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The spectrum of a bound state plays a crucial role in the field-induced tunneling ionization, as ionization is
essentially a dressing dissipative process. Based on the Fano-resonance theory, a single Lorentzian spectrum
can be approximately obtained for each bound state. The coupling transition between bound states enriches
the spectrum and complicates the tunneling dynamics. Previous attempts to extract the spectrum characteristics
of the tunneling system from the ionization rate required an artificial filter function, and only the spectrum
characteristics of the ground state can be obtained. In this study, we achieve a two-level model by parametrizing
the main peaks of the spectrum with a Lorentzian function. This model successfully reproduces the ionization
rate. By matching the central positions and widths of the Fano-type peaks with the behaviors of the ionization
rate, we establish the relations between the model parameters and the details of the spectral peaks, namely, the
Fano-type peaks. Our work introduces a systematic method to obtain key information of the spectrum, which
can be generalized to multiple-level systems.
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I. INTRODUCTION

Field-induced tunneling ionization of atoms serves as
the cornerstone of many strong-field physical phenomena.
Progress in attosecond technology has allowed for deeper
explorations of the ultrafast tunneling dynamics of electrons.
Remarkably, a tens-of-attosecond time required for an elec-
tron tunneling process is measured in attoclock experiments
[1,2], which brings many confirmations or disputes about
the measured time [3–7]. Previously, tunneling ionization has
been regarded as a direct transition from the ground state
to free-electron states, treated within the framework of the
strong-field approximation (SFA) [8–10]. Only recently, an
ionization channel in which electrons transition to continuum
via excited-bound states or virtual transient electronic states
has been found theoretically [11–15]. This discovered channel
complicates the dynamical process of tunneling ionization.
Meanwhile, attosecond spectroscopy has also been applied
to study electronic motion in real time. For example, it has
enabled the observation of a few-femtosecond Auger process
[16], as well as the first experimental evidence for ionization
steps in field-induced electron tunneling [17]. In particular, by
virtue of the high sensitivity of attosecond transient absorption
spectroscopy (ATAS) [18–20], the real-time excited-state pop-
ulations are measured experimentally [21]. This suggests the
possibility of probing the multiple-channel tunneling process
in experiment.

*hjxing3@icloud.com
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Tunneling ionization is essentially a dissipative process,
in which the initial populations of bound states are gradu-
ally depleted. Since multiple bound states are involved in
the ionization process [11–15], figuring out the dissipative
characteristics and the role of each bound state become vital
in revealing the tunneling dynamics, which is complicated
by the transition couplings of bound states. The quantum
method of the time-dependent Schrödinger equation (TDSE)
[6,7,22–24] provides a simulation that captures all the details
of the entire ionization process. Other commonly used meth-
ods such as SFA, hybrid quantum-classical backpropagation
[25–27], semiclassical three-step models [28,29], and classi-
cal methods [30] pay little attention to the behaviors of bound
states.

Generally, Fano theory [31,32] provides a framework for
dealing with the dissipative dynamical process of tunneling
systems. It shows that the Fano-type channel of the spec-
trum determines the tunneling process and the lifetime of
bound states. The inner decisive relations can be connected
by ionization rate w(t ). MacDonald et al. [11] have stud-
ied w(t ) and obtained that the steady value of w(t ) is the
width of the filtered ground-state Fano-type channel. How-
ever, the artificially removed coupling interactions of bound
states prevented the establishment of further relations. In our
recent work [15], we found that the effect of bound-state
couplings on tunneling dynamics is non-negligible. The pres-
ence of excited-state tunneling channels further confirms the
important role of coupling interactions [12,15]. Nevertheless,
the phenomenological approach employed in our study [15]
yields that we have barely contributed to extracting dynamical
information from w(t ).
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FIG. 1. The sketch of electron tunneling and Fano-type tunneling
channels.

