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Point defects of a three-dimensional vector order parameter
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From the definition of topological charges of point defects, we obtain the densities of point defects. The
evolution of point defects is also studied from the topological properties of a three-dimensional vector order
parameter. The point defects are found generating or annihilating at the limit points and encountering, splitting,
or merging at the bifurcation points of the three-dimensional vector order parameter.
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PACS number~s!: 47.32.Cc, 41.20.Jb, 11.27.1d, 02.40.Pc
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I. INTRODUCTION

Defects play an important role in the understanding o
variety of problems in physics. In particular there has be
progress in the study the defects associated with
n-component vector order parameter fieldfW (rW,t). For the
scalar casen51, the defects are domain walls that are poi
for the spatial dimensionalityd51, lines ford52, planes for
d53, etc. More generally, forn5d, one has point defects
This leads to vortices forn5d52 and monopoles forn5d
53, etc. In certain cosmological@1# and phase ordering@2#
problems key questions involve an understanding of the e
lution and correlation among point defects. In studying su
objects in field theory questions arise as to how one
define quantities such as the densities of a point defect
the associated point defect velocity field. It is interesting
consider the appropriate form for the point defect densi
when expressed in terms of the vector order parameter
fW (rW,t). This has been carried out by Halperin@3# and ex-
ploited by Liu and Mazenko@4#: In the casen5d, the first
ingredient is the rather obvious result

(
a

d„rW2rWa~ t !…5d„fW ~rW,t !)UDS f

x D U,
where the second factor on the right-hand side is just
Jacobian of the transformation from the variablefW to rW. This
is combined with the less obvious result

ha5sgnD~f/x!urWa

to give

r~rW,t !5(
a

had„rW2rWa~ t !…5d~fW !D~f/x!. ~1!

Unfortunately, their analysis is incomplete, which we w
discuss in detail.

In this paper we will investigate the evolution of poi
defects of a three-dimensional vector order parameter
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making use of thef-mapping topological current theor
@5,6#, which is a useful tool in studying the topological in
variant and structure of physics systems and has been us
study the topological current of magnetic monopole, top
logical string theory, the topological characteristics of dis
cations and disclinations continuum, the topological struct
of the defects of space-time in the early universe as wel
its topological bifurcation, the topological structure of th
Gauss-Bonnet-Chern theorem, and the topological struc
of the London equation in superconductors.

II. DENSITIES AND VELOCITY FIELD
OF POINT DEFECTS

We can introduce a three-dimensional unit vector field

nW ~rW,t !5fW ~rW,t !/ifi , ifi25fafa, ~2!

where

fW ~rW,t !5~f1,f2,f3! ~3!

is a vector order parameter. From Eq.~2! it is easy to see tha
the zeros of the vector order parameterfW are just the singu-
larities of nW . It is known that the zero points offW , i.e.,

f1~x,y,z,t !50,

f2~x,y,z,t !50, ~4!

f3~x,y,z,t !50,

determine the locations of point defects. If the Jacobian
terminant

DS f

x D5
]~f1,f2,f3!

]~x1,x2,x3!
Þ0,

the solutions of Eq.~4! are generally expressed as

x5xl~ t !, y5yl~ t !, z5zl~ t !, l 51,2,... ,N, ~5!

which are the world lines ofN point defects rW l(t) ( l
51,2, . . . ,N) and representN point defects moving in
space.
ic
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The generalized winding numberWl of fW at one of zero
points rW l is defined by the Gauss mapn: ]V l→S2 @7#,

Wl5
1

8pE]V l

n* ~eabcn
adnb`dnc!, ~6!

where]V l is the boundary of a neighborhoodV l of rW l with
rW l¹]V l ,V lùVm5B. Topologically this means that whe
the pointrW covers]V l once, the unit vectornW will cover S2,
or fW covers the corresponding regionWl times, which is a
topological invariant and is also called the degree of
Gauss map@8,9#. The winding numberWl is also called the
topological charge of thelth point defect locating at thelth
zero points of the vector order parameterfW . Using the
Stokes theorem in the exterior differential form, one can
duce that

Wl5
1

8pEV l

eabce
i jk] in

a] jn
b]kn

cd3r . ~7!

