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Point defects of a three-dimensional vector order parameter
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From the definition of topological charges of point defects, we obtain the densities of point defects. The
evolution of point defects is also studied from the topological properties of a three-dimensional vector order
parameter. The point defects are found generating or annihilating at the limit points and encountering, splitting,
or merging at the bifurcation points of the three-dimensional vector order parameter.
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PACS numbsefs): 47.32.Cc, 41.20.Jb, 11.2i7d, 02.40.Pc

[. INTRODUCTION making use of theg-mapping topological current theory
45’6]’ which is a useful tool in studying the topological in-

[_)efects play an |r_nportan_t role in th_e understanding of variant and structure of physics systems and has been used to
variety of problems in physics. In particular there has been

) . . study the topological current of magnetic monopole, topo-
progress in the study the defects -afsgmated with 2 ogic);I stringpthegry, the topological ?:haracteristic?s of disFI)o—
n-component vector order parameter figldr,t). For the  cations and disclinations continuum, the topological structure
scalar case =1, the defects are domain walls that are pointsf the defects of space-time in the early universe as well as
for the spatial dimensionality=1, lines ford=2, planes for s topological bifurcation, the topological structure of the

d=3, etc. More generally, fon=d, one has point defects. Gauss-Bonnet-Chern theorem, and the topological structure
This leads to vortices fon=d=2 and m0n0p0|es fon=d of the London equation in Superconductors'

=3, etc. In certain cosmologicfl] and phase orderin]
problems key questions involve an understanding of the evo-
lution and correlation among point defects. In studying such
objects in field theory questions arise as to how one can
define quantities such as the densities of a point defect and We can introduce a three-dimensional unit vector field
the associated point defect velocity field. It is interesting to

consider the appropriate form for the point defect densities n(r.)=ar /el |él2=¢2p?, 2
when expressed in terms of the vector order parameter field

&(r,t). This has been carried out by Halpef®] and ex- Where

ploited by Liu and Mazenkd4]: In the casen=d, the first - - 1 o .3
ingredient is the rather obvious result d(r,t)=(¢", 0%, ¢°) ©)

II. DENSITIES AND VELOCITY FIELD
OF POINT DEFECTS

is a vector order parameter. From EB) it is easy to see that
, the zeros of the vector order parameffeare just the singu-

larities ofn. It is known that the zero points af, i.e.,
where the second factor on the right-hand side is just the

2 5(F—Fa<t>)=5($<F,t))’D(§)

. . . 2 - . ¢1(X1yizyt):01
Jacobian of the transformation from the variablé¢o r. This
is combined with the less obvious result 2(x,y,2,t)=0, (4)
Na=SID(S/X)]; $3(x,y,z,t)=0,
to give determine the locations of point defects. If the Jacobian de-
terminant
p(r =2 7,60 =1, (1)=8($)D(¢/x). (1) ( ¢) AL 82 4°)
[e3 D | == - " ,
X A(xt,x?,x3)
Unfortunately, their analysis is incomplete, which we will
discuss in detail. the solutions of Eq(4) are generally expressed as
In this paper we will investigate the evolution of point
defects of a three-dimensional vector order parameter by  Xx=x(t), y=y/(t), z=z(t), 1=12,...N, (5

which are the world lines ofN point defectsr,(t) (I
* Author to whom correspondence should be addressed. Electrone 1,2,... N) and representN point defects moving in
address: itp4@zu.edu.cn space.
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The generalized winding numb#y, of <Zat one of zero
pointsr, is defined by the Gauss map 9Q,— ? [7],

1

=gz,

n* (epn?dn®Adn®), (6)
Q
where (), is the boundary of a neighborhod of r, with
ﬂ & 0Q,QNQ,=J. Topologically this means that when
the pointr coversd(), once, the unit vecton will cover S?,

or <Z covers the corresponding regi®d, times, which is a
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According to the S-function theory[11] and the ¢-
mapping topological current theory, one can prove that

8%(d)= 2 S(r-1), (14)

|D<¢/x>r||
where the positive integes, is called the Hopf index6] of
the mapx— ¢. The meaning of3, is that when the poinf
covers the neighborhood of the zefr,oonce, the vector field
<Z covers the corresponding regigh times. Submitting Eq.

topological invariant and is also called the degree of thg14) into Eq.(8), we obtain the densities of point defects

Gauss map8,9]. The winding numbekV, is also called the
topological charge of théh point defect locating at thith

zero points of the vector order parametér Using the

N
Z \7,6° f|) (15

Stokes theorem in the exterior differential form, one can de-

duce that

1 ijk a b cH3
W, = €apcE’ IdiN &Jn an d°r. (7)