In this work, by selecting the main peaks in the spectra, we
deduce a two-level leakage model. This model allows us to
extract the primary dissipative characteristics, i.e., the central
positions and widths of the Fano-type tunneling channels,
from the ionization rate. Since the dynamic characteristics
of the system are encoded into the parameters of the model,
we obtain the Fano-type peaks in the spectra ruling tunneling
process by diagonalizing the model. Hence, an explicit im-
age of tunneling dynamical behaviors of electrons inside the
atom is presented, as shown in Fig. 1. Atomic units are used
throughout the paper, unless stated otherwise.

II. FORMULATION

Tunneling ionization refers to the process where electrons
within an atom escape from the binding potential suppressed
by an external field. The atom is initially in its ground state,
and the Hamiltonian of this perturbed system described in the
length gauge is

H = H0 − r · F, (1)

where H0 = T + V , with T the kinetic energy, V the bare
potential, and F a static electric field switching on at time
t = 0. In the presence of this external field, the bound state
is diluted to a band with a finite width that determines its
lifetime. Inspired by Fano theory [31,32], the width can be
estimated by calculating the spectral density |gn(ε)|2 of the
bound state, which is

|gn(ε)|2 = |〈n|ϕε〉|2, (2)

where |n〉 is a discrete eigenstate of H0 with eigenenergy En,
and n = 0, 1, 2, . . . . Also, ε and |ϕε〉 are the eigenvalues and
eigenstates of H .

Traditionally, Fano theory describes a simplified dissipa-
tive system HF ,

HF =
∑

n

En|n〉〈n| +
∫

dωω|ω〉〈ω|

+
∫

dω
∑

n

Wn[|ω〉〈n|e−iϕn + H.c.], (3)

where only the direct couplings between the bound state and
continuum of H0 are considered. Wn is the coupling coeffi-
cient of the nth bound state with the continuum. |ω〉 is the
continuum eigenstate of H0 with energy ω. It can be solved
analytically by assuming Wn independent of ω. The spectral

density of the bound state in the system HF is given by

∣∣gF
n

(
ε′)∣∣2 = W 2

n z(ε′)2

(ε′ − En)2[π2 + z(ε′)2]
, (4)

where z(ε′) = (
∑

n
W 2

n
ε′−En

)−1, with ε′ the eigenenergy of HF . In
the regime of weak coupling, |gF

n (ε′)|2 approximately follows
a Lorentzian distribution, for it only has one major peak with
the width much smaller than the energy gap between discrete
states. This single prominent peak suggests a Fano-type dissi-
pative channel and its width gives the depletion rate of the nth
discrete state.

In realistic tunneling dynamics, the additional coupling
terms between bound states, which are not accounted for in
HF , can have a significant impact. This effect enriches the
spectrum rather than a single Lorentzian peak, and the re-
sulting tunneling dynamics becomes complicated. McDonald
et al. [11] studied the system H , but filtered transition cou-
plings. We considered the effects of these coupling terms and
found that w(t ) can be roughly described by a finite-level
model [15]. This model is phenomenological. The parameters
of the model are determined by fitting the results obtained
from solving the TDSE. Thus, the physics encoded in the
parameters is not explicitly clear, limiting our ability to extract
dynamical information of tunneling electrons from w(t ) with
the aid of the model.

Indeed, the spectrum carries dissipative information of the
bound state, allowing us to improve the previous phenomeno-
logical model from the spectrum itself. By this improved
model, we eventually uncover the tunneling dynamical pro-
cess of electrons and obtain the dissipative characteristics of
the tunneling system from w(t ). Specifically, from the time-
dependent generalization of Fano-resonance theory [31], w(t )
reads [15]

w(t ) =
∫∫

dε1dε2i(ε1 − ε2)e−i(ε1−ε2 )t G12(ε1, ε2)∫∫
dε1dε2e−i(ε1−ε2 )t G12(ε1, ε2)

, (5)

with G12(ε1, ε2)=g0(ε1)g∗
0(ε2)

∑
n gn(ε1)g∗

n(ε2). Equation (5)
is defined in the length gauge, which corresponds to the actual
ionization rate. We mention that time-dependent ionization
probability is gauge invariant on the condition that the def-
inition of the ionization is unambiguous and consistent in
different gauges. For the velocity gauge, the same ionization
rate can be derived via a resolvent operator method [33].

