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The completely symmetric states play an essential role in quantum physics. In this paper, we calculate the
reduced density matrix (RDM) for a single particle of the completely symmetric system coupled by N spin- 1

2
particles, because it helps to investigate the evolution of expectation value for the observable and to calculate
the entanglement between the subsystems. Furthermore, we use Majorana’s stellar representation (MSR) to
represent the results because it provides an intuitive geometric perspective to comprehend the quantum states in
the high-dimensional Hilbert space with distributions and trajectories of the Majorana stars on a Bloch sphere.
With the operation properties of the generalized many-body anticommutator, we get the general MSR form of a
single-qubit RDM. As the application and verification, we calculate the single-qubit RDM for the Dicke states
with the results. Similarly, we further solve the RDM of the spin- N

2 state in a uniform magnetic field and study the
systems with symmetric structures on the Bloch sphere. The results exhibit the relations between the composite
systems and the subsystems, and provide a new idea for the numerical solution of multiqubit systems.

DOI: 10.1103/PhysRevA.107.052219

I. INTRODUCTION

The completely symmetric state is fundamental in quan-
tum physics since all elementary particles are either bosons
or fermions indistinguishable from one another in the same
class. As a simple but representative example, N = 2J spin- 1

2
particles (such as electrons, protons, or neutrons) can form a
spin-J particle, which is a composite boson system described
by the completely symmetric state. This model can be further
extended when replacing the spin- 1

2 particles to arbitrary two-
level systems or the so-called pseudospins. Over the past few
decades, the model has gotten lots of attention since every
spin- 1

2 particle (or pseudospin) can be seen as a qubit in
the field of quantum information. Several recent experiments
have been performed on this kind of system [1–7]. However,
these experiments all focus on few-qubit systems. When N
increases, the composite system is not only hard to build in
the experiment but also hard to process in numerical simula-
tion due to the exponential growth of the dimensional of the
Hilbert space [8–10]. Because the space where the whole sys-
tem is located is 2N dimensional, many computing resources
will be consumed during numerical calculation, even beyond
the scope of computing power. In this case, it is necessary to
find further analytical solutions to this model.

The traditional way to describe quantum states is using
the state vectors of Hilbert space. In 1927, the density matrix
was introduced to describe the statistical concepts in quantum
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mechanics by von Neumann [11,12]. As a generalization of
the state vectors, the density matrix is widely used since it can
represent not only pure states but also mixed states.

However, when it comes to a composite system, we often
focus on the observables in the subsystems. At this time,
the description of the measurements should use the reduced
density matrix (RDM), which is obtained by partially trac-
ing the density matrix over the unmeasured subsystems. The
RDM was introduced by Paul Dirac in 1930 when dealing
with atoms involving many electrons [13]. It is widely used
in various fields, including laser physics [14,15], quantum
information [16–21], and quantum chemistry [22]. In the field
of quantum information, it plays an important role in calcu-
lating the entanglement between two partitions of the system,
which is quantified by the von Neumann entropy of the RDM
[18,19], and so does it for the generalized entanglement in
a many-body system [20,23–25]. For those occasions, this
article studies the completely symmetric states by focusing
on the RDM for a single particle.

As we all know, the evolution of a two-level quantum
system can be described by the trajectory of a point on the
Bloch sphere. Similarly, in 1932, Italian theoretical physicist
Ettore Majorana proposed a method to describe the high-
dimensional system with multiple points called the stars on the
Bloch sphere, that is, Majorana’s stellar representation (MSR)
[26], which can represent the superposition of multiple quan-
tum states of particles on the Bloch sphere. Majorana believes
that in the case of quantum spin, the phase space is defined
by the coordinates of 2J Majorana stars on the Bloch sphere.
We can easily visualize the quantum space by diffusing the
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stars on the Bloch sphere. The MSR builds a bridge between
the high-dimensional Hilbert space and the two-dimensional
Bloch sphere. So it is widely used in many fields, such as spin
Bose gas [27–33], the Lipkin-Meshkov-Glick model [34,35],
quantum entanglement [36–45], Bose-Einstein condensation
[27,30,33,46–48], and geometric phase [45,49–53]. The MSR
and recent related applications show that the evolution of
a high-spin state can be visually displayed through loops
of the Majorana stars on the Bloch sphere. For high-spin
condensates, spin-orbit coupling drives the Majorana stars to
move periodically on the Bloch sphere, forming the so-called
“Majorana spin helix.” In addition to the above research, the
arrangements and movements of Majorana stars have become
a powerful tool for studying physical problems related to
symmetry, such as the classification of entanglement classes
[54]. The pair correlations between Majorana stars are natu-
rally related to the quantum entanglement of particles [52].
In this respect, it provides an intuitive way of studying the
measurement and classification of multiparticle entanglement
of N particles. The topological structure of the trajectory of
Majorana stars is closely related to the parity of the system,
which is determined by the properties of Bloch states at two
high-symmetry points [53]. In this article, the MSR of the sys-
tem is clear and intuitive when we study the high-dimensional
completely symmetric state coupled by N qubits. We use MSR
to represent RDM because it helps to simplify the calculation
of the RDM by visualizing the quantum states of the systems
as the corresponding configurations of the Majorana stars
on the Bloch sphere, thus simplifying the calculation of the
expectation values of the observables in the subsystem and
von Neumann entropy. In addition, by studying the dynamic
evolution of Majorana stars on the Bloch sphere driven by
a nonlinear Hamiltonian, we can calculate the values of the
RDM in the evolution process, which can well characterize
the dynamic evolution of von Neumann entropy, that is, the
entanglement between subsystems.

Specifically, for an arbitrary single qubit, the normalized
state vector can be expressed as

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉, (1)

and the corresponding density matrix is

ρ = 1
2 (I + u · σ ), (2)

where I is the identity matrix and the coefficient vector u =
(sin θ cos φ, sin θ sin φ, cos θ ) is called Bloch vector. Then for
the completely symmetric state coupled by N spin- 1

2 particles
(or pseudospin), if the N normalized states of subsystems are
given as |ψi〉, i = 1, 2, . . . , N , the wave function of the system
can be expressed as

|�(N )〉 = 1

NN

∑
P∈SN

N⊗
i=1

|ψP(i)〉, (3)

and the corresponding density matrix is

ρ(N ) = 1

N 2
N

∑
P,P̃∈SN

N⊗
i=1

|ψP(i)〉〈ψP̃(i)|, (4)

where NN is the normalization constant, SN denotes the N th
permutation group,

∑
P∈SN

sums all the N! terms with P =
( 1 2 . . . N
P(1) P(2) . . . P(N )) ∈ SN [55], and

∑
P,P̃∈SN

sums all the

N! × N! terms with P, P̃ ∈ SN . Similarly, every state of sub-
system |ψi〉 is corresponding with a Bloch vector ui. Just
like Eq. (2), we can use the vectors {ui} to characterize the
composite system, i.e., give the MSR of the system.