870,

So it is clear that the densities of point defect are just

P=g- o €ance’ “din?d;n3,n°, (8)

which are the time components of the topological current of

the three-dimensional vector order param¢idl

1
K“=%e””"peabc(?vna&knbapnc, ©w=0123. (9
Obviously, the current9) is identically conserved,
d,K*=0. (10)

Following the ¢-mapping topological current theory it can
be rigorously proved that

K“=53($)D“(§), 1
where the JacobiaD*(¢/x) is defined as
abcryu d) — _MVAp a b c
€D =€ 3,9%\ "3, b (12

in which the usual three-dimensional Jacobian

oot

Now the densities of point defects are expressed in terms of

the vector order parameter fiel(r t),
- [P
p=é\*(¢>)D(;). (13

Here one can see that the densities of point def@@sare

obtained directly from the definition of the topological

charge of point defectéwinding numbers of zero points
which is more general than usually considered.

where 7, is the Brouwer degrefs]

=sgnD(¢/x);,=

+

+ (16)
One can find the relation between the Hopf inggx the
Brouwer degreey,, and the winding numbévy, ,

W, =Bin,

from Eqgs.(7) and (15).
Here we see that the res(l) obtained by Halperin, Liu,
and Mazenko is not complete. They did not considering the
casepB, # 1. Furthermore, they did not discuss what will hap-
pen whenD(¢/x)=0, i.e., 5, is indefinite, which we will
discuss in following sections.
Following our theory, we can also get the velocity of the

Ith point defect

dx

_Di(¢/x)
"Tdt T D(gIX) |

i=1,2,3,

from which one can identify the point defects velocity field
as

. Di(pix)
U—W, |—1,2,3,

where it is assumed that the velocity field is used in expres-
sions multiplied by the point defects locating tBdunction.

The expressions given by E(L7) for the velocity of point
defects are useful because they avoid the problem of having
to specify the position of point defects explicitly. The posi-
tions are implicitly determined by the zeros of the order pa-
rameter field.

The current densities of point defectbl (point defects
with topological charges, , moving in spackcan be writ-

ten as the same form as the current densities in hydrodynam-
ics:

17

. .. dx
I=3 BT -1(v) 5 (19
I=1

From Eqs(11) and(14) the current densities of point defects
can be written as the concise forms
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(19

Ji:Ki:53($)Di(§

or
1
T8

€™M e,ped,N?d\nPd,N°. (20)

According to Eq.(10), the topological charges of point de-

fects are conserved:

J
P v.i=0

g (21

which is only the topological property of vector order param-

eter.

IIl. GENERATION AND ANNIHILATION
OF POINT DEFECTS

As being discussed before, the zeros of the smooth vector

& play an important roles in studying the point defects of a
three-dimensional vector order parameter. Now we begin

studying the properties of the zero poiritscations of point

defects, in other words, the properties of the solutions of Eq.

(4). As we knew before, if the Jacobian

1 42 43
D(f):aw) B -

X a(xt,x2%,x3)

we will have the isolated solution®) of Eq. (4). The iso-
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lated solutions are called regular points. However, when the F|G. 1. Projecting the world lines of point defects onto the

condition( 22) fails, the usual implicit function theorem is of (x’-t)

plane. (@) Branch solutions for Eq.(26) when

no use. The above results) will change in some way and [d?t/(dx*)?] |, :)>0, i.e., a pair of point defects with opposite
will lead to the branch process. We denote one of the zergharges is generated at the limit point, i.e., the origin of point de-
points as {*,z). Mazenko[12] also obtained the velocity fects. (b) Branch solutions for Eq(26) when [d2t/(dx)? T 2y
field of point defect€17), but did not discuss the case when <0, i.e., a pair of point defects with opposite charges are annihi-

D(¢/x)=0, i.e., 5, is indefinite. If the Jacobian

o

we can use the Jacobi@n'(¢/x) instead ofD (4/x) for the
purpose of using the implicit function theordd8]. Then we
have a unique solution of Eqgl) in the neighborhood of the

points ¢*,Z),

#0,

(t*,Z))

(23

(24)
t=t(x"),
x'=x(x!), i=2,3,

with t* =t(z'). We call the critical pointstf,z) the limit
points. In the present case, we know that

¢/X)|(t* z)
D(¢/X)|(t* z)

dxt
dt| .

(t*.7)

=, (29)

lated at the limit point.

dt
dxt

(t*.Z)

The Taylor expansion of the solution of EQ4) at the limit
point (t*,z,) is [5]

d%t

(x*=z))?,

(t*,3)

(26)

2 (dx)?

which is a parabola in the'-t plane. From Eq(26) we can
obtain the two solutionsc(t) and x3(t), which give two
branch solutiongworld lines of point defecisof Eqgs.(4). If

[d?t/(dxY)?] |(t*ii)>0' we have the branch solutions for

>t* [see Fig. 1a)]; otherwise, we have the branch solutions
for t<t* [see Fig. 1b)]. These two cases are related to the
origin and annihilation of point defects.