In our investigation, we use. a one-dimensional (1D)
square-well potential and model the tunneling potential
Veff (x) = V − r · F as

Veff (x) =
{−V0 for |x| < a

−xF otherwise.
(6)

V0 and 2a are the depth and width of the bare potential. With
setting V0 = 2 and a = 1.5, H0 contains two bound states |0〉
and |1〉. In this case, gn(ε) is a real number.

For rough comparison, we also apply Fano theory to de-
scribe the square-well potential system. At F = 0.40, we
depict the spectral densities |gn(ε)|2 and |gF

n (ε′)|2 in Fig. 2.
In the realistic situation, the coupling coefficient Wn(ω) of
the nth discrete state to the continuum is dependent on ω.
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FIG. 2. (a) Spectral densities as a function of ε. ε0
1 is the central

energy of the first peak of |g0(ε)|2, and ε1
2 is the central energy of

the second peak of |g1(ε)|2. The inset shows untruncated w(t ) and
truncated wtrun(t ). (b) [(c)] Spectral density |gF

0 (ε′)|2 [|gF
1 (ε′)|2] as a

function of ε′. For comparison, |g0(ε)|2 [|g1(ε)|2] is also presented
for the same energy range. The inset in (c) magnifies the first peak of
|g1(ε)|2. Here, F = 0.40 a.u.

In the case of Fano theory, we take Wn = maxω[Wn(ω)], re-
sulting in W1 = 0.0104 and W2 = 0.3462. It is reasonable to
take the coupling coefficient as a constant since the spectral
width of the bound state is much narrower than the width
of Wn(ω). Compared to the single Lorentzian peak of Fano
theory (see Fig. 2), additional couplings in H trigger small
peaks near the Fano-type resonant peak (channel) centered at
ε0

1 (ε1
2). These additional couplings also distort the shape of

the spectral distribution, deviating from a Lorentzian distri-
bution. Furthermore, the energy-dependent coefficient Wn(ω)
shifts the central positions of the resonant peaks [Figs. 2(b)
and 2(c)].

III. TWO-LEVEL MODEL

Owing to the coupling transitions, the whole spectrum
contributes to the tunneling dynamics, while the main features
of w(t ) can be captured by retaining only the low-energy part
of the spectrum. After calculating with different truncations
of the energy, we find that the main contributions to w(t )
come from the negative-energy part of the spectrum. Namely,
as shown in the inset of Fig. 2(a), the long-time behaviors of
w(t ) can be reproduced by retaining only the negative-energy
part of the spectrum. In this negative-energy range, there are
only four peaks [two peaks of |g0(ε)|2 and the other two
peaks of |g1(ε)|2] [see Fig. 2(a)]. To capture the leading-order
contributions (the position and width of the peak), we take
each of these four peaks as a Lorentzian distribution, which
means we introduce four channels with constant lifetimes.

We first express the electron wave function at time t as

|ψ (t )〉 = c0(t )|0〉 + c1(t )|1〉 +
∫

cω(t )|ω〉dω, (7)

where c0(t ), c1(t ), and cω(t ) are the probability amplitudes.
At t = 0, c0 = 1 and other probability amplitudes are zero.
Expanding |0〉 = ∫

dεg0(ε)|ϕε〉 and |1〉 = ∫
dεg1(ε)|ϕε〉, and

projecting 〈0| and 〈1| on the left-hand side of Eq. (7), we have
the evolution of (c0, c1) in matrix form,(

c0(t )
c1(t )

)
= Ũ (t, t ′)

(
c0(t ′)
c1(t ′)

)
, (8)

with

Ũ (t, t ′) =
( ∫

dεe−iε(t−t ′ )|g0(ε)|2 ∫
dεe−iε(t−t ′ )g0(ε)g1(ε)∫

dεe−iε(t−t ′ )g0(ε)g1(ε)
∫

dεe−iε(t−t ′ )|g1(ε)|2
)

.