Furthermore, since the qubits are identical, the expecta-
tion value of the observable in the composite system can be
represented by the expectation value of the corresponding
observable in the subsystems as 〈F total〉 = N〈F〉. For the ob-
servable F in the subsystem of a single qubit, the expectation
value is

〈F〉 = Tr(F�[N] ), (5)

where �[N] is the RDM of a single qubit and can be obtained
by partially tracing the density matrix ρ(N ) from the second
subsystem to the N th subsystem as

�[N] = 1

N 2
N

∑
P,P̃∈SN

|ψP(1)〉〈ψP̃(1)|
N∏

i=2

〈ψP̃(i)|ψP(i)〉

= 1

N 2
N

∑
P,P̃∈SN

|ψP(1)〉
N−1∏
i=1

〈ψP̃(i)|ψP(i+1)〉〈ψP̃(N )|. (6)

Obviously, the same result can be obtained by tracing arbitrary
N − 1 subsystems in ρ(N ), which presents the complete sym-
metry of the system in form. So the result of �[N] expressed
by Eq. (6) is the RDM of an arbitrary qubit in our system.

In this article, we study the MSR of the single-qubit RDM
on the basis of Eq. (6). However, the normalization constant
NN has been obtained in our previous work [56], so we just
need to find the MSR of the summation part of Eq. (6), and
we can mark it as

�̃[N] =
∑

P,P̃∈SN

|ψP(1)〉
N−1∏
i=1

〈ψP̃(i)|ψP(i+1)〉〈ψP̃(N )|, (7)

which can be treated as the unnormalized RDM. But on the
other hand, when we get the MSR of �̃[N], since �̃[N] =
N 2

N�[N] and the RDM is normalized as Tr�[N] = 1, the nor-
malization constant NN can be obtained as

NN =
√

Tr�̃[N]. (8)

In this way, we reproduce the MSR of the normalization
constant NN in this article.

The structure of this paper is as follows. In Sec. I (this
section), we introduce the basic concepts and the problem we
study. In Sec. II, we introduce the mathematical correspon-
dence and physical significance of MSR. In Sec. III, we first
take some few-qubit states as the examples and then calculate
the MSR of the RDM for the composite system of N-qubit
with the properties of the generalized many-body anticommu-
tators. Furthermore, we calculate the RDM of the Dicke state
in MSR to check the correctness of the results. In Sec. IV,
we use the results to get the RDM of the spin- N

2 state in a
uniform magnetic field and some symmetric structures on the
Bloch sphere, respectively. In Sec. V, we provide a summary
and outlook.
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II. MAJORANA’S STELLAR REPRESENTATION

A. Mathematical correspondence of MSR

In the Introduction, we discussed the correspondence be-
tween the quantum states of two-level systems and Bloch
vectors, while Ettore Majorana proposed MSR based on Bloch
spheres and Bloch vectors. Next, let us introduce the mathe-
matical correspondence of MSR.

In introducing the Bloch vector (|ψ〉 = cos θ
2 |0〉 +

eiφ sin θ
2 |1〉 = α|0〉 + β|1〉), we know that the coefficient ratio

of the two states is ζ = β

α
= tan θ

2 eiφ and that the coefficients
α, β, and ζ can form the characteristic equation αζ − β = 0.
The coefficients α and β of the original wave function cor-
respond to the coefficient of the first-order term and constant
term of the linear equation with one unknown with ζ as the
variable. On the contrary, if the value of ζ is known, combined
with the normalization relation, we can also get the proba-
bilities Pα = cos2 θ

2 = 1
1+|ζ |2 and Pβ = sin2 θ

2 = |ζ |2
1+|ζ |2 of the

wave function onto each state after the collapse.
Majorana proposed that for a higher-dimensional space,

such as N + 1-dimensional wave function |�〉 = ∑N
i=0 Ci|i〉,

we can also use an equation of degree N with one unknown to
describe it, that is,

N∑
i=0

aiζ
i = 0, (9)

where the coefficient in Eq. (9) is ai = f (i)Ci, and the setting
of f (i) is related to the specific model system. The simplest
one is that when we choose f (i) = 1, we can get ai = Ci. For
the N roots {ζi} of Eq. (9), we can also find N groups of (θi, φi )
such that ζi = tan θi

2 eiφi . Similarly, if {(θi, φi )}, i.e., {ζi}, is
known, we can also deduce {ai} and {Ci}, and these N groups
of (θi, φi ) are called the Majorana stars used to describe the
state |�〉.

B. Physical significance of MSR

We discussed the mathematical correspondence of MSR
above, and now we will explain the physical significance of
this representation.

Like the Schwinger representation, MSR is also proposed
to describe systems coupled by multiple spin- 1

2 particles.
For a boson system with a total spin of J , the quantum state

can be represented as

|�〉J =
J∑

M=−J

CM |J, M〉, (10)

and when expanded using the Schwinger representation, it can
be described as

|�(N )〉 =
N
2∑

M=− N
2

CM
a†( N

2 +M)b†( N
2 −M)√(

N
2 + M

)
!
(

N
2 − M

)
!
|Ø〉, (11)

where N = 2J . On the other hand, since the boson system
with total spin J is coupled by N = 2J spin- 1

2 identical
particles, its wave function can be expressed as Eq. (3).
For each spin- 1

2 quantum state, we have |ψi〉 = cos θi
2 |0〉 +

eiφi sin θi
2 |1〉. We introduce operators â† and b̂† to act on the

vacuum state to generate â†|Ø〉 = |0〉 and b̂†|Ø〉 = |1〉, then

|ψi〉 =
(

cos
θi

2
â† + eiφi sin

θi

2
b̂†

)
|Ø〉

= â†
ψi

|Ø〉, (12)

where â†
ψi

= cos θi
2 â† + eiφi sin θi

2 b̂†, and |�(N )〉 can be written
as

|�(N )〉 =
√

N!

NN

N∏
i=1

â†
ψi

|Ø〉. (13)

The characteristic equation corresponding to the above
wave function is

J∑
M=−J

(−1)MCM√
(J − M )!(J + M )!

ζ J+M = 0. (14)

Let i = J − M, then

2J∑
i=0

(−1)iCJ−i√
(2J − i)!i!

ζ 2J−i = 0, (15)

and then we get each complex solution ζi = tan θi
2 eiφi , corre-

sponding to Majorana star (θi, φi ).

III. REDUCED DENSITY MATRIX IN MSR

A. RDM for few-qubit states in MSR

To introduce and illustrate our work, we first study the few-
qubit systems and expound the systems coupled by two and
three qubits for examples.

