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Abstract
In quantum metrology, measurement and estimation schemes are vital for achieving higher
precision, along with initial state preparation. This article presents the compound measurement of
parity and particle number, which is optimal for a broad range of states named equator states (ESs).
ES encompasses most pure input states used in current studies and, more significantly, a wide
range of mixed states. Moreover, the ES can be prepared directly using non-demolition parity
measurement. We thus propose an improved quantum phase estimation protocol applicable to
arbitrary input states, ensuring precision consistently surpassing that of the standard protocol. The
proposed scheme is also demonstrated using a nonlinear interferometer, with the realization of the
non-demolition parity measurement in atomic condensates.

1. Introduction

Parameter estimation lies at the heart of the interferometries. In typical interferometry setups, parameters
are encoded into the sensor’s input state and later inferred from the measurement results through suitable
estimators [1–5]. The estimation precision is upper bounded by quantum Cramér–Rao (CR) inequality, in
terms of the quantum Fisher information (QFI) [1–5]. It is known that CR bound can be significantly
increased by utilizing quantum resources, such as entanglement and squeezing [3–16]. The
quantum-enhanced measurement precision has been experimentally demonstrated in various
systems [17–23] and has also been applied to the estimates of time [24–28], magnetic field [29–32],
gravitational field [33, 34], and gravitational wave [35–38].

Nevertheless, saturating the upper CR bound still requires elusive optimal measurements (OMs) and a
suitable estimation scheme [1, 2, 39, 40]. Generally speaking, OMs depend on the states of the system and
even on the value of the parameter under estimation [1, 2, 39, 40]. Consequently, OMs are usually achieved
via feeding back the estimated parameter and updating the measurement adaptively [41, 42]. For the two
most commonly used measurements, number counting and parity [43, 44], in quantum metrology, there
have been extensive theoretical and experimental studies on their optimality. Parity measurement was shown
optimal for the NOON state [45–47] and a few other specific states [17, 43, 44, 48–50]. A similar situation
happens for number counting [51–55], except that Hofmann found a class of path-symmetric states (PSSs)
which, independent of the specific phase shift, allows the CR bound to be achieved [56]. However, the PSSs
were only defined for pure states in conventional SU(2) interferometers [57]. While schemes widely used are
variants of the SU(2) interferometry, the states are mixed states induced by the inevitable noises.

In this paper, we identify a large class of states which, regardless of the encoded phase, achieves the CR
bound under the compound of parity and particle number measurements. These states cover all PSSs and
some non-PSS ones. More remarkably, they can be generalized to include the mixed states, which is more
relevant to experimental preparations of the input states. We propose a complete quantum phase estimation
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protocol with an arbitrary input state. The precision achieved through this protocol is always higher than or
equal to that obtained via the original input state. We also demonstrate the implementation of the proposed
OM scheme using a nonlinear interferometer and show the realization of the parity measurement in atomic
condensates.

2. Pure state case

In the standard quantum metrology process [4], parameter θ is encoded into the phase of a quantum state
|ψin⟩ through a unitary transformation

|ψ (θ)⟩= e−iθĜ|ψin⟩, (1)

where the phase-shift generator Ĝ is a Hermitian operator. The eigenvalue and the corresponding eigenvector
of Ĝ are denoted, respectively, as gm and |m⟩. Furthermore, we assume that the eigenvalues satisfy
gm =−g−m, a condition fulfilled by SU(2) interferometry [57] and its widely used variants [14, 19, 58–61].
For convenience, we introduce the index n≡ |m|. The phase-shift generator can be decomposed into

Ĝ=
∑
n>0

gn (| ↑⟩nn⟨↑ |− | ↓⟩nn⟨↓ |) , (2)

where | ↑⟩n ≡ |n⟩ and | ↓⟩n ≡ |− n⟩. The possible |n= 0⟩ term has been dropped in equation (2) due to
g0 = 0 based on our assumption. Moreover, as shall become clear below, this term does not contribute to the
QFI and is irrelevant to the discussion about OM. Therefore, we shall always assume that n> 0 in all
summations over n. We note that the phase-shift operator defined by equation (2) also covers the nonlinear
generators Ŝ3z [62] and the Ising type Hamiltonian [63–66]. Additionally, for those multi-particle cases, Ĝ
usually acts on the whole system concerned, leading | ↑⟩n (| ↓⟩n) to illustrate a state of multiple particles
instead of a single one. Now, independent of the measurement operator, the precision of θ’s estimator is
bounded by the CR inequality [1, 2]

δ2θ ⩾ 1

νF
(
|ψ (θ)⟩, Ĝ

) , (3)

where ν is the repetitions of the measurement, and F(|ψ(θ)⟩, Ĝ) = 4⟨ψin|Ĝ2|ψin⟩− 4⟨ψin|Ĝ|ψin⟩2 is the QFI
that measures the variance of Ĝ with respect to |ψ(θ)⟩. Clearly, achieving higher precision for the estimation
of θ relies not only on the initial state, which can lead to larger F(|ψ(θ)⟩, Ĝ), but also on the measurement
and estimation scheme, which allows the CR lower bound to be attained [1, 2, 39, 40]. Below, by explicitly
constructing a set of measurement operators and the corresponding estimators, we show that an OM scheme
exists for a large class of input states.