In further calculations, we approximate the first two peaks
of the spectra |g0(ε)|2 (|g1(ε)|2) by a sum of two Lorentzian
functions. Simultaneously, the cross term g0(ε)g1(ε) is deter-
mined. For convenience and simplicity, we also fit g0(ε)g1(ε)
with a sum of two Lorentzian functions, where the leading-
order contributions of g0(ε)g1(ε) are included. Note that
the fitted Lorentzian parameters of g0(ε)g1(ε) are dependent
of |g0(ε)|2 and |g1(ε)|2. The Lorentzian function is defined

as L(Aj
k, γ

j
k , ε

j
k ) = Aj

k
(γ j

k /2)2

(γ j
k /2)2+(ε−ε

j
k )2

, where k = 1, 2 and j =
0, 1, 2 represent the spectra |g0(ε)|2, |g1(ε)|2, and g0(ε)g1(ε),
respectively. The parameters (Aj

k, γ
j

k , ε
j
k ) are the peak value,

the width, and the central energy of the kth peak of the spec-
trum j. Subsequently, Ũ (t, 0) becomes, accordingly,

Ũ (t, 0) =
(

a0
1 f 0

1 (t ) + a0
2 f 0

2 (t ) a2
1 f 2

1 (t ) + a2
2 f 2

2 (t )

a2
1 f 2

1 (t ) + a2
2 f 2

2 (t ) a1
1 f 1

1 (t ) + a1
2 f 1

2 (t )

)
,

with a j
k = Aj

kπ
γ

j
k
2 , f j

k (t ) = e−iε j
k t− γ

j
k
2 t .

We then have the unionized electron wave function, which
is given by

|ψ̃ (t )〉 = c0(t )|0〉 + c1(t )|1〉. (9)

Equation (9) satisfies the TDSE, from which we obtain a
partial Hamiltonian,

H̃ (t ) = i∂tŨ (t, 0)Ũ −1(t, 0), (10)

≡
(

E1(t ) − i	1(t )/2 V1(t ) + iV2(t )
V3(t ) + iV4(t ) E2(t ) − i	2(t )/2

)
. (11)

This partial Hamiltonian can be equivalently regarded as a
result of tracing over the continuum states. For clarity and
readability, a detailed expression of H̃ (t ) is given in Ap-
pendix A. In fact, we have recently found that the main
behaviors of w(t ) can be roughly described by a time-
independent two-level Hamiltonian [15]. We thus perform a
time average on H̃ (t ) as H = 1

T

∫ T
0 H̃ (t )dt . From Magnus ex-

pansion [34], this average treatment is equivalent to making an
approximation that H̃ (t ) at different times are commutative,
and we finally get

H =
(

E1 − i	1/2 V1 + iV2

V3 + iV4 E2 − i	2/2

)
, (12)

which is just the improved two-level model. T can be infinite,
in principle. But, for very large T , the probability of the
electron populating on the excited state becomes extremely
small. This can lead to numerical errors and distorts the re-
sults. Furthermore, the specific dynamics that we focus on is
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the duration during which the wave function reaches a steady
state, where w(t ) approaches a steady value. Hence, we select
T that is around the steady-state time.

