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Bipartite entangled states whose violations of the Clauser-Horne-Shimony-Holt Bell inequality can be ob-
served by a single Alice and arbitrarily many sequential Bobs exist [Brown and Colbeck, Phys. Rev. Lett. 125,
090401 (2020)]. Here we consider their analogs for tripartite systems: a tripartite entangled state is shared among
Alice, Bob, and multiple Charlies. The first Charlie measures his qubit and then passes his qubit to the next
Charlie, who measures again with other measurements, and so on. The goal is to maximize the number of
Charlies that can observe some kind of nonlocality with the single Alice and Bob. It has been shown that at
most two Charlies can share genuine nonlocality of the Greenberger-Horne-Zeilinger state via the violation of
the Svetlichny inequality with Alice and Bob [S. Saha et al., Quantum Inf. Process. 18, 42 (2019); Zhang and
Fei, Phys. Rev. A 103, 032216 (2021)]. In this work, we show that arbitrarily many Charlies can have standard
nonlocality (via violations of the Mermin inequality) and some other kind of genuine nonlocality (which is
known as genuinely nonsignal nonlocality) with a single Alice and single Bob.
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I. INTRODUCTION

Quantum nonlocality is one of the most striking fea-
tures of quantum physics. Through the quantum violation
of a suitable set of inequalities, Bell [1] demonstrated that
the predictions of quantum mechanics are in contradiction
to the classical causal relations. Beyond its importance in
quantum foundations, quantum nonlocality is also the key
resource for device-independent quantum information pro-
cessing, such as building quantum protocols to decrease com-
munication complexity [2,3] and providing secure quantum
communication [4,5].

Recently, the question of whether a single entangled pair
can generate a long sequence of nonlocal correlations has
gained extensive attention. For bipartite quantum systems, in
[6,7], the authors showed that at most two Bobs can achieve an
expected Clauser-Horne-Shimony-Holt violation with a single
Alice when each Bob performs different measurements with
equal probability and sharpness and the measurements of each
Bob are independent of the choices of measurement settings
and outcomes of the previous Bobs. In [8], with unequal
sharpness for each Bob’s measurements, the authors proved
that arbitrarily many independent Bobs can share the nonlo-
cality of the Bell state with a single Alice. This result was
soon extended to higher-dimensional bipartite systems (see
Ref. [9]). There has also been some progress on the setting
where multiple Alices and Bobs are considered [10,11].

It is natural to ask whether a similar property holds in
the multipartite setting. For tripartite quantum systems, the
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authors of [12] showed that via the violation of the Mermin
inequality, at most six Charlies can simultaneously demon-
strate standard tripartite nonlocality with a single Alice and
a single Bob. On the other hand, based on the Svetlichny
inequality [13], at most two Charlies can simultaneously share
genuine tripartite nonlocality with a single Alice and a sin-
gle Bob [9,12]. As quantum nonlocality can be observed
by violating different kinds of inequalities, it is interest-
ing to ask whether there is some kind of nonlocality that
can be detected sequentially by arbitrarily many Charlies
with a single Alice and a single Bob via some related in-
equality. We will give affirmative answers for the settings
where the nonlocality can be obtained via the violation of
the Mermin inequality or the genuinely nonsignal nonlocal-
ity defined in Ref. [14]. Contrary to the result that at most
six Charlies can simultaneously observe the violations of the
Mermin inequality with a single Alice and Bob, here we
find that arbitrarily many independent Charlies can observe
this violation with the single Alice and Bob. This might be
possible because we choose a measurement strategy for Alice,
Bob, and multiple Charlies that is different from the one in
Ref. [12].

The rest of this paper is organized as follows. In Sec. II,
we review some definitions of the tripartite nonlocality. In
Sec. III, we introduce the scenario of sharing tripartite nonlo-
cality sequentially with multiple Charlies and a single Alice
and a single Bob. In Sec. IV, we give a constructive mea-
surement strategy which enables arbitrarily many independent
Charlies to observe the violation of the Mermin inequality
with a single Alice and Bob. In Sec. V, we provide a spe-
cific measurement strategy which enables arbitrarily many
independent Charlies to observe the genuinely nonsignal non-
locality with a single Alice and Bob. Finally, we draw our
conclusions in Sec. VI.
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II. TRIPARTITE QUANTUM NONLOCALITY

Different from the ones in bipartite systems, quantum
states in tripartite systems can be not only entangled or
nonlocally correlated but also genuinely entangled or gen-
uinely nonlocally correlated. Quantum nonlocality can be
revealed via violations of various Bell inequalities. For tripar-
tite quantum systems, except for the well-known Svetlichny
inequalities [13], in [14] other three-qubit genuine nonlocality
and three-way nonlocal correlations were studied.