When N = 2, the permutation group S2 has two elements
P = (1 2

1 2) and P = (1 2
2 1), that is, there are two index se-

quences as P(1)P(2) ∈ {12, 21}, and the corresponding wave
function of the system is expressed as

|�(2)〉 = 1

N2
(|ψ1〉 ⊗ |ψ2〉 + |ψ2〉 ⊗ |ψ1〉). (16)

Accordingly, the density matrix ρ(2) has four items, which
can be expanded to

ρ(2) = 1

N 2
2

(|ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2| + |ψ1〉〈ψ2| ⊗ |ψ2〉〈ψ1|

+ |ψ2〉〈ψ1| ⊗ |ψ1〉〈ψ2| + |ψ2〉〈ψ2| ⊗ |ψ1〉〈ψ1|).
(17)

Next, after tracing the part of the second subsystem, i.e.,
the factors behind the direct-product notations, we can get the
normalized RDM �[2]. Then, by ignoring the normalization
constant, the unnormalized RDM as Eq. (7) for a single-qubit
in the two-qubit system is expressed as

�̃[2] = |ψ1〉〈ψ2|ψ2〉〈ψ1| + |ψ1〉〈ψ1|ψ2〉〈ψ2|
+ |ψ2〉〈ψ2|ψ1〉〈ψ1| + |ψ2〉〈ψ1|ψ1〉〈ψ2|. (18)

Further, introducing the density matrix representation of
the subsystem ρi = |ψi〉〈ψi| and the normalization condition
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〈ψi|ψi〉 = 1, Eq. (18) can be simplified as

�̃[2] =
2∑

i=1

ρi + {ρ1, ρ2}. (19)

Then, we substitute the MSR of the subsystems ρi = 1
2 (I +

ui · σ), i = 1, 2 into Eq. (19) and with the property

(ui · σ)(u j · σ ) = ui · u j + i(ui × u j ) · σ, (20)

we can get the MSR of �̃[2] as

�̃[2] =
(

3

2
+ 1

2
u1 · u2

)
I +

2∑
i=1

ui · σ

= 3

2
+ 1

2
u1 · u2 +

2∑
i=1

ui · σ. (21)

Here we abbreviate identity matrix I as 1 to simplify the
expression, and we will still use this abbreviation in the
calculation processes of the following content. Further, with
Eq. (8), we can get the normalization constant as

N2 =
√

3 + u1 · u2. (22)

With the results, the MSR of the normalized RDM �[2] is
written as

�[2] = I

2
+ u1 + u2

3 + u1 · u2
· σ. (23)

Next, in the case of N = 3, the permutation group S3 has
3! = 6 elements. According to Eq. (7), there are 3! × 3! = 36
items in the unnormalized RDM, which can be written as

�̃[3] =
∑

P,P̃∈S3

|ψP(1)〉〈ψP̃(1)|ψP(2)〉〈ψP̃(2)|ψP(3)〉〈ψP̃(3)|. (24)

Following the previous example, the next step is to
find the RDM representation in the form of subsystem
density matrix ρi, just like Eq. (19). To get the expan-
sion, we first fix the permutation P as P(1)P(2)P(3) =
123, and then go through all the elements in P̃ as
P̃(1)P̃(2)P̃(3) ∈ {123, 231, 312, 132, 321, 213}. With these
combinations of the indices, we can get each term as
ρ1ρ2ρ3, ρ1, ρ1ρ3ρ2, ρ1ρ2, ρ1Tr(ρ2ρ3), and ρ1ρ3, respectively.
Further, we can get other terms according to the symmetry of
the system and then get

�̃[3] = 2

[
3∑

i=1

ρi + {ρ1, ρ2} + {ρ1, ρ3} + {ρ2, ρ3}

+ {ρ1, ρ2, ρ3} + 1

2
(ρ1Tr{ρ2, ρ3} + ρ2Tr{ρ1, ρ3}

+ ρ3Tr{ρ1, ρ2})], (25)

where {ρ1, ρ2, ρ3} = ∑
P∈S3

ρP(1)ρP(2)ρP(3) operates as the
generalized many-body anticommutator introduced in our
previous article [56].

For further calculation, we review the MSR of the anticom-
mutator of the density matrices for qubits, and it tells [56]

{ρ1, ρ2, . . . , ρN }

= N!

2N

⎡
⎣[ N

2 ]∑
k=0

D(k)
TN

(2k − 1)!!
+

[ N−1
2 ]∑

k=0

V (k)
TN

(2k + 1)!!
· σ

⎤
⎦, (26)

where

D(k)
TN

=
⎧⎨
⎩
∑
T ′′

N

(ui1 · u j1 )(ui2 · u j2 ) . . . (uik · u jk ), k > 0,

1, k = 0,
. (27)

and

V (k)
TN

=
∑
T ′′

N

(ui1 · u j1 )(ui2 · u j2 ) . . . (uik · u jk )u jk+1 . (28)

In D(k)
TN

and V (k)
TN

above, i1, j1, . . . , ik, jk, jk+1 ∈ TN are dif-
ferent indices in the index set TN = {1, 2, . . . , N}, and

∑
T ′′

N

represents the sum of all cases in which the ordering relations
i1 < i2 < · · · < ik and im < jm are satisfied.

According to Eq. (26), we can get some further results as

{ρi, ρ j} = 1
2 [1 + ui · u j + (ui + u j ) · σ], (29)

1
2ρkTr{ρi, ρ j} = 1

4 (1 + ui · u j )(1 + uk · σ), (30)

and

{ρ1, ρ2, ρ3} = 3
4

[
1 + D(1)

T3
+ (

V (0)
T3

+ 1
3V (1)

T3

) · σ
]
, (31)

where D(1)
T3

= u1 · u2 + u2 · u3 + u1 · u3, V (0)
T3

= u1 + u2 +
u3 and V (1)

T3
= (u1 · u2)u3 + (u2 · u3)u1 + (u1 · u3)u2.