This improved two-level Hamiltonian H is directly de-
duced from the spectrum, so that the main characteristics
of the tunneling system are naturally encoded into H . This
distinguishes it from the previous model [15]. Similar to w(t )
[Eq. (5)], we obtain a leakage rate wL(t ) from the model H .
wL(t ) is given by

wL(t ) = −∂t [|c̄1(t )|2 + |c̄2(t )|2]

|c̄1(t )|2 + |c̄2(t )|2 , (13)

with c̄1(t ) and c̄2(t ) denoting the probability amplitudes of the
two states in H . At a fixed field F , wL(t ) is a known expression
that solely depends on time t . Straightforwardly, we compare
wL(t ) with w(t ) [Eq. (5)] for different F in Appendix B. The
results demonstrate a remarkable agreement between wL(t )
and w(t ) for long times. One can see that the ionization rate
is negative at certain times. This arises from the fact that
electrons populated on the continuum will flow back to bound
states. For further support, we have discussed the consistency
of the results for choosing different T at F = 0.30 a.u. in
Appendix C. Therefore, we can conclude that model H is
highly effective in reproducing the primary tunneling dynam-
ics of electrons.

IV. POSITION AND WIDTH OF THE FANO-TYPE
CHANNEL

To further analyze the main dynamical characteristics of
tunneling electrons from the well-defined two-level leakage
model, we calculate the eigenvalues of H and denote them
as λ1 = Ē1 − i	̄1/2 and λ2 = Ē2 − i	̄2/2. Here, Ē1 and Ē2

are the central positions of the eigenchannels of the tunnel-
ing electrons, and 	̄1 and 	̄2 are the corresponding widths.
These two eigenchannels dominate the tunneling behavior
of electrons. Note that the four sharp peaks in the spectra
[Fig. 2(a)] play the major role in the tunneling process. To
figure out the relationship between these four sharp peaks and
the two tunneling eigenchannels, we compare them in Fig. 3.
For weak fields, we observe that Ē1 ≈ ε0

1 ≈ ε1
1, Ē2 ≈ ε0

2 ≈
ε1

2, 	̄1 ≈ γ 0
1 ≈ γ 1

1 , and 	̄2 ≈ γ 0
2 ≈ γ 1

2 . In this case, the four
sharp peaks in the spectra correspond to the two tunneling
channels. Namely, the two tunneling eigenchannels corre-
spond to the two Fano-type peaks in the spectra. However, for
stronger fields, these relations no longer hold. Particularly, ε0

2
largely deviates from ε1

2, while Ē2 eventually approaches ε1
2.

As a result, the relations become Ē1 ≈ ε0
1, 	̄1 ≈ γ 0

1 and Ē2 ≈
ε1

2, 	̄2 ≈ γ 1
2 . From these behaviors, we conclude that the two

eigenchannels derived from our model are the two Fano-type
channels in the spectra. This shows that though coupling
interactions complicate the spectra and tunneling signals of
electrons, Fano-type peaks still dominate the tunneling dy-
namics of electrons. Furthermore, this result establishes an
explicit physical correspondence for each parameter in the
improved model after diagonalization, rendering the model no
longer phenomenological.

This physical coincidence of the eigenchannels from the
model and the Fano-type channels in the spectra presents
a clear tunneling image of the electron inside the atom, as

FIG. 3. (a) [(b)] The energy as a function of the field F . ε0
1 [ε0

2]
and ε1

1 [ε1
2] are central energies of the first [second] peak of spectra

|g0(ε)|2 and |g1(ε)|2. Ē1 and Ē2 are eigenchannels. (c) [(d)] The width
as a function of F . γ 0

1 [γ 0
2 ] and γ 1

1 [γ 1
2 ] are the widths of the first

[second] peak of spectra |g0(ε)|2 and |g1(ε)|2. 	̄1 and 	̄2 are band
widths of the eigenchannels.

depicted in Fig. 1. The electron initially populates on the bare
state |0〉. Due to the coupling interactions, electrons are transi-
tioned to the first excited state. These coherent electrons then
escape from the trap barrier, predominately via two Fano-type
tunneling channels, namely, the ground-state resonance chan-
nel and the excited-state resonance channel. These channels
are composed of a group of dressed states centered at ε0

1 and
ε1

2, respectively. In the weak-field limit, the central positions
of the two Fano-type channels coincide with those calculated
by Fano theory.