Now we consider a tripartite scenario where each of three
spatially separated parties, Alice, Bob, and Charlie, performs
the measurements Xi,Yj , and Zk on their subsystems, respec-
tively, with outcomes A, B, and C, i, j, k ∈ {0, 1}, A, B,C ∈
{0, 1}. Let P(ABC|XiYjZk ) denote the joint outcome probabil-
ities where Alice measures her system by Xi with outcome A
(with similar notation for Bob and Charlie). First, if the prob-
ability correlations P(ABC|XiYjZk ) among the measurement
outcomes can be written as

P(ABC|XiYjZk ) =
∑

λ

qλPλ(A|Xi )Pλ(B|Yj )Pλ(C|Zk ),

with 0 � qλ � 1 and
∑

λ qλ = 1, then they are called
fully local. If P(ABC|XiYjZk ) is not fully local, we say
P(ABC|XiYjZk ) exhibits standard tripartite nonlocality. In
particular, it can be detected by violations of the Mermin
inequalities [15], which have the following form:

〈X1Y0Z0〉 + 〈X0Y1Z0〉 + 〈X0Y0Z1〉 − 〈X1Y1Z1〉 � 2, (1)

where 〈XiYjZk〉 =∑ABC (−1)A+B+CP(ABC|XiYjZk ). As
pointed out by Svetlichny [13], if the correlation can be
written in the form

P(ABC|XiYjZk ) =
∑

λ

qλPλ(AB|XiYj )Pλ(C|Zk )

+
∑

μ

qμPμ(AC|XiZk )Pμ(B|Yj )

+
∑

ν

qνPν (BC|YjZk )Pν (A|Xi ), (2)

where 0 � qλ, qμ, qν � 1, and
∑

λ qλ +∑μ qμ +∑ν qν =
1, then P(ABC|XiYjZk ) is called S2 local. Otherwise, it is
called three-way genuine nonlocality, which is also known
as Svetlichny nonlocality. Svetlichny found that the three-
way genuine nonlocality can be observed by violations of
Svetlichny inequality, which is defined as

〈X0Y0Z0〉 + 〈X0Y1Z0〉 + 〈X0Y0Z1〉 − 〈X0Y1Z1〉
+ 〈X1Y0Z0〉 − 〈X1Y1Z0〉 − 〈X1Y0Z1〉 + 〈X1Y1Z1〉 � 4.

In particular, even if P(ABC|XiYjZk ) violates the Mermin
equality, it does not necessarily demonstrate that the corre-
lation exhibits Svetlichny nonlocality. In [14], the authors
introduced two alternative definitions of three-way nonlocal-
ity that are strictly weaker than Svetlichny nonlocality. Here
apart from Svetlichny nonlocality, we mainly study Definition
1 in [14] regarding the genuine nonlocality.

We assume that the probabilities P(ABC|XiYjZk ) satisfy
Eq. (2). Moreover, for any possible A, B,C, and C′ and

Svetlichny nonlocalityStandard
nonlocality

Genuine nonsignal
nonlocality

FIG. 1. The relations among standard nonlocality, Svetlichny
nonlocality, and genuinely nonsignal nonlocality.

Xi,Yj, Zk , and Z ′
k , the equalities∑

B

Pλ(AB|XiYj ) =
∑

B′
Pλ(AB′|XiY

′
j )

are satisfied, and other equalities can also be obtained from
permutations of the parties; then the correlations are called
nonsignal local (denoted NS local). Otherwise, we call them
genuinely nonsignal nonlocal (i.e., genuinely NS nonlocal).

To detect the NS genuine nonlocality, we consider the
following inequality (denoted as the NS inequality):

〈Y0Z0〉 + 〈X0Z0〉 + 〈X1Y0〉 − 〈X0Y1Z1〉 + 〈X1Y1Z1〉 � 3, (3)

where 〈XiYj〉 =∑AB(−1)A+BP(AB|XiYj ).
By definition, the relations among standard nonlocality,

Svetlichny nonlocality, and genuinely nonsignal nonlocality
can be seen in Fig. 1.

III. SCENARIO OF SHARING OF TRIPARTITE
NONLOCALITY BY MULTIPLE CHARLIES

The Pauli operators are denoted σi for i ∈ {1, 2, 3}.
Throughout this paper, we use two-outcome positive operator-
valued measurements (POVMs) {E , I − E}, where E has the
form E = I+γ σ�r

2 , γ ∈ [0, 1] is the sharpness of the mea-
surement, �r = (r1, r2, r3) ∈ R3, ‖ �r ‖= 1, and σ�r = r1σ1 +
r2σ2 + r3σ3, for example, {A0|0, A1|0}, where A0|0 = 1

2 (I +
σ1) and A1|0 = I − A0|0 = 1

2 (I − σ1). Therefore, to define a
two-outcome measurement, it is enough to define one mea-
surement element.

Now we introduce the scenario of sharing tripartite nonlo-
cality sequentially with multiple Charlies and a single Alice
and a single Bob. The corresponding measurement scenario
illustrated in Fig. 2 is considered.

Three particles are prepared in the state ρABC(1) =
|GHZ〉〈GHZ|, where the Greenberger-Horne-Zeilinger state
|GHZ〉 = 1√

2
(|000〉 + |111〉). These three particles are spa-

tially separated and shared between Alice, Bob, and mul-
tiple Charlies (i.e., Charlie(1), Charlie(2), Charlie(3), . . . ,
Charlie(n)). Alice performs measurement X on the first par-
ticle and gets outcome A. Bob performs measurement Y on
the second particle and gets outcome B. And multiple Char-
lies perform measurements Z (k) on the third particle and get
outcomes C(k) sequentially. In particular, Charlie(1) performs
measurements on the third particle, and after doing measure-
ments, he passes the particle to Charlie(2). Then Charlie(2)

delivers the particle to Charlie(3) after doing measurements
and so on. Moreover, each Charlie performs measurements
independent of the measurement choices and outcomes of
the previous Charlies in this sequence. Here we consider the
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FIG. 2. Sharing the genuine tripartite nonlocality with multiple
Charlies: A quantum state ρABC(1) is initially distributed between
Alice, Bob, and Charlie(1). After Charlie(1) performs his randomly
selected measurement and records the outcomes, he passes the
postmeasurement quantum state to Charlie(2), who then repeats the
process. In particular, the measurement choices and outcomes of each
Charlie are not conveyed.

unbiased input scenario; that is, all possible measurement
settings of each Charlie are uniformly distributed.