One of the result of Eq(25), that the velocity of point
defects is infinite when they are annihilating, agrees with that
obtained by Bray14] who has a scaling argument associated
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with the point defect final annihilation, which leads to large
velocity tail. From Eq.(25) we also get the result that the
velocity of the point defects is infinite when they are gener-
ating, which is gained only from the topology of the three-
dimensional vector order parameter.

Since the topological charge of point defect is identically
conserved(21), the topological charge of these two point
defects must be opposite at the limit point, i.e.,

Bi,mi,= — Bi, i, (27)

xl

which shows thaBilz,Bi2 and 7,= = i, One can see that
the fact the Brouwer degreg is indefinite at the limit points
implies that it can change discontinuously at limit points
along the world lines of point defectBom =1 to =1). Itis t* t

easy to see from Fig. 1 that whef’r>z|1, 7, =*1 and o ) )
1.1 1 1 FIG. 2. Projecting the world lines of point defects onto the
whenx*<z, 7;,=+1. (x1-t)-plane. Two world lines intersect with different directions at
For a limit point it is also required thd])l(d)/x)l(t*,gi) the bifurcation point, i.e., two point defects are encountered at the
#+0. As to a bifurcation poinf15], it must satisfy a more bifurcation point.

complex condition. This case will be discussed in the follow- ) . ) .
ing section in detail. of the solution of Eq(4) in the neighborhood of the bifur-

cation point ¢ ,t*) can be expressed &3]

IV. BIFURCATION OF THE POINT DEFECT VELOCITY

FIELD A(X*—Z")2+42B(x -z (t—t*) + C(t—t*)?=0, (30)

In this section we have the restrictions of E¢$. at the ~ Which leads to
bifurcation point ¢*,z,),

dxt\? dxt
. (28 Algr| +2B5r +C=0, (31
of2],,
X (t*,%) and
b dt \? dt
DY — =0, C|l—| +2B—+A=0, (32)
X 7 dxt dxt

which will lead to an important fact that the function rela- WhereA, B, andC are three constants. The solutions of Eq.
tionship between andx! is not unique in the neighborhood (31 or (32) give different directions of the branch curves
of the bifurcation point % ,t*). It is easy to see that (world lines o_f point defecysat _the bifurcation point. Therg

' are four possible cases that will show the physical meanings
of the bifurcation points.

1 -
dxt ) DY) (¢ 7, 29 Case 1(A#0). For A=4(B>—~AC)>0 from Eq. (31)
dt (t.3) D(¢/X)|(t*,ii) ' we get two different directions of the velocity field of point
defects
which under the constrairi28) directly shows that the direc- 1 _ 57T A~
tion of the integral curve of Eq29) is indefinite, i.e., the ax =M, (33)
velocity field of point defects is indefinite at the point dt 12 A

(z,,t*). This is why the very pointZ,t*) is called a bifur- , o _

cation point of the three-dimensional vector order parameteW/hich are shown in Fig. 2, where two world lines of two

- point defects intersect with different directions at the bifur-

2 _— . ; cation point. This shows that two point defects are encoun-
Next we will find a simple way to search for the different

directions of all branch curve®r velocity field of the point

tered at and then depart from the bifurcation point.
defec) at the bifurcation point. Assume that the bifurcation

Case 2(A+#0). For A=4(B>—AC)=0, from Eq.(31)
2 we get only one direction of the velocity field of point de-
point (z;,t*) has been found from Eq$4) and (28). We  fgcts
know that, at the bifurcation poini(,t*), the rank of the

Jacobian matrix [d¢/dx] is smaller than 3 [for dx* B

D(&/X)|(+ z)=0]. First, we suppose that the rank of the dt 12:_ A’ (34)

Jacobian matrixd¢/dx] is 2 (the case of a smaller rank will
be discussed later In addition, according to the which includes three important cas€s) Two world lines
¢-mapping topological current theory, the Taylor expansionare in contact tangentially, i.e., two point defects are encoun-
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t (@) t
x1 x!
1
1
1
(b) t* t t
(b)
X! FIG. 4. Two important cases of E¢§35). (a) One world line

resolves into three world lines, i.e., one point defect splits into three
point defects at the bifurcation poirib) Three world lines merge
into one world line, i.e., three point defects merge into one point
defect at the bifurcation point.

lines, i.e., one point defect splits into two point defects at the
bifurcation point[see Fig. &)].