Now, we can explain the temporal behaviors of w(t ). The
oscillation observed in w(t ) is mainly caused by the interfer-
ence of the initial propagating waves from the two Fano-type
tunneling channels. Since γ 1

2 � γ 0
1 and the population on the

FIG. 4. (a) Ionization rate w(t ) [Eq. (5)] and wL (t ) [Eq. (13)].
wd (t ) is the damping curve. τs is the steady time of w(t ). It is
determined at which the relative error is 1% of its steady-state value.
Here, F = 0.40. (b) Steady value, (c) damping rate, and (d) steady
time τs as a function of F .
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excited state |1〉 becomes extremely small for longer times,
w(t ) approaches a steady value denoted as vs.

When the spectra of the bound states are unknown before-
hand, we can extract the spectral information of dominating
tunneling dynamics of the electron (namely, the positions
and widths of the Fano-type tunneling channels) from the
behaviors of w(t ) with the help of our constructed model. The
extraction process can be outlined as follows:

(1) w(t ) oscillates with a damping amplitude [green line in
Fig. 4(a)], marked as wd(t ). From our model [Eq. (13)], we
first deduce (see Appendix D)

wd (t ) ≈ Ae− 	̄2−	̄1
2 t + 	̄1

= Ae− γ 1
2 −γ 0

1
2 t + γ 0

1 . (14)

Based on Eq. (14), the damping curve can be expressed in a
general form as wd(t ) = Ae−	d t + vs. Here, vs is the steady
value of w(t ) and can be directly read from the TDSE re-
sults. The damping rate 	d is determined by fitting with w(t )
calculated by TDSE. We compare vs with γ 0

1 (γ 0
1 ≈ 	̄1) in

Fig. 4(b) and plot 	d and γ 1
2 −γ 0

1
2 ( γ 1

2 −γ 0
1

2 ≈ 	̄2−	̄1
2 ) in Fig. 4(c).

It is evident that they are in good agreement. We can directly
infer that γ 0

1 ≈ vs and γ 1
2 ≈ 2 	d + vs. Hence, we are able to

obtain the widths of the Fano-type channels in the spectra.
These consistent results again validate the rationality of the
Lorentzian-spectrum approximation.

(2) The oscillation period T of w(t ) is related to the en-
ergy gap δε (δε = ε1

2 − ε0
1 ≈ Ē2 − Ē1) of the two Fano-type

resonance tunneling channels. Specifically, from Eq. (D2),
the relation is T = 2π/δε. In the tunneling ionization regime
(F � 0.56 a.u.), the oscillation period T increases with the
increase of the external field. By extracting T from w(t ),
we can determine the relative position of the two Fano-type
channels.

The magnitude of wd (t ) reflects the coherence degree of
the two Fano-type channels. The oscillation duration of w(t )
is determined by the excited-state resonance channel due to
γ 1

2 � γ 0
1 . Moreover, we identify the steady time of w(t ) as τs

[Fig. 4(a)]. τs is determined at which the relative error is 1% of
the steady-state value. The damping rate 	d suggests the value
of τs. As shown in Fig. 4(d), τs is approximately proportional
to 	d inversely; specifically, τs ≈ 6.67 ∗ 1

	d
≈ 13.34 ∗ 1

γ 1
2 −γ 0

1
.

V. CONCLUSION AND DISCUSSION

The spectrum plays a crucial role in the study of perturbed
systems as it can reveal many characteristics of the perturbed
systems. In particular, the spectral width accounts for the
lifetime of a metastable state. This is a common concern in
various fields. In the complicated tunneling process involving
multiple bound states, we have developed a systematic method
to extract the spectral key information from the ionization rate
in the context of strong-field perturbation with the aid of a
constructed two-level model. Our method is also applicable
for multiple-level systems and the case of weak-coupling limit
[11,32]. For generalized cases, one can get the spectral key
information according to the extraction steps (1) and (2) out-
lined in Sec. IV. We have actually suggested a perspective that
one can infer tunneling dynamics by measuring the ionization
rate, opening up a different avenue for studying tunneling
dynamics of electrons.