The goal is to maximize the number of Charlies that can
observe some kind of nonlocality with a single Alice and Bob.
Therefore, it is crucial to find out what the state ρABC(k) shared
by Alice, Bob, and Charlie(k) is after Charlie(k−1) performs
his measurements. In fact, suppose Charlie(k−1) performed the
measurement according to Z (k−1) = z and received the out-
come C(k−1) = c; the postmeasurement state can be described
by the Lüders rule:

ρABC(k) = 1

2

∑
c,z

(
I ⊗ I ⊗

√
C(k−1)

c|z ρABC(k−1)I ⊗ I ⊗
√

C(k−1)
c|z

)
.

(4)

IV. SHARING OF TRIPARTITE NONLOCALITY BY
MULTIPLE CHARLIES VIA MERMIN INEQUALITY

First, we consider how many Charlies can simultaneously
demonstrate tripartite nonlocality via Mermin inequality (1)
with a single Alice and Bob. Therefore, it is important to find
out the Mermin value I(k)

M among Alice, Bob, and Charlie(k),
which is defined by

Tr
[
ρABC(k)

(
X1Y0Z (k)

0 + X0Y1Z (k)
0 + X0Y0Z (k)

1 − X1Y1Z (k)
1

)]
.

(5)
Here X0, X1,Y0,Y1, Z (k)

0 , and Z (k)
1 are the observables corre-

sponding to their measurements that will be defined in the
following.

To explain how we can define a sequence of pairs of
POVMs for Alice, Bob, Charlie(k) such that I(k)

M > 2, k ∈
{1, 2, · · · , n}, we give the following measurement strategy
for Alice, Bob, and Charlie(k). In this measurement strategy,

Alice’s POVMs are defined by

A0|0 = I + σ1

2
, A0|1 = I + σ2

2
; (6)

Bob’s POVMs are defined by

B0|0 = I − θσ2

2
, B0|1 = I + θσ1

2
(7)

for θ ∈ (0, 1). For each k = 1, 2, . . . , n, Charlie(k)’s POVMs
are defined by

C(k)
0|0 = I + σ1

2
, C(k)

0|1 = I + γkσ2

2
, (8)

So the observables are given by Xi = A0|i − A1|i, Yi =
B0|i − B1|i, and Z (k)

i = C(k)
0|i − C(k)

1|i , with i = 0, 1. Under these

measurements and the initial state |GHZ〉 = 1√
2
(|000〉 +

|111〉), we can calculate the expected Mermin value for Al-
ice, Bob, and Charlie(k) as follows (see Appendix A for the
detailed calculation):

I(k)
M = 22−kθ

⎡
⎣γk +

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)⎤⎦. (9)

The inequality I(k)
M > 2 implies Alice, Bob, and Charlie(k) can

observe the standard nonlocality. To ensure arbitrarily many
Charlies can share the standard nonlocality with a single Alice
and Bob, it is sufficient to prove that for any n ∈ N, some
(θ, γk ) exists such that I(k)

M > 2 holds for all k = 1, 2, . . . , n.
From Eq. (9), we have

I(k)
M > 2 ⇔ γk >

2k−1

θ
−

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)
, (10)

which motivates us to find a sequence {γk (θ )} such that for all
k ∈ {1, 2, . . . , n}, γk (θ ) ∈ [0, 1], and γk > 2k−1

θ
−∏k−1

j=1(1 +√
1 − γ 2

j ).

To achieve this, we will give a specific sequence and prove
that this sequence satisfies the above conditions. In fact, set
ε > 0, γ1(θ ) := (1 + ε)( 1

θ
− 1), and, for k � 2,

γk (θ ) =
{

(1 + ε)
(

2k−1

θ
− Pk

)
, 0 � γk−1(θ ) � 1,

∞, otherwise,
(11)

where Pk =∏k−1
j=1(1 +

√
1 − γ 2

j ). Then we have the following

statement, which is sufficient to deduce that arbitrarily many
Charlies can share the standard nonlocality of ρABC(1) with a
single Alice and Bob.

Theorem 1. For each n ∈ N, a sequence {γk (θ )}n
k=1 and

θn ∈ (0, 1) such that I(k)
M > 2 and 0 < γk (θ ) < 1, θ ∈ (θn, 1)

for k = 1, 2, . . . , n exists.
The proof of Theorem 1 is given in Appendix C. Theorem

1 shows that by initially sharing the GHZ state |GHZ〉 =
1√
2
(|000〉 + |111〉), the number of Charlies that violate the

Mermin inequality with a single Alice and Bob is unbounded.
We note that the authors of [12] showed that at most six

Charlies can simultaneously demonstrate standard tripartite
nonlocality with a single Alice and Bob, where they assumed
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that the measurements of both Alice and Bob are projec-
tive measurements. In contrast to the results from [12], with
Theorem 1 and Remark 1, we show that using different mea-
surement strategies for Alice, Bob, and Charlies enables more
Charlies to share the standard tripartite nonlocality.