To this end, we partition the Hilbert space into a set of qubits, with the nth ‘qubit’ being defined by two
basis states asHn = span{| ↑⟩n, | ↓⟩n}, where n labels the qubit, and the range of n is determined by the
spectrum of Ĝ2. We mention that: (i) the qubitHn illustrates states of the whole system concerned instead of
a single two-level particle; (ii) the whole Hilbert space is composed by the direct sum, instead of the direct
product, of these qubits. Thus, a general input state can be expanded as the superposition of qubit states, i.e.,

|ψin⟩=
∑
n

√
pne

iφn |αn,βn⟩n, (4)

where |αn,βn⟩n = cos αn
2 e

−iβn/2| ↑⟩n + sin αn
2 e

iβn/2| ↓⟩n is the wave function of the nth qubit and
√
pneiφn is

the probability amplitude with pn (subjected to the constraint
∑

n pn = 1) being the probability and φn being
the phase.

The QFI of |ψ(θ)⟩ can be analytically evaluated to be

F
(
|ψ (θ)⟩, Ĝ

)
= 4

∑
n

png
2
n − 4

(∑
n

pngn cosαn

)2

, (5)

where the first and second terms originate from ⟨ψin|Ĝ2|ψin⟩ and ⟨ψin|Ĝ|ψin⟩2, respectively. For a given set of
{pn}, a sufficient condition to maximize the QFI is αn = π/2, under which each qubit lies on the equator of
its own Bloch sphere. The resulting input state,

|ψE⟩=
∑
n

√
pne

iφn |π
2
,βn⟩n, (6)
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is a superposition of equatorial qubits and is referred to as equatorial state (ES). As a comparison, the PSSs
require that the global phase of the qubit φn is independent of n [56]. Therefore, |ψE⟩ covers not only all
PSSs [56] but also the non-path-symmetric ones, such as the entangled coherent states [9, 10] and the
one-axis twisting spin-squeezed states [12–14], as shown in appendix A. More importantly, as shall be
shown, the ESs can also be generalized to the mixed state case.

To construct a projective measurement, we introduce a parity operator

P0 =
∑
n

(| ↓⟩nn⟨↑ |+ | ↑⟩nn⟨↓ |) . (7)

It can be easily verified that P2
0 = 1 and the eigenvalues of P0 are p=±1. Physically, P0 inverts the spectrum

of Ĝ as P0ĜP0 =−Ĝ. Next, we introduce a new set of basis states for the nth qubit as |x(+)⟩n ≡ |π/2,0⟩n and
|x(−)⟩n ≡ |π/2,π⟩n, which are of even (p= 1) and odd (p=−1) parities, respectively. We then define the
projection operators

Π(p)
n = |x(p)⟩nn⟨x(p)|, (8)

satisfying Π(p)
n Π

(p ′)
n ′ = δnn ′δpp ′Π

(p)
n and

∑
p=±

∑
nΠ

(p)
n = 1. Apparently, {Π(p)

n } represents the compound

measurements of P0 and Ĝ2, i.e. {Π(±)} with Π(±) =
∑

nΠ
(±)
n and {Πn} with Πn =

∑
p=±Π

(p)
n . In fact,

they can be measured both simultaneously and sequentially since [P0, Ĝ2] = 0.

Now, let us perform the measurement on an ensemble of the identical states e−iθĜ|ψE⟩ and denote the
number of the outcomes corresponding to Π(p)

n after total ν repeated measurements as ν(p)n . The
construction of the optimal estimator can be proceeded as follows. For each set of the binary outcomes

corresponding to {Π(+)
n ,Π

(−)
n }, we construct an unbiased estimatorΘn based on the maximum likelihood

estimation. The variance ofΘn is δ2Θn = 1/(νnFn) with νn = ν
(+)
n + ν

(−)
n and Fn = 4g2n [67]. When

repetition ν→∞, we have δ2Θn → 1/(νpnFn). Then, we choose the total estimator as the linear
combination of all single-qubit estimators, i.e.