Substituting Eqs. (29)–(31) into Eq. (25), we can get the
MSR of the unnormalized RDM �̃[3] as

�̃[3] = 9 + 3D(1)
T3

+ (
5V (0)

T3
+ V (1)

T3

) · σ, (32)

and substituting it into Eq. (8), the normalization constant is
obtained as

N3 =
√

18 + 6D(1)
T3

. (33)

With the results, the MSR of the normalized RDM �[3] is
written as

�[3] = I

2
+

(
5V (0)

T3
+ V (1)

T3

)
18 + 6D(1)

T3

· σ. (34)
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Similarly, for four qubits, we can get the unnormalized RDM in the form of subsystem density matrix ρi as

�̃[4] = 6

⎛
⎝ 4∑

i=1

ρi +
∑

i1i2∈{12,13,14,23,24,34}
{ρi1 , ρi2} +

∑
i1i2i3∈{123,124,134,234}

{ρi1 , ρi2 , ρi3} + {ρ1, ρ2, ρ3, ρ4}

+ 1

2

∑
i1i2i3∈{123,124,134,213,214,234,

312,314,324,412,413,423}

ρi1 Tr{ρi2 , ρi3} +
∑

i1i2i3i4∈{1234,1324,1423,
2314,2413,3412}

{ρi1 , ρi2}Tr{ρi3 , ρi4}

+ 1

3

∑
i1i2i3i4∈{1234,2134,3124,4123}

ρi1 Tr{ρi2 , ρi3 , ρi4}
⎞
⎠. (35)

Then with the result in Eq. (26), the MSR of the unnormalized
RDM �̃[4] is obtained as

�̃[4] = 6
(
15 + 5D(1)

T4
+ D(2)

T4

) + 9
(
5V (0)

T4
+ V (1)

T4

) · σ. (36)

By substituting it into Eq. (8), the normalization constant is
obtained as

N4 =
√

12
(
15 + 5D(1)

T4
+ D(2)

T4

)
, (37)

and the MSR of the normalized RDM �[4] is written as

�[4] = I

2
+ 3

(
5V (0)

T4
+ V (1)

T4

)
4
(
15 + 5D(1)

T4
+ D(2)

T4

) · σ. (38)

Then when N = 5 and N = 6, we can get results in the same
way, and they are

�[5] = I

2
+ 35V (0)

T5
+ 7V (1)

T5
+ V (2)

T5

10
(
15 + 5D(1)

T5
+ D(2)

T5

) · σ, (39)

and

�[6] = I

2
+ 2

(
35V (0)

T6
+ 7V (1)

T6
+ V (2)

T6

)
3
(
105 + 35D(1)

T6
+ 7D(2)

T6
+ D(3)

T6

) · σ. (40)

B. RDM for N-qubit states in MSR

The above examples of few-qubit systems help us familiar-
ize the procedure to calculate the MSR of the RDM. Next, let
us explore the MSR of the RDM for the N-qubit system.

Before that, we need to review the MSR of the normaliza-
tion constant NN , which is [56]

N 2
N =

∑
P,P̃∈SN

N∏
i=1

〈ψP̃(i)|ψP(i)〉 (41)

= N!(N + 1)!

2N

[ N
2 ]∑

J=0

1

(2J + 1)!!
D(J )

TN
. (42)

And for every fixed pair of P and P̃, the term
∏N

i=1〈ψP̃(i)|ψP(i)〉
can be represented in the form of subsystem density matrix ρi

as
N∏

i=1

〈ψP̃(i)|ψP(i)〉 =
q∏

j=1

Tr
(
ρi( j)

1
ρi( j)

2
. . . ρi( j)

l j

)
, (43)

where 1 � q � N .

Similarly, the terms of the unnormalized RDM in Eq. (7)
can be represented in the form of the subsystem density matrix
ρi as

|ψP(1)〉
N−1∏
i=1

〈ψP̃(i)|ψP(i+1)〉〈ψP̃(N )|

= (
ρi(0)

1
ρi(0)

2
. . . ρi(0)

k

) q∏
j=1

Tr
(
ρi( j)

1
ρi( j)

2
. . . ρi( j)

l j

)
, (44)

where 0 � q � N − 1, and when q = 0, we define the result
as ρi(0)

1
ρi(0)

2
. . . ρi(0)

N
.

Then we divide the index set TN into two parts. The first
part is I0 = {i(0)

1 , . . . , i(0)
k }, which corresponds to the first fac-

tor in Eq. (44). The second part is TN − I0, corresponding to
the following traced factors, and we can define this part as a
constant C, which satisfies

C =
N−k∏
i=1

〈ψP̃i
|ψPi〉, (45)

and {P1, . . . , PN−k} = {P̃1, . . . , P̃N−k} = TN − I0. Then to
Eq. (7), we sum all pairs of P and P̃ that have the same factor
ρi(0)

1
ρi(0)

2
. . . ρi(0)

k
. Since there are totally (N−1)!

(N−k)! of them, the sum
can be written as

CI0

(
ρi(0)

1
ρi(0)

2
. . . ρi(0)

k

)
= (N − 1)!

(N − k)!

⎛
⎝∑

P,P̃

C

⎞
⎠(ρi(0)

1
ρi(0)

2
. . . ρi(0)

k

)
. (46)

According to Eqs. (41), (42), and (45), we get

∑
P,P̃

C = (N − k)!(N − k + 1)!

2N−k

[ N−k
2 ]∑

i=0

1

(2i + 1)!!
D(i)

TN −I0
,

(47)

and then

CI0 = (N − 1)!

(N − k)!

⎛
⎝∑

P,P̃

C

⎞
⎠

= (N − 1)!(N − k + 1)!

2N−k

[ N−k
2 ]∑

i=0

1

(2i + 1)!!
D(i)

TN −I0
. (48)
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Next, the sum of the terms in Eq. (7) for fixed CI0 is

SI0 = CI0

{
ρi(0)

1
, ρi(0)

2
, . . . , ρi(0)

k

}
. (49)

As
∑
I0

goes through all cases of I0, the unnormalized RDM

is obtained as

�̃[N] =
∑

I0

SI0 . (50)

The calculation of
∑
I0

SI0 is in Appendix A, and it tells

�̃[N] = (N − 1)!(N + 1)!

2N+1

⎡
⎣N

[ N
2 ]∑

J=0

1

(2J + 1)!!
D(J )

TN

+ (N + 2)
[ N−1

2 ]∑
J=0

1

(2J + 3)!!
V (J )

TN
· σ

⎤
⎦. (51)

Then by substituting the result into Eq. (8), the normaliza-
tion constant is obtained as shown in Eq. (42), with which the
final result of the single-particle RDM for the N-qubit system
in MSR is

�[N] = I

2
+
(

1

2
+ 1

N

)⎡⎣[ N
2 ]∑

J=0

D(J )
TN

(2J + 1)!!

⎤
⎦

−1

×
[ N−1

2 ]∑
J=0

V (J )
TN

(2J + 3)!!
· σ. (52)

C. Verification of RDM in MSR with Dicke state

In this subsection, we take the Dicke states as an example
to verify our results.