Remark 1. (1) We state that when the initial state is
|GHZ〉 = 1√

2
(|000〉 + |111〉), even if both Alice and Bob per-

form the projective measurements, i.e., θ = 1, unbounded
numbers of Charlies also exist such that ρABC(k) can violate
the Mermin inequality with a single Alice and Bob. However,
the measurement strategies defined by Eqs. (6), (7), and (8)
should be slightly changed as follows: γ1(ϕ) = (1 + ε)ϕ, and
for k � 2,

γk (ϕ) =
{

(1 + ε)[2k−1 − Pk (ϕ)], 0 � γk−1(ϕ) � 1,
∞, otherwise,

(12)
where Pk (ϕ) =∏k−1

j=1[1 +
√

1 − γ 2
j (ϕ)]. In fact, in the case of

θ = 1, Eq. (10) can be changed into

I(k)
M > 2 ⇔ γk > 2k−1 −

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)
. (13)

Therefore, to ensure the first Charlie obtains a violation of
Mermin inequality it is sufficient to make sure 0 < γ1 < 1,
which can be satisfied by choosing a small ϕ > 0 in our
setting. With arguments similar to those in Appendix C, one
could deduce that limϕ→0+ γk (ϕ) = 0 for all k, which is suffi-
cient to yield our statement.

(2) We demonstrate that if Alice performs the sharp mea-
surements and one of Bob’s measurements is sharp, then
unbounded numbers of Charlies also exist such that ρABC(k) can
violate the Mermin inequality for any time with a single Alice
and Bob when the initial state is |GHZ〉 = 1√

2
(|000〉 + |111〉)

based on the following measurement strategy: Alice’s POVMs
are defined by

A0|0 = I + σ1

2
, A0|1 = I + σ2

2
. (14)

Bob’s POVMs are defined by

B0|0 = I − θ1σ2

2
, B0|1 = I + θ2σ1

2
(15)

for θ1, θ2 ∈ [0, 1]. For each k = 1, 2, . . . , n, Charlie(k)’s
POVMs are defined by

C(k)
0|0 = I + σ1

2
, C(k)

0|1 = I + γkσ2

2
. (16)

Here we assume θ1 = 1, θ2 
= 1; under these measurements
and the initial state |GHZ〉 = 1√

2
(|000〉 + |111〉), we can get

I(k)
M = 21−k (1 + θ2)

⎡
⎣γk +

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)⎤⎦. (17)

In order to observe I(k)
M > 2, we will need

I(k)
M > 2 ⇔ γk >

2k

1 + θ2
−

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)
. (18)

Next, we can define {γk (1, θ2)} for some fixed ε > 0,

γk (1, θ2) =

⎧⎪⎨
⎪⎩

(1 + ε)
(

2
1+θ2

− 1
)
, k = 1,

(1 + ε)( 2k

1+θ2
− Pk ), 0 � γk−1(1, θ2) � 1,

∞, otherwise,
(19)

where Pk =∏k−1
j=1(1 +

√
1 − γ 2

j ).

With methods similar to those in Appendix C, one can
deduce that limθ2→1− γk (1, θ2) = 0 for all k and further
demonstrate our statement.

Remark 2. When starting with the W state |W 〉 =
1√
3
(|100〉 + |010〉 + |001〉), we prove that at most two Char-

lies can demonstrate standard nonlocality through the viola-
tion of Mermin inequality with a single Alice and Bob using
the following measurement strategy: Alice’s POVMs are de-
fined by

A0|0 = I + cos(θ1)σ3 − sin(θ1)σ1

2
, (20)

A0|1 = I + sin(θ1)σ3 + cos(θ1)σ1

2
. (21)

Bob’s POVMs are defined by

B0|0 = I + cos(θ2)σ3 − sin(θ2)σ1

2
, (22)

B0|1 = I + sin(θ2)σ3 + cos(θ2)σ1

2
(23)

for θi ∈ [0, π
2 ], i ∈ {1, 2}. For each k = 1, 2, . . . , n,

Charlie(k)’s POVMs are defined by

C(k)
0|0 = I − σ3

2
, C(k)

0|1 = I − γkσ1

2
. (24)

The proof of Remark 2 is given in Appendix D. Note
that when θ1 + θ2 = π

2 and γ1 = 1, Alice, Bob, and the first
Charlie could yield a maximal violation (with a value of 3) of
Mermin inequality under the assumption that the initial state
is the W state. However, some other measurement strategy
with a larger number of Charlies may exist that could yield
a violation of Mermin inequality with a single Alice and Bob.

V. SHARING OF GENUINE TRIPARTITE NONLOCALITY
BY MULTIPLE ALICES VIA NS INEQUALITY

Second, we consider how many Charlies can simultane-
ously demonstrate tripartite genuinely nonsignal nonlocality
through the NS inequality (3) with a single Alice and Bob.
Therefore, we need to calculate the NS value between Alice,
Bob, and Charlie(k). The NS value is defined as

I(k)
NS ≡ Tr

[
ρABC(k)

(
Y0Z (k)

0 + X0Z (k)
0

+ X1Y0 − X0Y1Z (k)
1 + X1Y1Z (k)

1

)]
. (25)

To explain how we can define a sequence of pairs of
POVMs for Alice, Bob, and Charlie(k) such that I(k)

NS > 3,
k ∈ {1, 2, . . . , n}, we give the following measurement strategy
for Alice, Bob, and Charlie(k). In this measurement strategy,
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Alice’s POVMs are defined by

