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Maximal violation of the Clauser-Horne-Shimony-Holt inequality for two qutrits
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The Bell–Clauser-Horne-Shimony-Holt~BCHSH! inequality ~in terms of correlation functions! of two
qutrits is studied in detail by employing tritter measurements. A uniform formula for the maximum value of
this inequality for tritter measurements is obtained. Based on this formula, we show that nonmaximally
entangled states violate the BCHSH inequality more strongly than the maximally entangled one. This result is
consistent with what was obtained by Acı´n et al. @Phys. Rev. A65, 052325~2002!# using the Bell–Clauser-
Horne inequality~in terms of probabilities!.
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I. INTRODUCTION

Bell inequality has been proved to be not only as a t
for exposing the weirdness of quantum mechanics, but
as a more powerful resource in a number of applicatio
such as in quantum communication. Bell–Clauser-Hor
Shimony-Holt~BCHSH! inequality has been applied in com
municating protocol~Ekert protocol! to detect the presenc
of the eavesdropper@1#. Furthermore, it has been found th
two entangledd-dimensional systems~qudits! generate cor-
relations that are more robust against noise than those
erated by two entangled qubits@2–5#. It was suggested tha
the higher-dimensional entangled systems may be much
perior than two-dimensional systems in quantum commu
cation. Naturally, the extension of the protocol~involving
BCHSH inequality! to higher dimension becomes an inte
esting problem. So, it is necessary and important to inve
gate the Bell inequality for higher-dimensional systems.

In an interesting paper@6#, by using the Bell–Clauser
Horne inequality~in terms of probabilities! @4,5#, Acı́n et al.
have shown that nonmaximally entangled states violate
BCHSH inequality more strongly than the maximally e
tangled one. Recently, a BCHSH inequality~in terms of cor-
relation functions! of two qutrits has been obtained@7# by
searching the inequality which can give the minimal no
admixtureFthr for the maximally entangled states. The min
mal noise admixtureFthr for the maximally entangled stat
of two qutrits has been obtained numerically by the meth
of linear optimization in Ref.@2# and analytically in Refs.
@5,8#. The extension of the BCHSH to higher dimension is
nontrivial and interesting problem. Actually, it has been a
plied to quantum cryptography@9#. In this paper, we study
the BCHSH inequality of two qutrits for tritter measuremen
by considering a class of pure states of two qutrits. A u
form formula of the maximum value of this inequality
obtained. Based on this formula, we find the states wh
give the maximum violation of the BCHSH inequality. Th
result is consistent with what was obtained by Acı´n et al. @6#.
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II. THE INEQUALITY

Let us consider a gedanken experiment with two obse
ers, each measuring two observables on some state of
qutrits r. We denote the observables byÂi ( i 51,2) for the
first observer~Alice! andB̂j ( j 51,2) for the second observe
~Bob!. The measurement of each observable yields three
tinct outcomes denoted bya1

i ,a2
i , and a3

i for Alice’s mea-
surement of the observable, andb1

j ,b2
j , and b3

j for Bob’s
measurement of the observable. Specifically, the observa
have the spectral decompositionsÂi5a1

i P̂1
i 1a2

i P̂2
i 1a3

i P̂3
i ,

and B̂j5b1
j Q̂1

j 1b2
j Q̂2

j 1b3
j Q̂3

j , whereP̂l
i ( l 51,2,3) andQ̂m

j

(m51,2,3) are mutually orthogonal projectors, respective
The probability of obtaining the set of three numbe
(al

i ,bm
j ) in a simultaneous measurement of observablesÂi

andB̂j on the stater is denoted byP(al
i ,bm

j ), which can be
given by the standard formula

P~al
i ,bm

j !5Tr~r P̂l
i
^ Q̂m

j !. ~1!

As introduced and used in Ref.@11#, the correlation func-
tion Q(wW Ai,wBj) (Qi j for short! between Alice and Bob’s
measurements is

Qi j 5 (
l i ,mj 51

3

a l i1mj P~al i
,bmj

!, ~2!

wherea5ei2p/3. Let us define the following quantity:

S5Re@Q111Q122Q211Q22#

1
1

A3
Im@Q112Q122Q211Q22#. ~3!

It can be shown@7#, using the recently discovered Bell in
equality for two qutrits@4#, that according to local realistic
theoryScannot exceed 2; i.e.,S<2 for local realistic theory.
However, when using the quantum correlation function giv
in Eq. ~2!, Smax acquires the value29 (614A3)'2.872 93 for
the state uc&5(1/A3)( i

3u i &u i &, the maximally entangled
state. Following Ref.@2#, we define the threshold noise ad
mixture Fthr ~the minimal noise admixture fraction foruc&)
©2003 The American Physical Society23-1
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Fthr5122/Smax. Then for the maximally entangled tw
qutrits, we haveFthr50.303 85. For the maximally en
tangled two qubits, one hasFthr50.292 89. Obviously, en-
tangled qutrits are more resistant to noise than entan
qubits @2,8#.