Θ=
∑
n

wnΘn, (9)

where the weights wn satisfy wn ⩾ 0 and
∑

nwn = 1. Apparently,Θ is still unbiased and its variance is
δ2Θ=

∑
nw

2
nδ

2Θn. It can be further shown that δ2Θ is minimized if wn = pnFn/F, where F=
∑

n pnFn is the

QFI of e−iθĜ|ψE⟩. The minimal variance, (
δ2Θ

)
min

=
1

νF
, (10)

is exactly the CR lower bound, which proves that {Π(p)
n } indeed represents an OM.

We comment that the optimal measurability achieved in the above scheme can be attributed to the
following reasons: (i) For ESs, the QFI of the individual qubit is maximized and the parity measurement is
optimal; (ii) The contributions to the total QFI from distinct qubits are decoupled (see equation (5)) such
that we may perform the OM on individual qubits and construct estimator separately; (iii) The weight wn in
the total estimator in equation (9) is inversely proportional to δ2Θn, which warrants the efficient usage of all
resources.

3. Mixed state case

The pure state results can be generalized to the mixed state case straightforwardly. In order to find the desired
density matrix ρE for the input state, we recall that one of the reasons the proposed scheme works for pure
states is that every qubit is an ES. Therefore, the minimum requirement for ρE is that one should obtain an
equatorial qubit when projected to an arbitrary qubit subspace, i.e.

ΠnρEΠn ∝
∣∣∣∣π2 ,βn

〉
nn

〈
π

2
,βn

∣∣∣∣ (11)

for any Πn =Π
(+)
n +Π

(−)
n . Correspondingly, the explicit form of the density matrix is

ρE =
∑
n

pn

∣∣∣∣π2 ,βn
〉

nn

〈
π

2
,βn

∣∣∣∣+∑
m̸=n

(
γmn

∣∣∣∣π2 ,βm
〉

mn

〈
π

2
,βn

∣∣∣∣+ h.c.

)
, (12)
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where |γmn|2 ⩽ pnpm due to the decoherence. This equation merely states that ρE is supported by a unique ES
of each qubit subspace.

To see that the OM can be attained with ρE, we evaluate the QFI of the parametrized state
ρ(θ) = e−iθĜρEeiθĜ, i.e. F

(
ρ(θ), Ĝ

)
= tr(ρ(θ)L2), where L is the symmetric logarithmic derivative of ρ that

satisfies ∂θρ(θ) =
1
2 (Lρ+ ρL) and L† = L [2]. It can be directly verified that, in the Ĝ representation,

L= 2i
∑
n

gn
[
ei(2gnθ+βn)| ↓⟩nn⟨↑ |− h.c.

]
(13)

fulfills our purpose. Straightforward calculations give rise to F
(
ρE, Ĝ

)
= 4

∑
n png

2
n, which is again the sum of

QFI of individual qubit. Now, by applying the measurement {Π(p)
n } and constructing the same estimators

{Θn} andΘ as in the pure-state case, we can also attain the minimum variance ofΘ (equation (10)), which
confirms the optimality of the compound measurements for mixed state ρE.

We note that ρE may be treated as the mixed state decohered from the pure state |ψE⟩. The fact that these
two states have equal QFI given the same set of {pn} indicates that not all quantum coherence is usable for
improving the precision of phase estimation. This can also be seen from the symmetric logarithmic
derivative, equation (13), in which γmn is completely absent. Additionally, in the construction ofΘ, all
estimatorsΘn and weights wn are independent of γmn, which implies that the coherence between distinct
qubits is irrelevant to the phase estimation.

Since the system-bath couplings that induce the decoherence are unavoidable, it is interesting to find the
condition under which the optimal measurability of the input state, |ψE⟩ or ρE, is maintained. To this end, we
formally express the overall Hamiltonian (system plus bath) as

H=
∑
κ

Hκ ⊗Bκ, (14)

where Hκ and Bκ are operators defined on the Hilbert spaces for system and bath, respectively, and Bκ are
linearly independent [68]. We then define a generalized state-dependent parity operator

Pβ =
∑
n

(
eiβn | ↓⟩nn⟨↑ |+ e−iβn | ↑⟩nn⟨↓ |

)
, (15)

where βn are given by the state |ψE⟩ or ρE. It can be shown that a sufficient condition for equation (11) being
satisfied by the density matrix of the system is

[Hκ,Pβ] = 0 for any κ. (16)

Remarkably, even if this condition is not satisfied, the optimal measurability can still be approximately
preserved through dynamical decoupling [68, 69]. In fact, by noting that Pβ is a unitary operator, we
introduce the so-called Pβ pulse, which transforms a state of the system according to ρ→PβρPβ . Then, by
applying a sequence of Pβ pulses with a sufficiently small inter-pulse interval, the time evolution of the
system and bath is driven by the effective overall Hamiltonian H̄=

∑
κ H̄κ ⊗Bκ, where

H̄κ = 1
2 [Hκ +PβHκPβ]. Clearly, the optimal measurability is maintained since [H̄k,Pβ] = 0 for any κ. We

comment that the possible scenarios for applying dynamical decoupling include the input state preparation
and the state storage, for which the system is very likely exposed to the environment.