A0|0 = I + cos(θ )σ3 − sin(θ )σ1

2
, (26)

A0|1 = I + cos(θ )σ3 + sin(θ )σ1

2
(27)

for θ ∈ [0, π
2 ]. Bob’s POVMs are defined by

B0|0 = I + σ3

2
, B0|1 = I + σ1

2
(28)

for each k = 1, 2, . . . , n. Charlie(k)’s POVMs are defined by

C(k)
0|0 = I + σ3

2
, C(k)

0|1 = I + γkσ1

2
. (29)

The observables are given by Xi = A0|i − A1|i, Yi = B0|i −
B1|i, and Z (k)

i = C(k)
0|i − C(k)

1|i , with i = 0, 1. For these mea-

surements and the initial state |GHZ〉 = 1√
2
(|000〉 + |111〉),

we can calculate the expected NS value for Alice, Bob, and
Charlie(k) as follows (see Appendix B for the detailed calcu-
lation):

I(k)
NS = (cos θ + 1)

∏k−1
j=1

(
1 +

√
1 − γ 2

j

)
2k−1

+ cos θ + 22−kγk sin θ. (30)

The inequality I(k)
NS > 3 implies Alice, Bob, and Charlie(k)

can observe the genuinely nonsignal nonlocality. To ensure
arbitrarily many Charlies can share the genuinely nonsignal
nonlocality with a single Alice and Bob, it is sufficient to
prove that for any n ∈ N, some θ exists such that I(k)

NS > 3
holds for all k = 1, 2, . . . , n. From Eq. (30), we have

I(k)
NS > 3 ⇔ γk >

3 − cos θ − (1 + cos θ )
∏k−1

j=1(1+
√

1−γ 2
j )

2k−1

22−k sin θ
,

(31)

which motivates us to find a sequence {γk (θ )} such that for all
k ∈ {1, 2, . . . , n}, γk (θ ) ∈ [0, 1] and

γk >
3 − cos(θ ) − [1 + cos(θ )]

∏k−1
j=1(1+

√
1−γ 2

j )

2k−1

22−k sin(θ )
.

To achieve this, we give a specific sequence and prove that
this sequence will satisfy the above conditions. In fact, set ε >

0, γ1(θ ) := (1 + ε) 1−cos(θ )
sin(θ ) , and, for k � 2,

γk (θ ) =
{

(1 + ε)
3−cos(θ )−(1+cos(θ ))

Pk
2k−1

22−k sin(θ ) , 0 � γk−1(θ ) � 1,
∞, otherwise,

(32)

where Pk =∏k−1
j=1(1 +

√
1 − γ 2

j ).

Then we have the following statement, which is sufficient
to deduce that arbitrarily many Charlies can share the gen-
uinely nonsignal nonlocality of ρABC(1) with a single Alice
and Bob.

Theorem 2. For each n ∈ N, a sequence {γk (θ )}n
k=1 and

a θn ∈ (0, 1) exist such that I(k)
NS > 3 and 0 < γk (θ ) < 1, θ ∈

(0, θn) for k = 1, 2, . . . , n.

The proof of Theorem 2 is given in Appendix E. Theorem
2 shows that by initially sharing the maximally entangled
state |GHZ〉 = 1√

2
(|000〉 + |111〉), the number of Charlies

that violate the NS inequality with a single Alice and Bob is
unbounded.

Remark 3. When starting with the W state |W 〉 =
1√
3
(|100〉 + |010〉 + |001〉), we prove that at most one Charlie

can demonstrate the tripartite genuinely nonsignal nonlocality
through NS inequality with a single Alice and Bob using the
following measurement strategy: Alice’s POVMs are defined
by

A0|0 = I + σ3

2
, A0|1 = I + σ1

2
. (33)

Bob’s POVMs are defined by

B0|0 = I − σ3

2
, B0|1 = I + σ1

2
. (34)

For each k = 1, 2, . . . , n, Charlie(k)’s POVMs are defined by

C(k)
0|0 = I + σ3

2
, C(k)

0|1 = I + γkσ1

2
. (35)

Moreover, the corresponding NS inequality is chosen to be

〈X1Y1〉 + 〈Y0Z0〉 + 〈X1Z1〉 + 〈X0Y0Z0〉 − 〈X1Y0Z1〉 � 3. (36)

The proof of Remark 3 is given in Appendix F. Note that when
γ1 = 1, Alice, Bob, and the first Charlie could yield a maximal
violation (with a value of 10

3 ) of NS inequality under the
assumption that the initial state is the W state. However, some
other measurement strategy with a larger number of Charlies
may exist that could yield a violation of NS inequality with a
single Alice and Bob.

VI. CONCLUSIONS AND DISCUSSION

In this work, we considered the sequential detection of
quantum standard and genuinely nonsignal nonlocality in tri-
partite quantum systems. Just like for the bipartite settings,
using different measurement strategies will enable more ob-
servers to share the tripartite nonlocality. In this way, we
deduced that arbitrarily many independent Charlies could
observe the standard tripartite nonlocality or the genuinely
nonsignal one of |GHZ〉 with a single Alice and Bob. More-
over, we also proved that when the initial state is |W 〉, for
the standard nonlocality, at most two Charlies can share the
nonlocality with a single Alice and Bob through the Mermin
inequality; for the genuinely nonsignal nonlocality, at most
one Charlie can demonstrate this genuine nonlocality with a
single Alice and Bob with the NS inequality.