As suggested in Refs.@7# and@4#, the BCHSH inequality
for two qutrits can be expressed as

24<S<2. ~4!

On the other hand, the interesting thing is the maxim
Fthr of two qutrits obtained in Ref.@10# by the numerical
linear optimization method. The authors found that the o
mal nonmaximally entangled state of two qutrits is arou
3% more resistant to noise than the maximally entang
one. The maximalFthr is given byFthr50.313 86 for such
state ~a nonmaximally state!. Similar result is obtained in
Ref. @6#. Obviously, the maximal violation of the inequalit
should be 2.914 85 for such nonmaximally entangled sta

For simplicity, we consider a gedanken experiment
which Alice and Bob’s observables are defined by unbia
symmetric six-port beam splitter on the state of two qutri

uc&5
1

A3
(

i

3

ai u i &u i &, ~5!

with real coefficientsai ; the ketsu i & ( i 51,2,3) denote the
orthonormal basis states for the qutrit. The unbiased symm
ric six-port beam splitter, called tritter@12,13#, is an optical
device with three input and output ports. In front of eve
input port there is a phase shifter that changes the phas
the photon entering the given port. The observers select
specific local observables by setting appropriate phase s
in the beams leading to the entry ports of the beam splitt
Such a process performs a unitary transformation betw
‘‘mutually unbiased’’ bases in the Hilbert space@14–16#. The
overall unitary transformation performed by such a device
given by

Ui j 5
1

A3
a ( i 21)( j 21)eiw j , i , j 51,2,3, ~6!

wherea5ei2p/3 and j denotes an input beam to the devic
andi an output one;w j are the three phases that can be set
the local observer, denoted aswW 5(w1 ,w2 ,w3). The transfor-
mations at Alice’s side are denoted aswW A5(w1

A ,w2
A ,w3

A), and

wW B5(w1
B ,w2

B ,w3
B) for Bob’s side.

The observables measured by Alice and Bob are now
fined as follows. The set of projectors for Alice’si th mea-
surement is given by P̂l

i5UA
1(wW Ai)u l &^ l uUA(wW Ai) ( l

51,2,3), whereUA(wW Ai) is the matrix of Alice’s unbiased
symmetric six-port beam splitter defined by Eq.~6!.
Bob’s j th measurement is given by Q̂m

j

5UB
1(wW Bj)um&^muUB(wW Bj) (m51,2,3). Then, from Eqs.~1!

and ~2!, the correlation function for stateuc& reads
02232
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Qi j 5(
n,k

3

(
l i ,mj

3

anaka
l i1mj~a* !(n21)(l i1mj 22)

3a (k21)(l i1mj 22)ei (w
k

Ai1w
k

Bj2w
n

Ai2w
n

Bj ). ~7!

This shows that the results of the measurement obtained
Alice and Bob are strictly correlated.

In the following, we will investigate the BCHSH inequa
ity ~4! for the tritter measurements and give analytical d
cussions of above results.

III. THE MAXIMAL VIOLATION

By substituting Eq.~7! into Eq. ~3!, after some elabora
tion, we obtain

S5a1a2T121a1a3T131a2a3T23, ~8!

where

T125
1

9
@3 cos~w1

A22w2
A21w1

B12w2
B1!23 cos~w1

A12w2
A1

1w1
B12w2

B1!23 cos~w1
A22w2

A21w1
B22w2

B2!

2A3 sin~w1
A22w2

A21w1
B12w2

B1!1A3 sin~w1
A12w2

A1

1w1
B12w2

B1!12A3 sin~w1
A12w2

A11w1
B22w2

B2!

1A3 sin~w1
A22w2

A21w1
B22w2

B2!#, ~9!

T1352
1

9
@3 cos~w1

A12w3
A11w1

B12w3
B1!23 cos~w1

A22w3
A2

1w1
B12w3

B1!13 cos~w1
A22w3

A21w1
B22w3

B2!

1A3 sin~w1
A12w3

A11w1
B12w3

B1!2A3 sin~w1
A22w3

A2

1w1
B12w3

B1!12A3 sin~w1
A12w3

A11w1
B22w3

B2!

1A3 sin~w1
A22w3

A21w1
B22w3

B2!#, ~10!

and

T2352
1

9
@3 cos~w2

A12w3
A11w2

B12w3
B1!23 cos~w2

A22w3
A2

1w2
B12w3

B1!13 cos~w2
A22w3

A21w2
B22w3

B2!

2A3 sin~w2
A12w3

A11w2
B12w3

B1!1A3 sin~w2
A22w3

A2

1w2
B12w3

B1!22A3 sin~w2
A12w3

A11w2
B22w3

B2!