So it is clear that the densities of point defect are just

r5
1

8p
eabce

i jk] in
a] jn

b]kn
c, ~8!

which are the time components of the topological curren
the three-dimensional vector order parameter@10#

Km5
1

8p
emnlreabc]yn

a]lnb]rnc, m50,1,2,3. ~9!

Obviously, the current~9! is identically conserved,

]mKm50. ~10!

Following thef-mapping topological current theory it ca
be rigorously proved that

Km5d3~fW !DmS f

x D , ~11!

where the JacobianDm(f/x) is defined as

eabcDmS f

x D5emnlr]yf
a]lfb]rfc ~12!

in which the usual three-dimensional Jacobian

DS f

x D5D0S f

x D .

Now the densities of point defects are expressed in term
the vector order parameter fieldfW (rW,t),

r5d3~fW !DS f

x D . ~13!

Here one can see that the densities of point defects~13! are
obtained directly from the definition of the topologic
charge of point defects~winding numbers of zero points!,
which is more general than usually considered.
e

-

f

of

According to the d-function theory @11# and the f-
mapping topological current theory, one can prove that

d3~fW !5(
l 51

N
b l

uD~f/x!rW l
u
d3~rW2rW l !, ~14!

where the positive integerb l is called the Hopf index@6# of
the mapx→f. The meaning ofb l is that when the pointrW

covers the neighborhood of the zerorW l once, the vector field
fW covers the corresponding regionb l times. Submitting Eq.
~14! into Eq. ~8!, we obtain the densities of point defects

r5(
l 51

N

b lh ld
3~rW2rW l !, ~15!

whereh l is the Brouwer degree@6#

h l5sgnD~f/x!rW l
561 . ~16!

One can find the relation between the Hopf indexb l , the
Brouwer degreeh l , and the winding numberWl ,

Wl5b lh l ,

from Eqs.~7! and ~15!.
Here we see that the result~1! obtained by Halperin, Liu,

and Mazenko is not complete. They did not considering
caseb lÞ1. Furthermore, they did not discuss what will ha
pen whenD(f/x)50, i.e., h l is indefinite, which we will
discuss in following sections.

Following our theory, we can also get the velocity of th
lth point defect

y l
i5

dxl
i

dt
5

Di~f/x!

D~f/x!
U

rW l

, i 51,2,3,

from which one can identify the point defects velocity fie
as

y i5
Di~f/x!

D~f/x!
, i 51,2,3, ~17!

where it is assumed that the velocity field is used in expr
sions multiplied by the point defects locating thed function.
The expressions given by Eq.~17! for the velocity of point
defects are useful because they avoid the problem of ha
to specify the position of point defects explicitly. The pos
tions are implicitly determined by the zeros of the order p
rameter field.

The current densities of point defects (N point defects
with topological chargeb lh l moving in space! can be writ-
ten as the same form as the current densities in hydrodyn
ics:

Ji5(
l 51

N

b lh ld
3
„rW2rW l~ t !…

dxl
i

dt
. ~18!

From Eqs.~11! and~14! the current densities of point defec
can be written as the concise forms
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Ji5Ki5d3~fW !Di S f

x D ~19!

or

Ji5
1

8p
e inlreabc]yn

a]lnb]rnc. ~20!

According to Eq.~10!, the topological charges of point de
fects are conserved:

]r

]t
1¹W •JW50, ~21!

which is only the topological property of vector order para
eter.

III. GENERATION AND ANNIHILATION
OF POINT DEFECTS

As being discussed before, the zeros of the smooth ve
fW play an important roles in studying the point defects o
three-dimensional vector order parameter. Now we be
studying the properties of the zero points~locations of point
defects!, in other words, the properties of the solutions of E
~4!. As we knew before, if the Jacobian

DS f

x D5
]~f1,f2,f3!