One of the most important applications based on these non-
local correlations in quantum protocols is device-independent
random number generation. The amount of randomness from
the measurement outcomes in quantum systems is quantified
by the guessing probability and can generally be bounded
numerically or analytically. The quantitative relationship be-
tween nonlocality and maximum certifiable randomness is
difficult to exploit. In bipartite systems [16], for the standard
Bell scenario where each party performed a single mea-
surement on his or her subsystem, only a finite amount of
randomness can be certified. In [17], the authors proved one
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could certify any number of random bits from a pair of qubits
in a pure state when sequences of measurements were applied
to each local system. Moreover, for tripartite systems, the
authors of [18,19] studied the randomness using the Mermin-
Ardehali-Belinskii-Klyshko inequality and gave upper bounds
on the amount of the randomness. However, based on sequen-
tial measurement scenarios, whether unbounded certifiable
randomness can be obtained from a tripartite genuinely entan-
gled state is not known. So our current work represents a step
towards a better understanding of the limitations on how much
device-independent randomness can be robustly generated by
the multipartite entangled states.

It is also interesting to consider a similar problem in a
setting with multiple Alices, Bobs, and Charlies. Moreover,
one finds that our method does not help when considering the
setting of Svetlichny nonlocality. Maybe some state and mea-
surement strategies exist such that more than two Charlies can
share the Svetlichny nonlocality with a single Alice and Bob.
Moreover, it is unknown whether can we obtain unbounded

sequential violations of Mermin inequality or NS inequality
with the initial state being |W 〉 as we consider only some
special measurement strategies in our paper.
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APPENDIX A: THE CALCULATION OF I(k)
M

Now we derive the Mermin value for the given measurement strategy. Let the measurement strategy of Alice be defined by
the POVM effects

A0|0 = I + σ1

2
, A0|1 = I + σ2

2
. (A1)

Bob’s POVMs are defined by

B0|0 = I − θσ2

2
, B0|1 = I + θσ1

2
(A2)

for θ ∈ [0, 1]. For each k = 1, 2, . . . , n, Charlie(k)’s POVMs are defined by

C(k)
0|0 = I + σ1

2
, C(k)

0|1 = I + γkσ2

2
. (A3)

The observables are given by Xi = A0|i − A1|i, Yi = B0|i − B1|i, and Z (k)
i = C(k)

0|i − C(k)
1|i , with i = 0, 1.

Let ρABC(k−1) be shared by Alice, Bob, and Charlie(k−1) prior to Charlie(k−1)’s measurements. Using the Lüders rule, the state
sent to Charlie(k) is

ρABC(k) = 1

2

∑
c,z

(
I ⊗ I ⊗

√
C(k−1)

c|z ρABC(k−1)I ⊗ I ⊗
√

C(k−1)
c|z

)

= 1

2

(
I ⊗ I ⊗ I + σ1

2
ρABC(k−1)I ⊗ I ⊗ I + σ1

2
+ I ⊗ I ⊗ I − σ1

2
ρABC(k−1)I ⊗ I ⊗ I − σ1

2

+ I ⊗ I ⊗
√
I + γk−1σ2

2
ρABC(k−1)I ⊗ I ⊗

√
I + γk−1σ2

2
+ I ⊗ I ⊗

√
I − γk−1σ2

2
ρABC(k−1)I ⊗ I ⊗

√
I − γk−1σ2

2

)

=
2 +

√
1 − γ 2

k−1

4
ρABC(k−1) + 1

4
(I ⊗ I ⊗ σ1)ρABC(k−1) (I ⊗ I ⊗ σ1)

+
1 −

√
1 − γ 2

k−1

4
(I ⊗ I ⊗ σ2)ρABC(k−1) (I ⊗ I ⊗ σ2),

where we use the identity for the final calculation√
I ± γkσ�r

2
= (

√
1 + γk + √

1 − γk )I ± (
√

1 + γk − √
1 − γk )σ�r

2
√

2
. (A4)
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Then we consider the Mermin value of ρABC(k) :

I(k)
M = Tr

[
ρABC(k)

(
X1Y0Z (k)

0 + X0Y1Z (k)
0 + X0Y0Z (k)

1 − X1Y1Z (k)
1

)]
= Tr[ρABC(k) (−θσ2 ⊗ σ2 ⊗ σ1 + θσ1 ⊗ σ1 ⊗ σ1 − θγkσ1 ⊗ σ2 ⊗ σ2 − θγkσ2 ⊗ σ1 ⊗ σ2)]

= 22−kθ

⎡
⎣γk +

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)⎤⎦.

In particular, I(1)
M = 2θ (1 + γ1).

APPENDIX B: THE CALCULATION OF I(k)
NS

Now we derive the NS value for the given measurement strategy in the main text. Let the measurement strategy of Alice be
defined by the POVM effects

A0|0 = I + cos(θ )σ3 − sin(θ )σ1

2
, A0|1 = I + cos(θ )σ3 + sin(θ )σ1

2
. (B1)

Bob’s POVMs are defined by

B0|0 = I + σ3

2
, B0|1 = I + σ1

2
. (B2)

For each k = 1, 2, . . . , n, Charlie(k)’s POVMs are defined by

C(k)
0|0 = I + σ3

2
, C(k)

0|1 = I + γkσ1

2
. (B3)

The observables are given by Xi = A0|i − A1|i, Yi = B0|i − B1|i, and Z (k)
i = C(k)

0|i − C(k)
1|i , with i = 0, 1.