2A3 sin~w2
A22w3

A21w2
B22w3

B2!# ~11!

are three continuous functions of 12 angleswW Ai and wW Bj

( i , j 51,2). So,S is the continuous function of the twelv
variables. The points which satisfy
3-2
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MAXIMAL VIOLATION OF THE CLAUSER-HORNE- . . . PHYSICAL REVIEW A 68, 022323 ~2003!
]S

]w j
L i

50 ~L5A,B; i 51,2; andj 51,2,3! ~12!

are the critical points of the functionS. According to the
theory of extreme points of continuous functions, we kn
that the extreme points belong to the critical points of
function. So, we can extract the maximum and minimum
S from the critical points by comparing the value ofSamong
the critical points, since the maximum and minimum poin
must be one of the extreme points.

On the other hand, we can know thatut12u<
4
3 ,ut13u<

4
3 ,

andut23u<
4
3 . However, the above three formulas are stron

correlated, sot12, t13, and t23 cannot reach their maximum
value at the same time. It happens that when one oft12, t13,
and t23 reaches its maximum value43 , the others can reac
their submaximum value 4/3A3. If we considert12, t13, and
t23 as three coordinates, then they can form a complica
polyhedron. The polyhedral vertices are the points wheret12,
t13, andt23 reach their extreme values.

Lemma. For the formulaG5( i 51
N j iRi , wherej i are N

real parameters, the maximum~minimum! points ofG must
be on the boundary of the region formed byRi for any j i .

Proof. Giving G05( i 51
N j iRi

0 , if Ri
0 ( i 51,2, . . . ,N) are

in the inner region formed byRi , we can always haveG
5G01( i 51

N j iDRi , in which DRi are infinitesimal values
satisfyingj iDRi.0 (i 51,2, . . . ,N), so thatG.G0; or DRi
are infinitesimal values satisfying j iDRi,0 (i
51,2, . . . ,N), so thatG,G0. So, we can know that the
maximum ~minimum! points of G can only find on the
boundary.

Theorem. The maximum and minimum values ofS for a
given state~5! must be found at the vertices of polyhedro
formed byt i j ( iÞ j ; i , j 51,2,3).

Proof. We know that the maximum points ofS belong to
the critical points ofS. For the critical points in the inne
region formed by (t12,t13,t23), from the Lemma we know
that the value of such critical points must be less than so
values ofSon the boundary, so they cannot be the maxim
points ofS. For the same reason, if the critical point on t
boundary~except for vertices!, we can know that the value o
S on this point must be less thanS on one of the vertices on
this boundary. Then, the maximum value ofS must be only
found on the vertices of the region formed by (t12,t13,t23).
In analogy with the above discussion, the minimum value
S can also be found on the vertices.

To find out the maximum~minimum! value, we have to
calculate the vertices of the polyhedron formed byt i j . For
convenience, we denoteT1 as one of$t12,t13,t23%, T2 as
one of $t12,t13,t23%/$T1%, and T3 as one of
$t12,t13,t23%/$T1 ,T2%; where $ %/$ % means division of sets
namely, if T15t12, then T2P$t12,t13,t23%/$t12%5$t13,t23%,
and so on. In the following, we list the vertices formed
the maximum and submaximum oft i j ~it is enough!,

~ uT1u,uT2u,uT3u!5S 4

3
,

4

3A3
,

4

3A3
D for T1T2T3.0,

~13!
02232
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~ uT1u,uT2u,uT3u!5S 4

3
,
4

3
,
4

3D for T1T2T3,0. ~14!

Comparing the value ofSamong these points, we can obta
the maximum and minimum values ofS for state~5!. Assum-
ing $Ki( i 51,2,3)%5$ua1a2u,ua1a3u,ua2a3u%, where ‘‘5 ’ ’
means the equality of two sets, andKi are in decreasing
order, i.e.,K1>K2>K3, let us define

S1~ uc&)5
4

3
K11

4

3A3
~K21K3! ~15!

and

S2~ uc&)5
4

3
~K11K22K3!. ~16!

Then, we can know that the maximum value ofS must be

Smax~ uc&)5max@S1~ uc&!,S2~ uc&)]. ~17!

From Eqs.~15! and ~16!, we know thatS2(uc&)>S1(uc&)
only for K3 /K2<22A3. If taking ( iai

253 into account,
one can prove that when max(ua1u,ua2u,ua3u)>(613A3)1/2/2
51.673 03, S2(uc&)>S1(uc&). Let us define Amax
5max(ua1u,ua2u,ua3u), finally we obtain that

Smax~ uc&)

55
4

3
K11~4/3A3!~K21K3!, Amax<

~613A3!1/2

2

4

3
~K11K22K3!, Amax.

~613A3!1/2

2
.

~18!

We can also prove that the minimum ofS is

Smin~ uc&)52
4

3
~K11K21K3!. ~19!