Dicke states are eigenstates of the total angular momentum,
Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z , and the angular momentum component in

the z direction, Ĵz, where Ĵα = 1
2

∑N
i=1 σiα with α = x, y, z. It

can be marked as |J, M〉, where J is the angular momentum
quantum number, and M is the magnetic quantum number.
Dicke states are completely symmetric states coupled by the
eigenstates of σz, i.e., |J, M〉 = 1

NN

∑
P∈SN

⊗N
i=1|ψP(i)〉, where

|ψP(i)〉 = |0〉 or |1〉. Then after combining like terms, it is
usually expressed as

|J, M〉 = 1√
CK

N

∑
i

Pi

(
K⊗

i=1

|0〉
N−K⊗
i=1

|1〉
)

, (53)

where N = 2J , K = J + M is the number of excitations (here
we set |0〉 as the excited state and |1〉 as the ground state, i.e.,
σz|0〉 = |0〉 and σz|1〉 = −|1〉), and

∑
i Pi(. . . ) means the sum

over all N qubits in CK
N possible distinct ways.

As a Hermitian operator in the two-dimensional complex
Hilbert space, the normalized single-particle RDM can be
written as �[N] = 1

2 (I + u · σ ). Furthermore, it can be ex-
panded as

�[N] =
[

1
2 (1 + 〈σz〉) 〈σ−〉

〈σ+〉 1
2 (1 − 〈σz〉)

]
, (54)

where 〈σi〉 = Tr(�[N]σi ) and σ± = 1
2 (σx ± iσy). As the com-

posite system coupled by N identical particles, we can obtain
the expectation values for σz and σ± in arbitrary single-
particle subsystems as

〈σz〉 = 2〈Ĵz〉
N

= 2M

N
, (55)

and

〈σ±〉 = 〈Ĵ±〉
N

= 0, (56)

since 〈J, M|J, M ′〉 = δMM ′ , Ĵz|J, M〉 = M|J, M〉, and
Ĵ±|J, M〉 = √

J (J + 1) − M(M ± 1)|J, M ± 1〉. So in this
way, the single-particle RDM for Dicke states is

�[N] = I

2
+ M

N
σz. (57)

Next, we use the result of Eq. (52) to calculate the RDM of
Dicke states. Because the quantum state of a two-level system
can be expressed as Eq. (1), and the corresponding Bloch
vector is u = (sin θ cos φ, sin θ sin φ, cos θ ), it is easy to get
that when the particle is on the excited state |ψP(i)〉 = |0〉, the
corresponding Bloch vector is

u+ = (0, 0, 1), (58)

and when the particle is on the ground state |ψP(i)〉 = |1〉, the
corresponding Bloch vector is

u− = (0, 0,−1). (59)

For Dicke state |J, M〉 excited by K = J + M particles,
there are J + M number of u+ and J − M number of u− in
N = 2J particles. Since the particles are identical, we might
as well set ui = {u−, i = 1, . . . , J − M

u+, i = J − M + 1, . . . , N.
In order to get the corresponding normalization constant

NN and RDM �[N], we first calculate the values of D(k)
TN

and

V (k)
TN

. For example, when N = 5 and J − M = 1, u1 = u− and

ui = u+, i = 2, 3, 4, 5, and to calculate D(2)
T5

= ∑
i1 j1i2 j2

(ui1 ·
u j1 )(ui2 · u j2 ), we find the term (ui1 · u j1 )(ui2 · u j2 ) equals 1
when there are even u− in the term, and it equals −1 when
there are odd u−. In this example, to get terms equal −1, there
are C1

J−M ways to get u− and C2k−1
J+M ways to get u+, and after

the Bloch vectors are selected, there are (2k)!
k!2k = (2k − 1)!!

ways to arrange them into (ui1 · u j1 )(ui2 · u j2 ). So there are
3!!C1

1C3
4 = 12 terms in D(2)

T5
with the value of −1. In the

same way, we can get that there are (2k − 1)!!C0
J−MC2k

J+M =
3!!C0

1C4
4 = 3 terms with the value of 1.

Similarly, for arbitrary D(k)
TN

, the number of the terms that
equal −1 is

n−1 = (2k − 1)!!
∑

j=1,3,...

C j
J−MC2k− j

J+M , (60)

and the number of the terms that equal 1 is

n+1 = (2k − 1)!!
∑

j=0,2,...

C j
J−MC2k− j

J+M . (61)
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In this way, we have

D(k)
TN

= n+1 + (−1)n−1

= (2k − 1)!!
J−M∑
j=0

(−1) jC j
J−MC2k− j

J+M . (62)

Further, we can get

[ N
2 ]∑

k=0

1

(2k + 1)!!
D(k)

TN

=
[J]∑

k=0

1

2k + 1

J−M∑
j=0

(−1) jC j
J−MC2k− j

J+M (63)

= 22J (J − M )!(J + M )!

(2J + 1)!
. (64)

The last step of the calculation is shown in Appendix B.
Similarly, in V (k)

TN
for Dicke states, the value of the terms

is (ui1 · u j1 )(ui2 · u j2 ) · · · (uik · u jk )u jk+1 = (0, 0,±1), and the
numbers of terms are

n(0,0,−1) =
∑

j=1,3,...

C j
J−MC2k+1− j

J+M

(2k + 1)!

k!2k

= (2k + 1)!!
∑

j=1,3,...

C j
J−MC2k+1− j

J+M , (65)

and

n(0,0,1) =
∑

j=0,2,···
C j

J−MC2k+1− j
J+M

(2k + 1)!

k!2k

= (2k + 1)!!
∑

j=0,2,...

C j
J−MC2k+1− j

J+M , (66)

respectively. Then we have

V (k)
TN

= n(0,0,1)(0, 0, 1) + n(0,0,−1)(0, 0,−1)

= (2k + 1)!!
J−M∑
j=0

(−1) jC j
J−MC2k+1− j

J+M (0, 0, 1), (67)

and get

[ N−1
2 ]∑

k=0

1

(2k + 3)!!
V (k)

TN
· σ

=
[ 2J−1

2 ]∑
k=0

1

2k + 3

J−M∑
j=0

(−1) jC j
J−MC2k+1− j

J+M σz (68)

= 22J (J + M )!(J − M )!2M

(2J + 2)!
σz. (69)

The last step of the calculation is also shown in Appendix B.
Then by substituting the results of Eqs. (64) and (69) into

Eq. (51), we can get the unnormalized RDM as

�̃[N] = (N − 1)!N!

CJ+M
N

(
N

2
I + Mσz

)
. (70)

Then with Eq. (8), the normalization constant is obtained as

NN = N!√
CJ+M

N

= N!√
CK

N

, (71)

and the normalized RDM is obtained as

�[N] = I

2
+ M

N
σz, (72)

which is the same as Eq. (57). So far, we have verified the
correctness of Eq. (52) in Dicke states.

IV. APPLICATION OF RDM IN MSR

By calculating the RDM of a single particle in MSR, we
can further study some other properties of the system. In this
section, to illustrate the application of the RDM in MSR, we
use the result of Eq. (52) to solve the spin- N

2 state in a uniform
magnetic field and some symmetric structures on the Bloch
sphere.