Let ρABC(k−1) be shared by Alice, Bob, and Charlie(k−1) prior to Charlie(k−1)’s measurements. Using the Lüders rule, the state
sent to Charlie(k) is

ρABC(k) = 1

2

∑
c,z

(
I ⊗ I ⊗

√
C(k−1)

c|z ρABC(k−1)I ⊗ I ⊗
√

C(k−1)
c|z

)

= 1

2

(
I ⊗ I ⊗ I + σ3

2
ρABC(k−1)I ⊗ I ⊗ I + σ3

2
+ I ⊗ I ⊗ I − σ3

2
ρABC(k−1)I ⊗ I ⊗ I − σ3

2

+ I ⊗ I ⊗
√
I + γk−1σ1

2
ρABC(k−1)I ⊗ I ⊗

√
I + γk−1σ1

2
+ I ⊗ I ⊗

√
I − γk−1σ1

2
ρABC(k−1)I ⊗ I ⊗

√
I − γk−1σ1

2

)

=
2 +

√
1 − γ 2

k−1

4
ρABC(k−1) + 1

4
(I ⊗ I ⊗ σ3)ρABC(k−1) (I ⊗ I ⊗ σ3)

+
1 −

√
1 − γ 2

k−1

4
(I ⊗ I ⊗ σ1)ρABC(k−1) (I ⊗ I ⊗ σ1),

where we use the identity for the final calculation√
I ± γkσ�r

2
= (

√
1 + γk + √

1 − γk )I ± (
√

1 + γk − √
1 − γk )σ�r

2
√

2
. (B4)

Then we consider the NS value of ρA(k)BC :

I(k)
NS = Tr

[
ρABC(k)

(
Y0Z (k)

0 + X0Z (k)
0 + X1Y0 − X0Y1Z (k)

1 + X1Y1Z (k)
1

)]
= Tr{ρABC(k) (I ⊗ σ3 ⊗ σ3 + [cos(θ )σ3 − sin(θ )σ1] ⊗ I ⊗ σ3 + [cos(θ )σ3 + sin(θ )σ1] ⊗ σ3 ⊗ I

− γk[cos(θ )σ3 − sin(θ )σ1] ⊗ σ1 ⊗ σ1 + γk[cos(θ )σ3 + sin(θ )σ1] ⊗ σ1 ⊗ σ1)}

= 22−kγk sin(θ ) +
∏k−1

j=1

(
1 +

√
1 − γ 2

j

)
2k−1

[1 + cos(θ )] + cos(θ ).

In particular, I(1)
NS = 1 + 2 cos(θ ) + 2γ1 sin(θ ).
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APPENDIX C: THE PROOF OF THEOREM 1

For the given measurements in the main text, in order to observe I(k)
M > 2, we need

I(k)
M > 2 ⇔ γk >

2k−1

θ
−

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)
. (C1)

Next, we can define {γk (θ )} for some fixed ε > 0,

γk (θ ) =
⎧⎨
⎩

(1 + ε)
(

1
θ

− 1
)
, k = 1,

(1 + ε)
(

2k−1

θ
− Pk

)
, 0 � γk−1(θ ) � 1,

∞, otherwise,
(C2)

where Pk =∏k−1
j=1(1 +

√
1 − γ 2

j ).

Then we can get

γk (θ )

γk−1(θ )
> 2 ⇔ 0 < γk−1(θ ) � 1. (C3)

Here γ1(θ ) = (1 + ε)( 1
θ

− 1), and lim
θ→1−

γ1(θ ) = 0.

By induction, we can suppose a θk−1 exists such that in the interval (θk−1, 1), all γi(θ ) ∈ (0, 1) and limθ→1− γi(θ ) = 0 for
i = 1, 2, . . . , k − 1. Then according to the definition of γk (θ ), we have

lim
θ→1−

γk (θ ) = lim
θ→1−

(1 + ε)

(
2k−1

θ
− Pk

)
= (1 + ε)(2k−1 − 2k−1) = 0,

where we use the limit limθ→1− Pk = 2k−1, which holds as the induction assumptions limθ→1− γi(θ ) = 0 for i = 1, 2, . . . , k − 1.

So ∀ n ∈ N, we can find a θn ∈ (0, 1) such that 0 < γ1(θ ) < γ2(θ ) < · · · < γn(θ ) < 1 for all θ ∈ (θn, 1).

APPENDIX D: THE PROOF OF REMARK 2

Alice’s POVMs are defined by

A0|0 = I + cos(θ1)σ3 − sin(θ1)σ1

2
, A0|1 = I + sin(θ1)σ3 + cos(θ1)σ1

2
. (D1)

Bob’s POVMs are defined by

B0|0 = I + cos(θ2)σ3 − sin(θ2)σ1

2
, B0|1 = I + sin(θ2)σ3 + cos(θ2)σ1

2
(D2)

for θi ∈ [0, π
2 ], i ∈ {1, 2}. For each k = 1, 2, . . . , n, Charlie(k)’s POVMs are defined by

C(k)
0|0 = I − σ3

2
, C(k)

0|1 = I − γkσ1

2
. (D3)

Under these measurements and the initial state |W 〉 = 1√
3
(|100〉 + |010〉 + |001〉), we can get

I(k)
M = 21−k

⎡
⎣5

3
sin(θ1 + θ2)

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)+ 4

3
sin(θ1 + θ2)γk

⎤
⎦. (D4)

