral analysis via
microwave three-wave mixing, Phys. Rev. Lett. 111, 023008
(2013).

[23] V. A. Shubert, D. Schmitz, D. Patterson, J. M. Doyle, and
M. Schnell, Identifying enantiomers in mixtures of chiral
molecules with broadband microwave spectroscopy, Angew.
Chem., Int. Ed. 53, 1152 (2014).

[24] D. Ayuso, O. Neufeld, A. Ordonez, P. Decleva, G. Lerner, O.
Cohen, M. Ivanov, and O. Smirnova, Synthetic chiral light for
efficient control of chiral light–matter interaction, Nat. Photon.
13, 866 (2019).

[25] O. Neufeld, D. Ayuso, P. Decleva, M. Y. Ivanov, O. Smirnova,
and O. Cohen, Ultrasensitive chiral spectroscopy by dynamical
symmetry breaking in high harmonic generation, Phys. Rev. X
9, 031002 (2019).

[26] A. F. Ordonez and O. Smirnova, Propensity rules in photoelec-
tron circular dichroism in chiral molecules. I. Chiral hydrogen,
Phys. Rev. A 99, 043416 (2019).

[27] N. Mayer, S. Patchkovskii, F. Morales, M. Ivanov, and O.
Smirnova, Imprinting chirality on atoms using synthetic chiral
light fields, Phys. Rev. Lett. 129, 243201 (2022).

[28] E. P. Wigner, Group Theory: And its Application to the Quantum
Mechanics of Atomic Spectra (Academic, New York, 1959).

[29] F. Salvat and J. M. Fernández-Varea, Radial: A Fortran subrou-
tine package for the solution of the radial Schrödinger and Dirac
wave equations, Comput. Phys. Commun. 240, 165 (2019).

[30] A. F. Ordonez and O. Smirnova, Propensity rules in photoelec-
tron circular dichroism in chiral molecules. II. General picture,
Phys. Rev. A 99, 043417 (2019).

[31] A. B. Harris, R. D. Kamien, and T. C. Lubensky, Molecu-
lar chirality and chiral parameters, Rev. Mod. Phys. 71, 1745
(1999).

[32] M. Petitjean, Chirality and symmetry measures: A transdisci-
plinary review, Entropy 5, 271 (2003).

[33] O. Neufeld and O. Cohen, Unambiguous definition of handed-
ness for locally chiral light, Phys. Rev. A 105, 023514 (2022).

[34] P. Fischer, D. S. Wiersma, R. Righini, B. Champagne, and A. D.
Buckingham, Three-wave mixing in chiral liquids, Phys. Rev.
Lett. 85, 4253 (2000).

[35] I. E. McCarthy and E. Weigold, Electron momentum spec-
troscopy of atoms and molecules, Rep. Prog. Phys. 54, 789
(1991).

053104-7

https://doi.org/10.1088/0034-4885/48/4/001
https://doi.org/10.1103/RevModPhys.81.1625
https://doi.org/10.1073/pnas.1202226109
https://doi.org/10.1103/PhysRevLett.110.137403
https://doi.org/10.1103/PhysRev.21.483
https://doi.org/10.1103/PhysRev.22.409
https://doi.org/10.1103/PhysRevA.2.415
https://doi.org/10.1103/PhysRevA.2.1678
https://doi.org/10.1103/PhysRevLett.128.053001
https://doi.org/10.1038/s41567-020-0880-2
https://doi.org/10.1016/j.jqsrt.2021.107820
https://doi.org/10.1016/j.jqsrt.2021.108020
https://doi.org/10.1016/S0370-1573(99)00109-X
https://doi.org/10.1088/0034-4885/66/9/203
https://doi.org/10.1021/j100251a006
https://doi.org/10.1126/science.1246549
https://doi.org/10.1038/nature12150
https://doi.org/10.1103/PhysRevLett.111.023008
https://doi.org/10.1002/anie.201306271
https://doi.org/10.1038/s41566-019-0531-2
https://doi.org/10.1103/PhysRevX.9.031002
https://doi.org/10.1103/PhysRevA.99.043416
https://doi.org/10.1103/PhysRevLett.129.243201
https://doi.org/10.1016/j.cpc.2019.02.011
https://doi.org/10.1103/PhysRevA.99.043417
https://doi.org/10.1103/RevModPhys.71.1745
https://doi.org/10.3390/e5030271
https://doi.org/10.1103/PhysRevA.105.023514
https://doi.org/10.1103/PhysRevLett.85.4253
https://doi.org/10.1088/0034-4885/54/6/001