A. RDM for the spin- N
2 state in a uniform magnetic field

The first typical case is a spin- N
2 system in a uni-

form magnetic field B = B(sin θ cos φ, sin θ sin φ, cos θ ),
which has the eigenstates |�(N,M )〉 = e−Ĵyθe−Ĵzφ|J, M〉. Then
in MSR, there are N

2 + M coincident stars on u =
(sin θ cos φ, sin θ sin φ, cos θ ) [or u = (θ, φ) in spherical co-
ordinate system with r = 1], and the other N

2 − M coincident
stars are on −u for the eigenstates [45]. By writing the corre-
sponding states as |u〉 and | − u〉, the eigenstates are

|�(N,M )〉 =
∑
P∈SN

|−u〉|−u〉 · · · |−u〉︸ ︷︷ ︸
N
2 −M

|u〉|u〉 · · · |u〉︸ ︷︷ ︸
N
2 +M

. (73)

It is like the Dicke states, and in the same way, we can get the
same result as Eq. (64) and

[ N−1
2 ]∑

k=0

V (k)
TN

(2k + 3)!!
= 2N

(
N
2 + M

)
!
(

N
2 − M

)
!2M

(N + 2)!
u. (74)

Then, by substituting the results into Eq. (51), we can get
the unnormalized RDM as

�̃[N] = (N − 1)!N!

C
N
2 +M

N

(
N

2
I + Mu · σ

)
. (75)

With Eq. (8), the normalization constant is obtained as

NN = N!√
C

N
2 +M

N

, (76)

and the normalized RDM is obtained as

�[N] = I

2
+ M

N
u · σ. (77)

It can be seen that the RDM of the state in a uniform
magnetic field in MSR is similar to the Dicke state since they
are both W-type entangled states whose Majorana stars are
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α
π-α

(a) (b) (c)

FIG. 1. (a) The Bloch vectors located at the regular N-gon falling
on the great circle of the Bloch sphere. (b) The four Bloch vectors lo-
cated at the inscribed rectangle of the great circle of the Bloch sphere.
(c) The general cases with N = 2m pairwise symmetric Majorana
stars.

distributed on a pair of antipodal points on the Bloch sphere,
and the Dicke state is the case of B = 0 [36].

B. RDM of symmetric structures on Bloch sphere

Next, we will study some symmetric structures on the
Bloch sphere with the result of Eq. (52), including the regular
N-gon and the regular polyhedrons on the Bloch sphere, and
so on.

Generally, when the N stars form symmetric structures,
they satisfy the relation as

∑N
i=1 ui = 0 and there is V (0)

TN
=∑N

i=1 ui = 0. Furthermore, because of(
N∑

i=1

ui

)
·
(

N∑
i=1

ui

)
=

N∑
i1,i2=1

ui1 · ui2

=
N∑

i1=i2

ui1 · ui2 +
N∑

i1 �=i2

ui1 · ui2

= N + 2D(1)
TN

= 0, (78)

we can get

D(1)
TN

= −N

2
. (79)

Then we focus on some completely symmetric Majo-
rana star structures, that is, the regular N-gon falling on
the great circle of the Bloch sphere [as shown in Fig. 1(a)]
and the inscribed regular polyhedrons of the Bloch sphere,
including the regular tetrahedron (N = 4), the regular hexa-
hedron (N = 8), the regular octahedron (N = 6), the regular
dodecahedron (N = 20), and the regular icosahedron (N =
12) (as shown in Fig. 2). For these completely symmetric
Majorana star structures, we can select any Bloch vec-
tor as the reference point for numbering. As long as the
relative positions are not changed during numbering, the in-
cluded angle between the Bloch vectors will not change.
In this way, we have (ui′1 · u j′1 )(ui′2 · u j′2 ) · · · (ui′k · u j′k ) = (ui1 ·
u j1 )(ui2 · u j2 ) · · · (uik · u jk ), where {i1, . . . , ik, j1, . . . , jk} rep-
resents the original index set and {i′1, . . . , i′k, j′1, . . . , j′k}
represents the index set after changing the reference point
and renumbering the stars. Therefore, in the process of
calculating D(k)

TN
, we can merge many of the terms. Simi-

larly, when calculating V (k)
TN

, for each uik+1 , we can find a
set of (ui1 · u j1 )(ui2 · u j2 ) · · · (uik · u jk ) with the same value

(a) (b) (c)

(d) (e)

FIG. 2. Five kinds of inscribed regular polyhedrons of the Bloch
sphere.

and get

V (k)
TN

=
∑
T ′′

N

(ui1 · u j1 )(ui2 · u j2 ) · · · (uik · u jk )uik+1

=
∑
T ′′′

N

(ui1 · u j1 )(ui2 · u j2 ) · · · (uik · u jk )
N∑

ik+1=1

uik+1

= 0. (80)

Substituting Eq. (80) into Eq. (52), we can get

�[N] = I

2
(81)

as the RDM in MSR when the Majorana stars are completely
symmetric on the Bloch sphere.

Next, let us consider an even number of Majorana stars
which are symmetric in pairs as ui = −u j .

As the simplest case, when there are two stars as u2 = −u1,
we have D(1)

T2
= −1, and the corresponding results are N2 =√

2!3!
22 (1 + 1

3!! D
(1)
T2

) = √
2 and �[2] = I

2 .
Then when N = 4 and u1 = −u3, u2 = −u4, the stars fall

on the inscribed rectangle of a great circle. When the angle
between u1 and u2 is α ∈ (0, π ), as shown in Fig. 1(b), we
have D(1)

T4
= −2 and

D(2)
T4

= (u1 · u2)(u3 · u4) + (u1 · u3)(u2 · u4)

+ (u1 · u4)(u2 · u3)

= (|u1||u2| cos α)(|u3||u4| cos α)

+ (|u1||u3| cos π )(|u2||u4| cos π )

+ [|u1||u4| cos (π − α)][|u2||u3| cos (π − α)]

= 2 cos2 α + 1, (82)

and

N4 =
√

4!5!

24

(
1 + 1

3!!
D(1)

T4
+ 1

5!!
D(2)

T4

)

= 2
√

6 cos2 α + 18 (83)

can be obtained from the above results. When α = π
2 , we have

N4 = 6
√

2. At the same time, because V (0)
T4

= ∑4
i=1 ui = 0
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and

V (1)
T4

= (u1 · u2)u3 + (u1 · u2)u4 + (u1 · u3)u2 + (u1 · u3)u4

+ (u1 · u4)u2 + (u1 · u4)u3 + (u2 · u3)u1

+ (u2 · u3)u4 + (u2 · u4)u1 + (u2 · u4)u3

+ (u3 · u4)u1 + (u3 · u4)u2

= [|u1||u2|(u3 + u4) + |u3||u4|(u1 + u2)] cos α

+ [|u1||u3|(u2 + u4) + |u2||u4|(u1 + u3)] cos π

+ [|u1||u4|(u2+u3) + |u2||u3|(u1 + u4)] cos (π − α)

= 0, (84)

we still have �[4] = I
2 .