Note that

I(k)
M > 2 ⇔ γk >

2k − 5
3 sin(θ1 + θ2)

∏k−1
j=1

(
1 +

√
1 − γ 2

j

)
4
3 sin(θ1 + θ2)

. (D5)

Next, we can define {γk (θ1, θ2)} for some fixed ε > 0,

γk (θ1, θ2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + ε)
2− 5

3 sin(θ1+θ2 )
4
3 sin(θ1+θ2 )

, k = 1,

(1 + ε)
2k− 5

3 sin(θ1+θ2 )Pk
4
3 sin(θ1+θ2 )

, 0 � γk−1(θ1, θ2) � 1,

∞, otherwise,

(D6)
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where Pk =∏k−1
j=1(1 +

√
1 − γ 2

j ). Then we can get

γk (θ1, θ2)

γk−1(θ1, θ2)
> 2 ⇔ 0 < γk−1(θ1, θ2) � 1. (D7)

Note that

γ1(θ1, θ2) = (1 + ε)
2 − 5

3 sin(θ1 + θ2)
4
3 sin(θ1 + θ2)

= (1 + ε)

[
6

4 sin(θ1 + θ2)
− 5

4

]
� 1 + ε

4
.

From Eq. (D7), we have γ2(θ1, θ2) > 1
2 (1 + ε) and γ3(θ1, θ2) > 1 + ε. Therefore, in the above strategy, at most two Charlies

can demonstrate standard nonlocality through the violation of Mermin inequality with a single Alice and Bob.

APPENDIX E: THE PROOF OF THEOREM 2

For the given measurements in the main text, in order to
observe I(k)

NS > 3, we need

I(k)
NS > 3 ⇔ γk >

3 − cos(θ ) − [1 + cos(θ )]
∏k−1

j=1(1+
√

1−γ 2
j )

2k−1

22−k sin(θ )
.

(E1)

Next, we can define {γk (θ )} for some fixed ε > 0,

γk (θ ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 + ε) 1−cos(θ )
sin(θ ) , k=1

(1 + ε)
3−cos(θ )−(1+cos(θ ))

Pk
2k−1

22−k sin(θ ) , 0 � γk−1(θ ) � 1,
∞, otherwise,

(E2)

where Pk =∏k−1
j=1(1 +

√
1 − γ 2

j ). Then we can get

γk (θ )

γk−1(θ )
> 2 ⇔ 0 < γk−1(θ ) � 1, (E3)

where γ1(θ ) = (1 + ε) 1−cos(θ )
sin(θ ) and limθ→0+ γ1(θ ) = 0.

By induction, we can suppose a θk−1 exists such that in the
interval (0, θk−1), all γi(θ ) ∈ (0, 1) and limθ→0+ γi(θ ) = 0 for
i = 1, 2, . . . , k − 1. Note that when looking at Pk as a function
in the small interval (0, θk−1), its differential can be calculated
as

P′
k (θ ) =

k−1∑
j=1

⎛
⎜⎝ −2γ jγ

′
j

2
√

1 − γ 2
j

⎞
⎟⎠ Pk

1 +
√

1 − γ 2
j

,

which tends to zero as θ → 0+. Then according to the defini-
tion of γk (θ ), by L’Hôpital’s rule, we have

lim
θ→0+

γk (θ ) = lim
θ→0+

(1 + ε)
sin θ − − sin θPk (θ )+(1+cos θ )P′

k (θ )
2k−1

22−k cos(θ )

= 0.

So ∀ n ∈ N, we can find a θn ∈ (0, 1) such that 0 < γ1(θ ) <

γ2(θ ) < · · · < γn(θ ) < 1 for all θ ∈ (0, θn).

APPENDIX F: THE PROOF OF REMARK 3

Alice’s POVMs are defined by

A0|0 = I + σ3

2
, A0|1 = I + σ1

2
. (F1)

Bob’s POVMs are defined by

B0|0 = I − σ3

2
, B0|1 = I + σ1

2
. (F2)

For each k = 1, 2, . . . , n, Charlie(k)’s POVMs are defined by

C(k)
0|0 = I + σ3

2
, C(k)

0|1 = I + γkσ1

2
. (F3)

Moreover, the corresponding NS inequality is

〈X1Y1〉 + 〈Y0Z0〉 + 〈X1Z1〉 + 〈X0Y0Z0〉 − 〈X1Y0Z1〉 � 3.

(F4)

With these measurements and the initial state |W 〉 =
1√
3
(|100〉 + |010〉 + |001〉), we get

I(k)
NS = 2

3
+ 23−k

3

⎡
⎣γk +

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)⎤⎦. (F5)

Therefore, we have

I(k)
NS > 2 ⇔ γk >

7

23−k
−

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)
. (F6)

Next, we can define {γk} for some fixed ε > 0,

γk =
⎧⎨
⎩

3
4 (1 + ε), k = 1,
(1 + ε)

(
7

23−k − Pk
)
, 0 � γk−1 � 1,

∞, otherwise,
(F7)

where Pk =∏k−1
j=1(1 +

√
1 − γ 2

j ).

Then we get
γk

γk−1
> 2 ⇔ 0 < γk−1 � 1. (F8)

Here γ1 = 3
4 (1 + ε); then γ2 > 2γ1 = 3

2 (1 + ε) > 1. So in
our setting, at most one Charlie can demonstrate genuinely
nonsignal nonlocality through the violation of the NS inequal-
ity with a single Alice and Bob.
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