4. Parity-enhanced phase-estimation scheme

In addition to being used for measurement and estimation, parity measurement also increases the QFI of the
input state. To see this, we consider a general state ρ whose QFI satisfies the inequality
F(ρ, Ĝ)⩽ 4tr(ρĜ2)− 4tr(ρĜ)2. After performing the parity measurement P0 on ρ, the state collapses into
the ESs

ρ(±) =Π(±)ρΠ(±)/q(±), (17)

where Π(±) =
∑

nΠ
(±)
n are projections to the even- and odd-parity subspaces, respectively, and

q(±) = tr(ρΠ(±)) are the probabilities to obtain the outcomes±1. The average QFI of the resulting states is

F̄=
∑
p=±

q(p)F
(
ρ(p), Ĝ

)
= 4tr

(
ρĜ2

)
⩾ F

(
ρ, Ĝ

)
, (18)

which indicates that the measuring P0 indeed improves the quality of the input state.

4
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Figure 1. Schematics for the protocol of optimal phase estimation. (i) An ES can be prepared directly or via a parity measurement
P0. (ii) A phase θ is encoded by the generator Ĝ. (iii) CR bound of the phase estimation precision is attained with the compound
measurements P0 and Ĝ2 and with the estimatorΘ.

In figure 1, we schematically summarize the protocol for optimal phase estimation. Interestingly, for state
preparation, if the input state is an eigenstate of Ĝ, say | ↑⟩n, a parity measurement would yield an ES,
|x(±)⟩n, in the nth qubit subspace. Correspondingly, the QFI of the input state is increased from zero to 4g2n.
In particular, the QFI is maximized if g2n is the largest eigenvalue of Ĝ

2. Therefore, the efficiency of parity
measurement for input state preparation can be extremely high. It is worth mentioning that, besides being
used for state preparation and measurement, parity is also useful for state storage as discussed in section 3.

5. Nonlinear

To demonstrate the applications of the proposed scheme, we consider a nonlinear interferometer modeled by
the Hamiltonian

HNI (t) =−χ Ŝ2z −Bx (t) Ŝx −BzŜz, (19)

where, for a two-mode system, say modes a and b, the angular momentum operators are defined as
Ŝx = (â†b̂+ b̂†â)/2, Ŝy = (â†b̂− b̂†â)/(2i), and Ŝz = (â†â− b̂†b̂)/2 with â and b̂ being the annihilation
operators for modes a and b, respectively, and Ŝz is the phase generator. Furthermore, χ (>0) is the nonlinear
coupling strength, Bx and Bz are transverse and longitudinal fields, respectively. We point out that
Hamiltonian (19) can be realized by either external or internal states of N Bose condensed atoms
[19, 58–61]. In the following discussions, we take N even without losing the generality. Considering Ĝ(= Ŝz)
is a collective spin operator, the qubitHn illustrates states of all N atoms with | ↑⟩n(| ↓⟩n) = |mz =±n⟩z.

To start, let us first briefly recall the eigen-spectrum of HNI in the absence of the longitudinal field
Bz [58, 61], says HPre, as shown in figure 2(a). For Bx ≫ Nχ, the eigenstates of HPre are those of Ŝx, i.e.
|mx =m⟩x withm=−N/2,−N/2+ 1, . . . ,N/2. In particular, the parity of |mx⟩x with respect to P0 is
(−1)N/2−mx . Actually, the kth excited state of HPre has a certain parity (−1)k for arbitrary Bx ̸= 0, with
k= 1,2, . . . ,N, and k= 0 denoting the ground state. While at the Bx = 0, the eigenstates of HPre are those of
Ŝ2z which are doubly degenerate. By varying Bx, the two sets of spectra with Bx ≫ Nχ and Bx = 0 are
adiabatically connected according to

|x(±)⟩n ↔ |mx = 2n− (N+ 1∓ 1)/2⟩x, (20)

with |x(+)⟩0 = |mz = 0⟩z additionally. The nonlinear interferometry is generally operated as follows. Initially,
the system is prepared in state |Ψ0⟩= |mx = N/2⟩x under a large Bx. The transverse field is then swept to
zero, which gives rise to the input state for the interferometry |Ψin⟩=

∑
n cn|x(+)⟩n, where cn depend on the

sweeping rate v=−dBx/dt. Clearly, |Ψin⟩ is an ES with all βn = 0, as exemplified in figure 2. We remark that
|Ψin⟩ has the same even parity as that of |Ψ0⟩ since the Hamiltonian HPre for input preparation converses P0.
Furthermore, as discussed in section 3, even in the presence of stray fields, the parity conservation can be

recovered via dynamical decoupling with P0 = (−1)N/2e−iπŜx pulse.
To proceed further, we turn on the longitudinal field for a time interval∆t, which encodes the phase