Further, considering N = 2m, m ∈ Z+ pairwise symmet-
ric Majorana stars, as shown in Fig. 1(c), we mark
the pair of stars as ui and u−i, respectively, and
have ui + u−i = 0. In the process of solving D(k)

TN
, it is

easy to get each (ui1 · u j1 )(ui2 · u j2 ) · · · (uik · u jk ) = (u−i1 ·
u− j1 )(u−i2 · u− j2 ) · · · (u−ik · u− jk ). Thus, in the process of
solving V (k)

TN
, we have (ui1 · u j1 )(ui2 · u j2 ) · · · (uik · u jk )uik+1 =

−(u−i1 · u− j1 )(u−i2 · u− j2 ) · · · (u−ik · u− jk )u−ik+1 , and then we
can get all V (k)

TN
= 0 in this case, that is, the RDM of a single

particle in MSR is �[N] = 1
2I in these symmetric cases.

The inscribed regular N-gon of the great circle of the Bloch
sphere when N is even, and the inscribed regular hexahedron
(N = 8), regular octahedron (N = 6), regular dodecahedron
(N = 20), and regular icosahedron (N = 12) of the Bloch
sphere, are also the above cases. The results tell that if the stars
remain some kind of symmetric structure or evolve between
different symmetric structures, the RDM of a single particle
remains constant and the expectation value of the observable
F in the subsystem is

〈F〉 = 1
2 TrF

= F0, (85)

where F is decomposed into F = F0I + Fxσx + Fyσy + Fzσz.

V. CONCLUSION AND DISCUSSION

In summary, the RDM and MSR provide valuable tools
for studying high-dimensional or many-body systems. In this
paper, we use them to analyze the completely symmetric states
and get the general formula of the RDM in MSR as Eq. (52)
for the completely symmetric states coupled by N qubits. In
the process, we also reproduce the normalization constant of
these states as Eq. (42) with the relation of Eq. (8). The results
present intuitive connections between the subsystems and the
composite system. Our result of RDM in MSR transforms
those high-order matrices of high-dimensional Hilbert space
into ordinary algebraic operations, which can be simplified
using relations in combinatorics, thus providing a new idea for
the numerical solution of multiqubit systems. Furthermore,
due to the symmetry of the results, they can be simplified in
lots of cases. We apply the results to calculate the RDM of
the Dicke states and the spin- N

2 state in a uniform magnetic
field and find the coupling coefficient as 2M

N in the RDM. We
also study the states when the stars distribute as symmetric
structures on the Bloch sphere, and the RDM are obtained as

�[N] = 1
2I in these cases, whose corresponding mixed states

are completely mixed states.
For further discussion, these symmetric structures on the

Bloch sphere can be regarded as topologically equivalent with
topological invariant

∑N
i=1 ui = 0 and �[N] = 1

2I. The expec-
tation values of the observables are also invariant if the stars
evolve in the same symmetric structure or between different
symmetric structures. In addition, Majorana stars can indicate
other physical quantities, such as geometric phases. The RDM
in MSR given in this paper can also provide a basis for
investigating the relations between these physical quantities.
We will also do the corresponding research in the subsequent
work.

ACKNOWLEDGMENT

This work was supported by the NSFC through Grant
No. 11935012.

APPENDIX A: THE CALCULATION OF
∑

I0

SI0

With Eq. (26), we get{
ρi(0)

1
, ρi(0)

2
, . . . , ρi(0)

k

}

= k!

2k

⎡
⎣ [ k

2 ]∑
i=0

D(i)
I0

(2i − 1)!!
+

[ k−1
2 ]∑

i=0

V (i)
I0

(2i + 1)!!
· σ

⎤
⎦. (A1)

Here we defined (ui1 · u j1 )(ui2 · u j2 ) · · · (uik · u jk ) as the (2k)-
order term composed of the Bloch vectors and (ui1 · u j1 )(ui2 ·
u j2 ) · · · (uik · u jk )u jk+1 as the (2k + 1)-order term. Then we
introduce n(. . . ) as the counting function to count the number
of the terms. It can be seen that the number of (2k)-order terms
and (2k + 1)-order terms in D(k)

TN
and V (k)

TN
are, respectively,

n
(
D(k)

TN

) = 1

k!
C2

NC2
N−2 . . .C2

N−2k+2

= N!

(2k)!!(N − 2k)!
(A2)

= (2k − 1)!!C2k
N , (A3)

and

n
(
V (k)

TN

) = 1

k!
C2

NC2
N−2 . . .C2

N−2k+2C
1
N−2k

= N!

(2k)!!(N − 2k − 1)!
(A4)

= (2k + 1)!!C2k+1
N . (A5)

From the definition of the counting function, we can see that
the counting function has the following properties: for all λ ∈
R, we have

n
(
λD(k)

T

) = λn
(
D(k)

T

)
, (A6)

n
(
λV (k)

T

) = λn
(
V (k)

T

)
. (A7)
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In this way, we get the sum of coefficients of (2i)-order terms
in Eq. (48) as

n

(
(N − 1)!(N − k + 1)!

2N−k

1

(2i + 1)!!
D(i)

TN −I0

)

= (N − 1)!(N − k)!

2N−k
C2i+1

N−k+1. (A8)

In Eq. (A1), we see that the sum of coefficients of (2i)-order
terms and (2i + 1)-order terms are

n

(
k!

2k

D(i)
I0

(2i − 1)!!

)
= k!

2k
C2i

k (A9)

and

n

(
k!

2k

V (i)
I0

(2i + 1)!!

)
= k!

2k
C2i+1

k (A10)

respectively, that is, in Eq. (A1), the sum of coefficients of ( j)-
order terms is k!

2k C j
k , whether j equals even 2i or odd 2i + 1.

So the sum of coefficients of (J )-order terms of SI0 is∑
2i+ j=J

(N − 1)!(N − k)!

2N−k
C2i+1

N−k+1

k!

2k
C j

k

=
∑

2i+ j=J

(N − 1)!k!(N − k)!

2N
C2i+1

N−k+1C
j

k . (A11)

Now consider all pairs of P and P̃ whose character se-
quence is of size k. The number of them is just Ck

N times as
the number of pairs of P and P̃ whose character sequence is
a permutation of I0. So the sum of coefficients of (J )-order
terms in their contributions to

∑
I0

SI0 is Ck
N times as Eq. (A11),

that is, ∑
2i+ j=J

(N − 1)!k!(N − k)!