]~x1,x2,x3!
Þ0, ~22!

we will have the isolated solutions~5! of Eq. ~4!. The iso-
lated solutions are called regular points. However, when
condition~ 22! fails, the usual implicit function theorem is o
no use. The above results~5! will change in some way and
will lead to the branch process. We denote one of the z
points as (t* ,zW i). Mazenko@12# also obtained the velocity
field of point defects~17!, but did not discuss the case whe
D(f/x)50, i.e.,h l is indefinite. If the Jacobian

D1S f

x D U
~ t* ,zW i !

Þ0, ~23!

we can use the JacobianD1(f/x) instead ofD(f/x) for the
purpose of using the implicit function theorem@13#. Then we
have a unique solution of Eqs.~4! in the neighborhood of the
points (t* ,zW i),

~24!
t5t~x1!,

xi5xi~x1!, i 52,3,

with t* 5t(zi
1). We call the critical points (t* ,zW i) the limit

points. In the present case, we know that

dx1

dt U
~ t* ,zW i !

5
D1~f/x!u~ t* ,zW i !

D~f/x!u~ t* ,zW i !

5`, ~25!

i.e.,
-

or

in

.

e

ro

dt

dx1U
~ t* ,zW i !

50.

The Taylor expansion of the solution of Eq.~24! at the limit
point (t* ,zW i) is @5#

t2t* 5
1

2

d2t

~dx1!2U
~ t* ,zW i !

~x12zi
1!2, ~26!

which is a parabola in thex1-t plane. From Eq.~26! we can
obtain the two solutionsx1

1(t) and x2
1(t), which give two

branch solutions~world lines of point defects! of Eqs.~4!. If
@d2t/(dx1)2# u(t* ,zW i )

.0, we have the branch solutions fort

.t* @see Fig. 1~a!#; otherwise, we have the branch solutio
for t,t* @see Fig. 1~b!#. These two cases are related to t
origin and annihilation of point defects.

One of the result of Eq.~25!, that the velocity of point
defects is infinite when they are annihilating, agrees with t
obtained by Bray@14# who has a scaling argument associat

FIG. 1. Projecting the world lines of point defects onto t
(x1-t) plane. ~a! Branch solutions for Eq. ~26! when
@d2t/(dx1)2# u(t* ,zW i )

.0, i.e., a pair of point defects with opposit
charges is generated at the limit point, i.e., the origin of point
fects. ~b! Branch solutions for Eq.~26! when @d2t/(dx1)2# u(t* ,zW i )

,0, i.e., a pair of point defects with opposite charges are ann
lated at the limit point.
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PRE 59 531POINT DEFECTS OF A THREE-DIMENSIONAL VECTOR . . .
with the point defect final annihilation, which leads to lar
velocity tail. From Eq.~25! we also get the result that th
velocity of the point defects is infinite when they are gen
ating, which is gained only from the topology of the thre
dimensional vector order parameter.

Since the topological charge of point defect is identica
conserved~21!, the topological charge of these two poi
defects must be opposite at the limit point, i.e.,

b i 1
h i 1

52b i 2
h i 2

, ~27!

which shows thatb i 1
5b i 2

andh i 1
52h i 2

. One can see tha

the fact the Brouwer degreeh is indefinite at the limit points
implies that it can change discontinuously at limit poin
along the world lines of point defects~from 61 to 71). It is
easy to see from Fig. 1 that whenx1.zl

1 , h i 1
561 and

whenx1,zl
1 , h i 2

571.

For a limit point it is also required thatD1(f/x)u(t* ,zW i )

Þ0. As to a bifurcation point@15#, it must satisfy a more
complex condition. This case will be discussed in the follo
ing section in detail.

IV. BIFURCATION OF THE POINT DEFECT VELOCITY
FIELD

In this section we have the restrictions of Eqs.~4! at the
bifurcation point (t* ,zW i),

~28!

DS f

x D U
~ t* ,zW i !

50,

D1S f

x D U
~ t* ,zW i !