θ =−Bz∆t into the wave function through |Ψ(θ)⟩= e−i∆tHNI |Ψin⟩ with Bx = 0. We remark that |Ψ(θ)⟩ is
still an ES since the nonlinear term Ŝ2z only contributes a global phase, e

−i∆tχ Ŝ2z , to each qubit. However, it is
not a PSS due to this phase by following the discussions below equation (6). Finally, we adiabatically increase

5
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Figure 2. Preparing equatorial states with the nonlinear interferometer. (a) Eigen-spectrum of the Hamiltonian HNI(t)
with N= 20, Bz = 0. Solid (dashed) lines denote eigenstates with even (odd) parity with respect to P0. An equatorial state
|Ψin⟩ is prepared via sweeping Bx. (b1)–(c2) Wave function and probability distribution of the state prepared. We set
ψm = z⟨mz = m|Ψin⟩, qm = |ψm|2, Bx = B0 − vt, with B0 = 2.5N, v= 0.05N and 3N, respectively. The symmetry
qm = q−m(= p|m|/2 ifm ̸= 0) indicates that |Ψin⟩ is an equatorial state. The symmetry ψm = ψ−m indicates that |Ψin⟩ is even
parity with all βn = 0. Specifically, (b1) and (b2) indicate the |Ψin⟩ prepared via v= 0.05N (almost) a multi-partite GHZ state.

Figure 3. Precision of the nonlinear interferometer (N= 20) (a) Precision (Fisher information) as the function of sweeping rate,
where we set Bx = B0 − vt, with B0 = 2.5N. The QFI F measures the precision acquired via the proposed measurement. Iθ
denotes the precision acquired via solely the parity measurement. Ī denotes average of Iθ over θ ∈ [0,2π). (b1)–(c2) Probability
and precision acquired via implementing solely the parity measurement under the sweeping rate v= 0.05N and 3N, respectively.

Bx to a value much larger than Nχ, which maps |x(±)⟩n back to the eigenstate of Ŝx based on equation (20).

The measurement {Π(±)
n } can then be realized by measuring Ŝx with the resulting state.

We point out that {Π(±)
n } is intrinsically a collective measurement of all N condensed atoms. Its

realization relies on two conditions: (i) the energy spectrum of HNI is nondegenerate, which is generally true
unless there exist accidental degeneracies; (ii) Ŝx is directly measurable by, e.g. the Stern–Gerlach apparatus.
Otherwise, one can also apply more sophisticated approaches, such as the scheme proposed in [58], or the
compound measurement will be discussed in section 6.

Next, we show the performance of the proposed scheme in figures 2 and 3, where its precision is
characterized via the QFI F(|Ψ(θ)⟩, Ŝz) for its optimality. When sweeping the transverse field almost
adiabatically (e.g. v= 0.05N), the prepared input state |Ψin⟩ is almost a NOON state, and the precision is at
the Heisenberg level. The precision is decreased at a large sweeping rate, e.g. v= 3N. It is induced by the
redistribution of probability over the qubits, as shown by pn(= qn + q−n) in figure 2(c2).

We mention that optimality of the proposed measurement scheme is independent of the encoded phase θ
and the sweeping rate v. It is priory to implement solely the parity measurement P0, i.e. {Π(±)} on |Ψ(θ)⟩

6
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under large sweeping speed v, as shown in figure 3. Specifically, we quantify the precision of solely parity
measurement with the classical Fisher information Iθ =

∑
p=±(∂θq

(p))2/q(p) correspondingly, with

q(±) = ⟨Ψ(θ)|Π(±)|Ψ(θ)⟩. As shown by figure 3(b2), the solely parity measurement is almost optimal
(Iθ ≈ F) for all θ when |Ψin⟩ is prepared almost adiabatically. However, for states |Ψin⟩ prepared with large v,
Iθ highly depends on the parameter θ and is only optimal with θ→ kπ. The average precision
Ī := 1

2π

´ 2π
0 dθIθ is thus drastically decreased with the increase of v.

Additionally, we emphasize that the transverse field Bx is not necessarily swept linearly in the state
preparation process, for the critical points are: (i) the conservation of parity, which guarantees the prepared
input state is an ES; (ii) χ> 0, which leads the qubits with larger QFI (eigenvalue g2n) has larger population
probability. Recently, a machine optimization method has been applied in [70] to manipulate the transverse
field in a state preparation Hamiltonian similar to HPre. The input state they prepared, named the spin cat
state, is also an ES resulting from conserving P0 equivalently.