Case 3(A=0,C#0). ForA=4(B>—AC)=0, from Eq.
(32) we have

dt | -B= JB%2—AC

— =0, . 35
dxt| C 39

© t
There are two important casgg) One world line resolves
FIG. 3. () Two world lines are in contact tangentially, i.e., two into three world lines, i.e., one point defect splits into three
point defects are encountered tangentially at the bifurcation pointygint defects at the bifurcation poifisee Fig. 4a)]. (b)
(b) Two world lines merge into one world line, i.e., two point de- Three world lines merge into one world line, i.e., three point
fects merge into one point defect at the bifurcation pdiotOne  gefects merge into one point defect at the bifurcation point
yvorld line rgsolves into two wqud Iin_es, i.e.., one point defect splits [see Fig. 4b)].
into two point defects at the bifurcation point. Case 4A=C=0). Equationg31) and(32) give, respec-
tively,
tered tangentially at the bifurcation poirgee Fig. 8)]. (b)
Two world lines merge into one world line, i.e., two point
defects merge into one point defect at the bifurcation point — =0, =0. (36)
[see Fig. &)]. (c) One world line resolves into two world dt dxt
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Finally, we discuss the branch process at a higher degen-
erated point. We have studied the case that the rank of the
Jacobian matriX d¢/dx] of Egs.(4) is 2=3—1. Now, we
consider the case that the rank of the Jacobian matrix is 1
=3—2. SetJ,(¢p/x)= dp*/ox' and suppose that dit=0.

With the same methods used in obtaining E2f), we can
get the solution of Eq€4) in the neighborhood of the higher

degenerated bifurcation poing;(t*) [5],

4
+a;

3
+a,

2
+as

dx?
dt

dx?
dt

dx?
dt

dx?
dt

a.o +a4:0,

(39

t whereag, a,, a,, andaz are also four constants. Therefore,
we get different directions of the world lines of point defects
x! at the higher degenerated bifurcation point. The number of
different directions of the world lines is at most 4. Compar-
ing with Egs.(31) and(32), the above solutions also reveal
encountering, spliting, and merging of the point defects
along more directions.

V. CONCLUSIONS

First, the densities of point defect&¢3) and (15 have
been obtained directly from the definition of topological
charges of point defecisvinding numbers of zero points of
the vector order paramejewhich is more general than usu-
ally considered and will be helpful as a complement of the
works of point defects done by Mazenkd al. Second, we
®) t have studied the evolution of the point defects of a three-

dimensional vector order parameter by making use ofg¢he

FIG. 5. Two world lines intersect normally at the bifurcation mapping topological current theory. We conclude that there
point. This case is similar to Fig. 4a) Three point defects merge exist crucial cases of branch processes in the evolution of the
into one point defect at the bifurcation poiiile) One point defect  point defects wherD(¢/x)=0, i.e., , is indefinite. This
splits into three point defects at the bifurcation point. means that the point defects are generated or annihilated at
. . . — L the limit points and are encountered, split, or merge at the
This case is obwoqs in Fig. 5 and is S|m]lar to case 3 bifurcation points of the three-dimensional vector order pa-

The abpve solutions revegl the evolutlpn of the point Ole'rameter, which shows that the point defect system is unstable
fects. Besides the encountering of the point defects, i.e., tWQ yhese hranch points. Third, we found the result that the
point d(_afects are encouptered at and then depart_ from tr\‘/ﬁelocity of point defects is infinite when they are annihilating
bifurcation point along different branch curvgsee Figs. 2

i hich i i ly f h logical
and 3a)], it also includes splitting and merging of point de- or generating, which is obtained only from the topologica

f Wh itich d point def h h th roperties of the three-dimensional vector order parameter.
ects. When a multicharged point defect moves through g, “\ve obtain two restrictions of the evolution of point
bifurcation point, it may split into several point defects alongd

. : efects. One restriction is the conservation of the topological
different branch curvegsee Figs. &), 4@, and 30)]. On 5146 of the point defects during the branch prodese

the contrary, several point defects can merge into one poiq{: . i
: ! : . gs.(27) and(37)]; the other restriction is that the number of
defect at the bifurcation poirfsee Figs. @) and 4b)]. A different directions of the world lines of point defects is at

similar analysis of the topological charge shows that the SUMost 4 at the bifurcation pointisee Eqs.(30), (32), and
of the topological charge of the final point defestmust be  (3g)7 The first restriction is already known, but the second is

equal to that of the initial point defeisl at the bifurcation  inted out here for the first time to our knowledge. We hope

point, i.e., that it can be verified in the future. Finally, we would like to
point out that all the results in this paper have been obtained
only from the viewpoint of topology without using any par-
Ef: ,3|f77|f:§i: Bi.m, (37)  ticular models or hypothesis.
for fixed|. Furthermore, from the above studies, we see that ACKNOWLEDGMENT
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