50,

which will lead to an important fact that the function rel
tionship betweent andx1 is not unique in the neighborhoo
of the bifurcation point (zW i ,t* ). It is easy to see that

dx1

dt U
~ t* ,zW i !

5
D1~f/x!u~ t* ,zW i !

D~f/x!u~ t* ,zW i !

, ~29!

which under the constraint~28! directly shows that the direc
tion of the integral curve of Eq.~29! is indefinite, i.e., the
velocity field of point defects is indefinite at the poi
(zW i ,t* ). This is why the very point (zW i ,t* ) is called a bifur-
cation point of the three-dimensional vector order param
fW .

Next we will find a simple way to search for the differe
directions of all branch curves~or velocity field of the point
defect! at the bifurcation point. Assume that the bifurcatio
point (zW i ,t* ) has been found from Eqs.~4! and ~28!. We
know that, at the bifurcation point (zW i ,t* ), the rank of the
Jacobian matrix @]f/]x# is smaller than 3 @for
D(f/x)u(t* ,zW i )

50]. First, we suppose that the rank of th

Jacobian matrix@]f/]x# is 2 ~the case of a smaller rank wi
be discussed later!. In addition, according to the
f-mapping topological current theory, the Taylor expans
-
-

-

er

n

of the solution of Eq.~4! in the neighborhood of the bifur
cation point (zW i ,t* ) can be expressed as@5#

A~x12zi
1!212B~x12zi

1!~ t2t* !1C~ t2t* !250, ~30!

which leads to

AS dx1

dt D 2

12B
dx1

dt
1C50, ~31!

and

CS dt

dx1D 2

12B
dt

dx1
1A50, ~32!

whereA, B, andC are three constants. The solutions of E
~31! or ~32! give different directions of the branch curve
~world lines of point defects! at the bifurcation point. There
are four possible cases that will show the physical meani
of the bifurcation points.

Case 1(AÞ0). For D54(B22AC).0 from Eq. ~31!
we get two different directions of the velocity field of poin
defects

dx1

dt U
1,2

5
2B6AB22AC

A
, ~33!

which are shown in Fig. 2, where two world lines of tw
point defects intersect with different directions at the bifu
cation point. This shows that two point defects are enco
tered at and then depart from the bifurcation point.

Case 2(AÞ0). For D54(B22AC)50, from Eq. ~31!
we get only one direction of the velocity field of point de
fects

dx1

dt U
1,2

52
B

A
, ~34!

which includes three important cases.~a! Two world lines
are in contact tangentially, i.e., two point defects are enco

FIG. 2. Projecting the world lines of point defects onto t
(x1-t)-plane. Two world lines intersect with different directions
the bifurcation point, i.e., two point defects are encountered at
bifurcation point.
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tered tangentially at the bifurcation point@see Fig. 3~a!#. ~b!
Two world lines merge into one world line, i.e., two poi
defects merge into one point defect at the bifurcation po
@see Fig. 3~b!#. ~c! One world line resolves into two world

FIG. 3. ~a! Two world lines are in contact tangentially, i.e., tw
point defects are encountered tangentially at the bifurcation po
~b! Two world lines merge into one world line, i.e., two point d
fects merge into one point defect at the bifurcation point.~c! One
world line resolves into two world lines, i.e., one point defect sp
into two point defects at the bifurcation point.
t

lines, i.e., one point defect splits into two point defects at
bifurcation point@see Fig. 3~c!#.

Case 3(A50,CÞ0). For D54(B22AC)50, from Eq.
~32! we have

dt

dx1U
1,2

5
2B6AB22AC

C
50, 2

2B

C
. ~35!

There are two important cases.~a! One world line resolves
into three world lines, i.e., one point defect splits into thr
point defects at the bifurcation point@see Fig. 4~a!#. ~b!
Three world lines merge into one world line, i.e., three po
defects merge into one point defect at the bifurcation po
@see Fig. 4~b!#.

Case 4(A5C50). Equations~31! and~32! give, respec-
tively,

dx1

dt
50,

dt

dx1
50. ~36!

t.