6. Realization of non-demolition parity measurement

Suppose {Π(±)
n } cannot be implemented as a single measurement. In that case, one may measure P0 and Ĝ2

sequentially, which requires that the measurement of P0 is non-demolition as those experimentally realized
in various systems [71–75]. Here, as an example, we demonstrate its realization in a two-mode atomic
system, for which the parity operator becomes

P0 = (−1)S−Ŝx = e−iπŜy/2 (−1)b̂
† b̂ eiπŜy/2. (21)

As can be seen, other than the π/2 rotations around the y-axis, the measurement of P0 is reduced to that of
(−1)b̂

† b̂ which, in analogue to the parity measurement of the photon number in a cavity [72], can be realized
by introducing an ancilla qubit coupling to mode b̂ of the system. Specifically, we assume the qubit-system
coupling Hamiltonian takes the form

Hqs/h̄= ωq|e⟩⟨e|+χqsb̂
†b̂|e⟩⟨e|, (22)

where h̄ωq is the energy difference between the ground state, |g⟩, and the excited state, |e⟩, of the qubit, and
χqs is the qubit-system coupling strength. In appendix B, we show how to engineer Hamiltonian
equation (22) with the internal states of atoms. In the rotating frame of the qubit, the excited state of the
qubit acquires a phase Φ = χqsb̂†b̂t proportional to the atom number in mode b̂. By carefully choosing the

evolution time t such that χqst= π, we realize the operation Uπ = (−1)b̂
† b̂ ⊗ |e⟩⟨e|+ Îs ⊗ |g⟩⟨g|, where Îs is

the identity operator of the system. Then, by inserting Uπ between π/2 and−π/2 rotations around the y
axis for both qubit and system, we realize a controlled-X gate

CX =
[
e−iπŜy/2 ⊗R†

y

(
π
2

)]
Uπ

[
eiπŜy/2 ⊗Ry

(
π
2

)]
=Π(+) ⊗ Îq +Π(−) ⊗ σ̂x, (23)

where Ry(π/2) is the π/2 rotation of the qubit around the y-axis, Îq is the identity operator of the qubit, and
σ̂x =

(
|e⟩⟨g|+ |g⟩⟨e|

)
flips the qubit. To perform the measurement, we may prepare the qubit in |g⟩ state

initially, CX then couples the even (odd) parity state of the system to |g⟩ (|e⟩). A subsequent projective
measurement {|g⟩⟨g|, |e⟩⟨e|} on the qubit will leave the system in a parity-definite state, which completes the
measurement {Π(+),Π(−)}, i.e. P0 on the system.

Additionally, measuring Ĝ2 indicates a set of projectors {Πn}. However, if the non-demolition parity
measurement has been performed, one can measure the operator Ĝ= Ŝz, i.e. {|mz⟩zz⟨mz|} instead. It can be
realized by counting the particle number difference between mode â and b̂.

7. Conclusions

We have proposed an OM scheme for the pure and mixed ESs, which cover a wide range of the input states in
various interferometry. Based on the compound measurement of parity and particle number, the scheme
allows us to unveil more information about the states than the single measurement of either one. We have
also proposed a protocol for phase estimation by including the state preparation using parity measurement,
in which the precision achieved consistently surpasses that of the standard protocol. We also demonstrate the
implementation of the proposed OM scheme using nonlinear interferometry and show the realization of the
parity measurement in atomic condensates.
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Appendix A. Examples of equatorial states

A.1. Path-symmetric states
Hofmann formalizes the PSSs in the conventional SU(2) interferometry, where the phase generator reads
Ĝ= Ŝz [56]. In Ŝz’s representation, the PSS is defined as a state |ψ⟩ satisfying z⟨mz|ψ⟩= z⟨−mz|ψ⟩∗e−2iχ0 for
all of the eigenstates |mz⟩z of Ŝz. It is equivalent to letting αn =

π
2 , φn =−χ0 up to knπ, for all n> 0 (and

n= 0 if |0⟩ exists) in equation (4), with kn ∈ Z. We mention that the ES is defined in equation (6) via
constraining αn =

π
2 for all n> 0. It indicates that the PSS is a particular subclass of the ES with additional

constraints on {φn}. Exemplified by the system with even particle number N, we have the PSS

|PSS⟩θ = e−iĜθ

[∑
n>0

(−1)kn
√
pne

−iχ0
1√
2

(
e−iβn/2|n⟩+ eiβn/2| − n⟩

)
+(−1)k0

√
p0e

−iχ0 |0⟩

]

=
∑
n>0

(−1)kn
√
pne

−iχ0
1√
2

(
e−i(gnθ+βn/2)|n⟩+ ei(gnθ+βn/2)| − n⟩

)
+(−1)k0

√
p0e

−iχ0 |0⟩, (A.1)

and the qubitHn = span{|n⟩, | − n⟩}, where | ± n⟩= |mz =±n⟩z with g±n =±n and the additional state
|0⟩= |mz = 0⟩z with g0 = 0.