2N
Ck

NC2i+1
N−k+1C

j
k

=
∑

2i+ j=J

(N − 1)!N!

2N
C2i+1

N−k+1C
j

k . (A12)

Equation (A12) is precisely the Jth power series coefficient
of

(N − 1)!N!

2N

( ∞∑
i=0

C2i+1
N−k+1x2i

)⎛⎝ ∞∑
j=0

C j
k x j

⎞
⎠

= (N − 1)!N!

2N

(1 + x)N−k+1 − (1 − x)N−k+1

2x
(1 + x)k .

(A13)

Finally, by summing Eq. (A13) from k = 1 to N , we get

N∑
k=1

[
(N − 1)!N!

2N

(1 + x)N−k+1 − (1 − x)N−k+1

2x
(1 + x)k

]

= (N − 1)!N!

2N

1

4x2

[
2nx(1 + x)N+1 + (1 + x)(1 − x)N+1

− (1 − x)(1 + x)N+1
]

= (N − 1)!N!

2N

[ ∞∑
J=0

N

2
C2J+1

N+1 x2J

+
∞∑

J=0

(J + 1)C2J+3
N+2 x2J+1

]
, (A14)

which shows that the sum of coefficients of (2J )-order terms
in
∑
I0

SI0 is

(N − 1)!N!

2N

N

2
C2J+1

N+1 = N!2

2N+1
C2J+1

N+1 , (A15)

and the sum of coefficients of (2J + 1)-order terms in
∑
I0

SI0 is

(N − 1)!N!

2N
(J + 1)C2J+3

N+2 = (N − 1)!N!(2J + 2)

2N+1
C2J+3

N+2 .

(A16)

Again, using the completely symmetric property, the sum of
all (2J )-order terms in

∑
I0

SI0 must be D(J )
TN

multiplied by a

coefficient. Since it can be seen from Eq. (A2) that there are

n
(
D(J )

TN

) = N!

(2J )!!(N − 2J )!
(A17)

terms in D(J )
TN

, the coefficient of each term is

N!2

2N+1
C2J+1

N+1

(2J )!!(N − 2J )!

N!
= N!(N + 1)!

2N+1

1

(2J + 1)!!

(A18)

from Eqs. (A15) and (A17). The sum of all (2J + 1)-order
terms in

∑
I0

SI0 must be V (J )
TN

· σ multiplied by a coefficient.

Since it can be seen from Eq. (A4) that there are

n
(
V (J )

TN

) = N!

(2J )!!(N − 2J − 1)!
(A19)

terms in V (J )
TN

· σ, the coefficient of each term is

(N − 1)!N!(2J + 2)

2N+1
C2J+3

N+2

(2J )!!(N − 2J − 1)!

N!

= (N − 1)!(N + 2)!

2N+1

1

(2J + 3)!!
(A20)

from Eqs. (A16) and (A19). In conclusion, we get

∑
I0

SI0 = (N − 1)!(N + 1)!

2N+1

⎡
⎣N

[ N
2 ]∑

J=0

1

(2J + 1)!!
D(J )

TN

+ (N + 2)
[ N−1

2 ]∑
J=0

1

(2J + 3)!!
V (J )

TN
· σ

⎤
⎦. (A21)

This is Eq. (51).
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APPENDIX B: THE CALCULATION OF EQS. (64) AND (69)

Given n+1 + n−1 = n(D(k)
TN

), it corresponds exactly to Vandermonde’s identity. For Eq. (63), we need to find the corresponding
generating function. First, construct

f (x) =
[J]∑

k=0

1

2k + 1

J−M∑
j=0

(−1) jC j
J−MC2k− j

J+M x2k+1, (B1)

that is, multiply the right side of the equal sign of Eq. (63) by x2k+1, and then derive it to get

f ′(x) =
[J]∑

k=0

J−M∑
j=0

(−1) jC j
J−MC2k− j

J+M x2k =
∑

j=0,2,...

C j
J−Mx j

(
[J]∑

k=0

C2k− j
J+M x2k− j

)
−

∑
j=1,3,...

C j
J−Mx j

(
[J]∑

k=0

C2k− j
J+M x2k− j

)

= (1 + x)J−M + (1 − x)J−M

2

(1 + x)J+M + (1 − x)J+M

2
− (1 + x)J−M − (1 − x)J−M

2

(1 + x)J+M − (1 − x)J+M

2

= 1

2
[(1 − x)J−M (1 + x)J+M + (1 + x)J−M (1 − x)J+M], (B2)

and then get

f (x) =
∫

f ′(x)dx, (B3)

then Eq. (63) can be simplified to

∫ 1

0
f ′(x)dx = 1

4

∫ 1

−1
[(1 − x)J−M (1 + x)J+M + (1 + x)J−M (1 − x)J+M]dx

= 1

4
[2N+1B(J + M + 1, J − M + 1) + 2N+1B(J − M + 1, J + M + 1)]

= 2N (J − M )!(J + M )!

(N + 1)!
, (B4)

where B(. . . ) is the Beta function. This is Eq. (64).
Construct

g(x) =
[J− 1

2 ]∑
k=0

1

2k + 3

J−M∑
j=0

(−1) jC j
J−MC2k+1− j

J+M x2k+3, (B5)

that is, multiply x2k+3 to the right side of the equal sign of Eq. (68) and divide by σz, and then derive it to get

g′(x) =
[J− 1

2 ]∑
k=0

J−M∑
j=0

(−1) jC j
J−MC2k+1− j

J+M x2k+2 = x
∑

j=0,2,...

C j
J−Mx j

⎛
⎝[J− 1

2 ]∑
k=0

C2k+1− j
J+M x2k+1− j

⎞
⎠

− x
∑

j=1,3,...

C j
J−Mx j

⎛
⎝[J− 1

2 ]∑
k=0

C2k+1− j
J+M x2k+1− j

⎞
⎠

= x

[
(1 + x)J−M + (1 − x)J−M

2

(1 + x)J+M − (1 − x)J+M

2
− (1 + x)J−M − (1 − x)J−M

2

(1 + x)J+M + (1 − x)J+M

2

]

= x

2
[(1 − x)J−M (1 + x)J+M − (1 + x)J−M (1 − x)J+M], (B6)

and then get

g(x) =
∫

g′(x)dx. (B7)
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In this way, Eq. (68) can be simplified to

σz

∫ 1

0
g′(x)dx = σz

4

∫ 1

−1
[(1 − x)J−M (1 + x)J+M+1 − (1 − x)J−M+1(1 + x)J+M]dx

= σz

4
[22J+2B(J + M + 2, J − M + 1) − 22J+2B(J + M + 1, J − M + 2)]

= 22J (J + M )!(J − M )!2M

(2J + 2)!
σz. (B8)

This is Eq. (69).
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