Furthermore, in the strong-field regime, a significant Stark
shift and the coupling to the continuum distinguish our model
from Rabi oscillation [35], which describes the dynamical
process of a two-level system perturbed by an extremely weak
external field. Specifically, the period oscillation of ionization
rate behaves differently from the Rabi period, which decreases
with the increase of the field. The coupling to the continuum
introduces an exponential decay to the system. Note that our
constructed model will reduce to Rabi oscillation in the weak-
field limit.

In recent years, ATAS has enabled the measurement of the
real-time populations of transient states [21]. Additionally, a
recent study by Jiang et al. [36] successfully retrieved the
time-dependent populations of bound states from the ioniza-
tion spectra. We anticipate that the advances in attosecond
techniques will allow for the measurement of w(t ) in the fu-
ture. We think our work significantly contributes to the study
of electron tunneling dynamics.
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APPENDIX A: THE DERIVATION OF THE PARTIAL HAMILTONIAN ˜H (t )

After some straightforward calculations, the Hamiltonian H̃ (t ) [Eq. (10)] ends up with

H̃ (t ) = i
1

|Ũ |

(
b0

1 f 0
1 (t ) + b0

2 f 0
2 (t ) b2

1 f 2
1 (t ) + b2

2 f 2
2 (t )

b2
1 f 2

1 (t ) + b2
2 f 2

2 (t ) b1
1 f 1

1 (t ) + b1
2 f 1

2 (t )

)(
a1

1 f 1
1 (t ) + a1

2 f 1
2 (t ) −a2

1 f 2
1 (t ) − a2

2 f 2
2 (t )

−a2
1 f 2

1 (t ) − a2
2 f 2

2 (t ) a0
1 f 0

1 (t ) + a0
2 f 0

2 (t )

)
, (A1)

where a j
k = Aj

kπ
γ

j
k
2 , f j

k (t ) = e−iε j
k t− γ

j
k
2 t , bj

k = −i(ε j
k − i γ

j
k
2 )a j

k , |Ũ | = [a0
1 f 0

1 (t ) + a0
2 f 0

2 (t )][a1
1 f 1

1 (t ) + a1
2 f 1

2 (t )] − [a2
1 f 2

1 (t ) +
a2

2 f 2
2 (t )]2, k = 1, 2, j = 0, 1, 2, respectively. For more clearness, we list the four matrix elements of H̃ (t ) as follows:

|Ũ |H̃11 = [(
A1

1 + A1
2

)(
A0

1ε
0
1 + A0

2ε
0
2

) − (
A2

1 + A2
2

)(
A2

1ε
2
1 + A2

2ε
2
2

)]
− i

1

2

[(
A1

1 + A1
2

)(
A0

1γ
0
1 + A0

2γ
0
2

) − (
A2

1 + A2
2

)(
A2

1γ
2
1 + A2

2γ
2
2

)]
, (A2)
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FIG. 5. w(t ) and wL (t ) as a function of t . Blue line is the result of the TDSE. Red line is the result of the model.

with A j
k = a j

k f j
k (t ), k = 1, 2, j = 0, 1, 2, respectively.

|Ũ |H̃12 = [−(
A2

1 + A2
2

)(
A0

1ε
0
1 + A0

2ε
0
2

) + (
A0

1 + A0
2

)(
A2

1ε
2
1 + A2

2ε
2
2

)]
− i

1

2

[−(
A2

1 + A2
2

)(
A0

1γ
0
1 + A0

2γ
0
2

) + (
A0

1 + A0
2

)(
A2

1γ
2
1 + A2

2γ
2
2

)]
, (A3)

|Ũ |H̃21 = [(
A1

1 + A1
2

)(
A2

1ε
2
1 + A2

2ε
2
2

) − (
A2

1 + A2
2

)(
A1

1ε
1
1 + A1

2ε
1
2

)]
− i

1

2

[(
A1

1 + A1
2

)(
A2

1γ
2
1 + A2

2γ
2
2

) − (
A2

1 + A2
2

)(
A1

1γ
1
1 + A1

2γ
1
2

)]
, (A4)