A.2. Examples of equatorial states
In this subsection, we formalize four classes of widely used quantum states to the ESs form, which contains
both the path-symmetric and non-PSSs. Without losing the generality, we set N even in the following
examples.

(i) Spin coherent states (spin- 12 system) with phase generator Ĝ=
∑N

l=1 Ŝ
(l)
z .

|SCS⟩θ = e−iĜθ ⊗N
l=1

1√
2

(∣∣∣m(l)
z = 1

2

〉
l
+
∣∣∣m(l)

z =− 1
2

〉
l

)
=

N/2∑
m=1

cm√
2

(
e−imθ

∣∣N
2 ,m

〉
z
+ eimθ

∣∣N
2 ,−m

〉
z

)
+

c0√
2

∣∣N
2 ,0
〉
z
, (A.2)

with cm = 2−(N−1)/2
( N
N/2+m

)1/2
. The nth qubitHn is defined as

Hn = span
{∣∣N

2 ,n
〉
z
,
∣∣N
2 ,−n

〉
z

}
, (A.3)

with probability pn = 21−N
( N
N/2+n

)
for n= 1, . . . , N2 , andH0 = {

∣∣N
2 ,0
〉
z
} with p0 = 2−N

( N
N/2

)
. The QFI

of |SCS⟩θ is F= 4
∑

n pnn
2 = N, which indicates the precision is still in the standard quantum limit. It

is captured by figure A1(a), which shows that {pn}mainly distributes around qubits with small
eigenvalues.

(ii) One-axies twisting spin squeezed states. We follow the definition in [13] and take the phase generator
as Ĝ= â†â−N/2. The squeezed state reads

8
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|SS⟩θ = e−iθĜR̂x (−ν)e−iĤSStR̂y

(
π
2

)
|N⟩a |0⟩b

=

N/2−1∑
m=0

cm√
2

(
e−iθ(m− N

2 ) |m⟩a |N−m⟩b + eiθ(m− N
2 ) |N−m⟩a |m⟩b

)
+

cN/2√
2

∣∣N
2

〉
a

∣∣N
2

〉
b
, (A.4)

where the squeezing operator is ĤSS = χŜ2z with the squeezing parameter µ= 2χ t,

cm = 1√
2N−1

∑
k,ω

(N
k

)( k
ω

)(N−k
m−ω

)(N
m

)−1/2
e−ih(cos[ν2 ])

N−g(i sin[ν2 ])
g with g= k+m− 2ω and

h= µ(N− 2k)2/8. We mention that cm generally carries am-dependent phase. It makes |SS⟩θ generally
a non-PSS. The nth qubit is defined as

Hn = span
{
|N2 + n⟩a|N2 − n⟩, |N2 − n⟩a|N2 + n⟩b

}
, (A.5)

for n= 1,2, . . . , N2 . The phase θ is encoded as βn(θ) = 2nθ. The probability of |SS⟩θ projected toHn

reads pn = 2−δn,0c2n+N/2. In figure A1(b), we illustrated pn with µ= π/2 and ν = π/2.

(iii) Twin Fock states with state preparation R̂y(
π
2 ) = exp[π(b̂†â− â†b̂)/4] and phase generator

Ĝ= â†â−N.

|TF⟩θ = e−iθĜR̂y

(
π
2

)
|N⟩a |N⟩b

=

N/2−1∑
k=0

ck√
2

(
eiθ(N−2k) |2k⟩a |2N− 2k⟩b + e−iθ(N−2k) |2N− 2k⟩a |2k⟩b

)
+

cN/2√
2
|N⟩a |N⟩b , (A.6)

with ck =
(−1)k

2N−1/2

[(2k
k

)(2N−2k
N−k

)]1/2
. The qubit is defined as

Hn = span
{
|N+ n⟩a |N− n⟩b , |N− n⟩a |N+ n⟩b

}
, (A.7)

with the corresponding probability pn = [c(N−n)/2]
2/2δn,0 if n is even, and pn = 0 if n is odd. We plot the

distribution pn in figure A1(c). It shows that qubits with larger eigenvalues (g2n) are more likely to be
occupied, such that the twin Fock states have larger QFI than |SCS⟩θ.

(iv) Entangled coherent states with phase generator Ĝ= â†â− b̂†b̂.

|ECS⟩θ = r−1/2e−|α|2/2
∞∑
n=0

αn

n!