FIG. 4. Two important cases of Eq.~35!. ~a! One world line
resolves into three world lines, i.e., one point defect splits into th
point defects at the bifurcation point.~b! Three world lines merge
into one world line, i.e., three point defects merge into one po
defect at the bifurcation point.
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This case is obvious in Fig. 5 and is similar to case 3.
The above solutions reveal the evolution of the point

fects. Besides the encountering of the point defects, i.e.,
point defects are encountered at and then depart from
bifurcation point along different branch curves@see Figs. 2
and 3~a!#, it also includes splitting and merging of point d
fects. When a multicharged point defect moves through
bifurcation point, it may split into several point defects alo
different branch curves@see Figs. 3~c!, 4~a!, and 5~b!#. On
the contrary, several point defects can merge into one p
defect at the bifurcation point@see Figs. 3~b! and 4~b!#. A
similar analysis of the topological charge shows that the s
of the topological charge of the final point defect~s! must be
equal to that of the initial point defect~s! at the bifurcation
point, i.e.,

(
f

b l f
h l f

5(
i

b l i
h l i

~37!

for fixed l . Furthermore, from the above studies, we see t
the generation, annihilation, and bifurcation of point defe
are not gradual changes, but start at a critical value of a
ments, i.e., a sudden change.

FIG. 5. Two world lines intersect normally at the bifurcatio
point. This case is similar to Fig. 4.~a! Three point defects merg
into one point defect at the bifurcation point.~b! One point defect
splits into three point defects at the bifurcation point.
-
o

he

e

nt

m

at
s
u-

Finally, we discuss the branch process at a higher deg
erated point. We have studied the case that the rank of
Jacobian matrix@]f/]x# of Eqs. ~4! is 25321. Now, we
consider the case that the rank of the Jacobian matrix
5322. SetJ2(f/x)5 ]f1/]x1 and suppose that detJ2Þ0.
With the same methods used in obtaining Eq.~30!, we can
get the solution of Eqs.~4! in the neighborhood of the highe
degenerated bifurcation point (zW i ,t* ) @5#,

a0S dx2

dt D 4

1a1S dx2

dt D 3

1a2S dx2

dt D 2

1a3S dx2

dt D1a450,

~38!

wherea0 , a1 , a2 , anda3 are also four constants. Therefor
we get different directions of the world lines of point defec
at the higher degenerated bifurcation point. The numbe
different directions of the world lines is at most 4. Compa
ing with Eqs.~31! and ~32!, the above solutions also reve
encountering, spliting, and merging of the point defe
along more directions.

V. CONCLUSIONS

First, the densities of point defects~13! and ~15! have
been obtained directly from the definition of topologic
charges of point defects~winding numbers of zero points o
the vector order parameter!, which is more general than usu
ally considered and will be helpful as a complement of t
works of point defects done by Mazenkoet al. Second, we
have studied the evolution of the point defects of a thr
dimensional vector order parameter by making use of thef
mapping topological current theory. We conclude that th
exist crucial cases of branch processes in the evolution of
point defects whenD(f/x)50, i.e., h l is indefinite. This
means that the point defects are generated or annihilate
the limit points and are encountered, split, or merge at
bifurcation points of the three-dimensional vector order p
rameter, which shows that the point defect system is unst
at these branch points. Third, we found the result that
velocity of point defects is infinite when they are annihilatin
or generating, which is obtained only from the topologic
properties of the three-dimensional vector order parame
Fourth, we obtain two restrictions of the evolution of poi
defects. One restriction is the conservation of the topolog
charge of the point defects during the branch process@see
Eqs.~27! and~37!#; the other restriction is that the number
different directions of the world lines of point defects is
most 4 at the bifurcation points@see Eqs.~30!, ~32!, and
~38!#. The first restriction is already known, but the second
pointed out here for the first time to our knowledge. We ho
that it can be verified in the future. Finally, we would like
point out that all the results in this paper have been obtai
only from the viewpoint of topology without using any pa
ticular models or hypothesis.
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