|Ũ |H̃22 = [−(
A2

1 + A2
2

)(
A2

1ε
2
1 + A2

2ε
2
2

) + (
A0

1 + A0
2

)(
A1

1ε
1
1 + A1

2ε
1
2

)]
− i

1

2

[−(
A2

1 + A2
2

)(
A2

1γ
2
1 + A2

2γ
2
2

) + (
A0

1 + A0
2

)(
A1

1γ
1
1 + A1

2γ
1
2

)]
. (A5)

Finally, we simply express H̃ (t ) as

H̃ (t ) ≡
(

E1(t ) − i	1(t )/2 V1(t ) + iV2(t )
V3(t ) + iV4(t ) E2(t ) − i	2(t )/2

)
. (A6)

The parameters in H̃ (t ) are the function of the characteristic quantities of the peaks.

APPENDIX B: THE IONIZATION RATE wL(t ) AND w(t )

We compare wL(t ) and w(t ) in Fig. 5 for different field
strengths F . In a wide range of field, wL(t ) derived from our
model coincides well with w(t ) calculated from the TDSE for
long times.

APPENDIX C: THE CONVERGENCY OF THE RESULTS
FOR CHOOSING DIFFERENT T

For F = 0.30 a.u., the time of w(t ) approaching a steady
value is around 250 a.u. We have, respectively, selected T =
150, 200, 250, 300 a.u. to check the consistency of the results,

as shown in Fig. 6. We can see clearly that for long times,
wL(t ) coincides with w(t ) for different T .

APPENDIX D: THE DAMPING CURVE wd (t )

We mark the eigenvalues of H as λ1 = Ē1 − i	̄1/2 and
λ2 = Ē2 − i	̄2/2 and the eigenvectors as |v1〉 and |v2〉. H is
non-Hermitian; thereby, |v1〉 and |v2〉 are complex vectors and
not orthogonal. The unionized wave function of the electrons
can be given by

|ψ̃ (t )〉 = c1e−iλ1t |v1〉 + c2e−iλ2t |v2〉, (D1)

013119-6
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FIG. 6. w(t ) and wL (t ) as a function of t . The blue line and
red line are the results of the TDSE and model, respectively, for
different T .

where c1 and c2 are the initial amplitudes. (c1, c2) ∈ R2, and
	̄2 � 	̄1. Then,

〈ψ̃ (t )|ψ̃ (t )〉 = c2
1e−	̄1t + c2

2e−	̄2t + c1c2|〈v1|v2〉|e− 	̄1+	̄2
2 t

× [
ei(Ē1−Ē2 )t+iθv + c.c.

]

≈ c2
1e−	̄1t + 2c1c2|〈v1|v2〉|e− 	̄1+	̄2

2 t

× cos[(Ē1 − Ē2)t + θv], (D2)

where θv is the relative phase of the eigenvectors |ν1〉 and |ν2〉.
The damping behaviors of w(t ) are determined by the term

c2
1e−	̄1t + 2c1c2|〈v1|v2〉|e− 	̄1+	̄2

2 t , marked as pd . The damping
curve wd (t ) is thus

wd (t ) = −∂t pd

pd
= 	̄1 − 	̄1 − 	̄2

2

1

1 + c2
1

A′ e− 	̄1−	̄2
2 t

≈ 	̄1 − 	̄1 − 	̄2

2

1
c2

1
A′ e− 	̄1−	̄2

2 t

= 	̄1 − 	̄1 − 	̄2

2

A′

c2
1

e− 	̄2−	̄1
2 t

≡ Ae− 	̄2−	̄1
2 t + 	̄1 = Ae− γ 1

2 −γ 0
1

2 t + γ 0
1 , (D3)

where A′ ≡ 2c1c2|〈v1|v2〉|.
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