[
â†ne−inθ + b̂†neinθ

]
|0⟩a |0⟩b

= r−1/2e−|α|2/2
∞∑
n=1

αn

(n!)1/2
(
e−inθ |n⟩a |0⟩b + einθ |0⟩a |n⟩b

)
+ 2r−1/2e−|α|2/2 |0⟩a |0⟩b (A.8)

with r= 2(1+ e−|α|2). The qubit is defined as

Hn = span
{
|n⟩a |0⟩b , |0⟩a |n⟩b

}
, (A.9)

and the phase is encoded as βn(θ) = 2nθ, with n= 1, . . . ,∞. The corresponding probability reads
pn = 2r−1e−|α|2 |α|2n /n!. As shown in figure A1(d), though the spectrum of Ĝ is boundless, pn is
centered with mean particle number, which induces a finite QFI. We mention that α is generally a
complex number. It brings a n-dependent phase to nth qubit, making |ECS⟩θ generally a non-PSS.

9
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Figure A1. Probability distribution over qubits of the exemplified ESs. (a) Spin coherent state with particle number N= 100. (b)
One-axis twisting spin squeezed state with N= 100, µ= π/2, and ν = π/2. (c) Twin Fock state with the total particle number
2N= 100. (d) Entangled coherent state with α= 10 and the average particle number ⟨N̂⟩= 100.

Appendix B. Engineering of Hamiltonian equation (22)

Here, we demonstrate how to engineer the Hamiltonian equation (22) in the main text with an impurity
qubit immersed in a two-component condensate. The coupled qubit-system Hamiltonian consists of three
parts: H=HS +HQ +HI, where HS, HQ, and HI describe the condensate, qubit, and qubit-system coupling,
respectively. Specifically, for the condensate part, we have

HS =
∑
i=a,b

ˆ
drψ†

i (r)

[
p2

2mS
+ Ei +VS (r)+

1

2

4πh̄2aii
mS

ψ†
i (r)ψi (r)

]
ψi (r)

+
4πh̄2aab
mS

ˆ
drψ†

a (r)ψ
†
b (r)ψb (r)ψa (r) , (B.1)

where ψi(r) is the field operator for the atoms in ith mode, Ei is the energy of the ith mode,mS is the mass of
the atom, VS(r) the external potential for condensate atoms, aii the intra-species scattering lengths, and aab
the inter-species scattering length. For simplicity, we assume that Ea = Eb = E and aij = aS for any i and j.

The field operators are then simplified to ψa(r) = ψ(r)â and ψb(r) = ψ(r)b̂ with ψ(r) being the mode
function. The condensate Hamiltonian now reduces to

HS = (E ′ − g)N+ gN2 (B.2)

where N= â†â+ b̂†b̂ is the total particle number operator, E ′ =
´
drψ∗(r)

[
p2/(2mS)+ E +VS(r)

]
ψ(r),

and g= (4πh̄2aS/mS)
´
dr|ψ(r)|4.

Next, we turn to consider the qubit Hamiltonian, which is simply

HQ =
∑
σ=e,g

ˆ
drϕ†σ (r)

[
p2

2mQ
+ εσ +VQ (r)

]
ϕσ (r) , (B.3)

where ϕσ(r) is the field operators for the excited (e) and ground (g) states, εσ are the corresponding energies,
mQ is the mass of the impurity atom, and VQ(r) is the confining potential. Generally, the trapping potential
for the impurity atom is very tight such that the center of mass motion of the qubit is frozen to the ground
state of VQ, say ϕ(r). The qubit Hamiltonian then reduces to

HQ = ε ′e |e⟩⟨e|+ ε ′g |g⟩⟨g|, (B.4)

where ε ′σ =
´
drϕ∗(r)

[
p2/(2mQ)+ εσ +VQ(r)

]
ϕ(r).
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Finally, for the qubit-system coupling, we assume that only the exited state of the qubit interacts with the
condensate atom in mode b with a scattering length is aeb. Therefore, the interaction Hamiltonian is

HI =
2πh̄2aeb

m̄

ˆ
drψ†

b (r)ϕ
†
e (r)ϕe (r)ψb (r) = χqs|e⟩⟨e|b̂†b̂, (B.5)

where m̄=mSmQ/(mS +mQ) is the reduced mass and χqs = (2πh̄2aeb/m̄)
´
dr|ψ(r)|2|ϕ(r)|2.

Now put everything back together, we have

H= (E ′ − g)N+ gN2 + ε ′e |e⟩⟨e|+ ε ′g |g⟩⟨g|+χqs|e⟩⟨e|b̂†b̂. (B.6)

After dropping the constant N and N2 terms and setting ε ′g as the zero energy, we have

Hqs = h̄ωq|e⟩⟨e|+χqs|e⟩⟨e|b̂†b̂. (B.7)
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