Obviously one can easily find that for maximally entangl
stateuc&5(1/A3)( i

3u i &u i & ~i.e., ai51), we haveSmax5
2
9(6

14A3) and Smin524, which are the same as the resu
obtained in Refs.@4,6,10,17#.

In Fig. 1, we give the comparison between the theoret
results and the numerical calculations obtained by mu
random-search optimization method, which shows a per
agreement;~a! for Smax and~b! for Smin , in whicha1 changes
in region @2A3,A3#, a25A(32a1

2)«, and a3

5A(32a1
2)(12«) (0<«<1). One can find some inflection

points in Fig. 1~a!, for example, at the pointa151 when«
50.5. These inflexion points are due to the discontinuo
change ofK1, the maximum value amongua1a2u,ua1a3u, and
ua2a3u, e.g., for «50.5, K15a2a35@(32a1

2)/2# when a1

<1, but whena1.1, K15a1a25a1A(32a1
2)/2. On the
3-3
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other hand, we can see from Fig. 1~a! that the maximally
entangled states are not the states that give the maximal
lation of the Bell inequality.

Considerai as variables; we can obtain the maximal val
of Smax ~denoted asS̄max), by calculating the extreme valu
of Eq. ~18!, and after some elaboration we get

S̄max511A11

3
, ~20!

when

$ua1u,ua2u,ua3u%

5H F3

2 S 12A 3

11D G
1/2

,A32a1
2

2
,A32a1

2

2 J .

~21!

FIG. 1. ~a!. The maximal value of the inequality for tritter mea
surements,Smax, for the state given by Eq.~5!, wherea1 changes in
region @2A3,A3#; a25A(32a1

2)«; and a35A(32a1
2)(12«), 0

<«<1. The solid lines are theoretical results, circles are numer
dates, the dotted line shows the maximal value predicted by
local realistic theory, and the dashed line marks the value of
maximally entangled states.~b! The minimal value of the inequality
Smin .
02232
io-

One sees that for this value the threshold amount of nois
about Fthr50.3139, which is the same as what has be
obtained in recent calculations@6,10,17#. So, this result gives
another evidence for inequality~4!.

On the other hand, we can also calculate the minim
value ofSmin , denoted asS̄min ,

S̄min524 for $ua1u,ua2u,ua3u%5$1,1,1%. ~22!

Then, we can know that

0<Smax<11A11

3
, 24<Smin<0. ~23!

Obviously, for tritter measurements, the left hand of inequ
ity ~4! would never be violated, and the right hand only
violated by some of pure states. We can easily find the st
that violate the inequality for tritter measurements from fo
mula ~18!. In Fig. 2, we show the states described
@a1 ,a25A(32a1

2)«,a35A(32a1
2)(12«)#, which violate

the inequality for tritter measurements. The states which v
late the inequality are in the shadow region; the states
which Smax52 are on the boundary of the shadow region; t
states in other regions cannot violate the inequality for trit
measurements.

We should add here that some similar calculations as w
as some equivalence results were obtained by Cereceda@17#,
where the author compared some of the two-qutrit inequ
ties and investigated them in detail.

IV. DISCUSSION

In the above discussion we only concentrate on trit
measurements which can be easily carried out for techno
used nowadays@12#. By studying the BCHSH inequality o
two qutrits in detail, we give formulas of the maximum an
minimum values of this inequality, and obtain the sta
which give the maximal violation of the BCHSH inequalit
The maximal violation we obtained is the same as Re
@6,10#.

al
e
e

FIG. 2. The figure shows the states that violate the inequality
tritter measurements. The states in the shaded region violate
inequality.
3-4
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Indeed, one should use general measurements to stud
problem of maximizing the Bell violation for a state, or
other words, for some states the tritter measurements are
optimal.

So, some states do not violate the inequality using tri
measurements, but may violate the inequality when gen
measurements are taken into account@17#. For example,
for the state withua1u51.56 and«50.5, Smax51.964 for
tritter measurements, which does not violate the inequa
but if we employ the following measurement
P̂l

i5UA
1(wW Ai)uxl&^xl uUA(wW Ai) ( l 51,2,3) and Q̂m

j

5UB
1(wW Bj)uxm&^xmuUB(wW Bj) (m51,2,3), where ux1&

5(1/A2)@ u1&1u2&], ux2&5(1/A2)@ u1&2u2&], and ux3&
5u3& are orthonormal bases, we can obtainSmax52.0132
~violates the inequality!.
cu

d.

.

-

02232
the

not
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However, by employing tritter measurements, it can
veal many important properties of Bell inequality of e
tangled two qutrits. For instance, for the maximally e
tangled state uc&5(1/A3)( i

3u i &u i & and the states tha
maximally violate the inequality, the tritter measurements
optimal, and based on such entangled qutrit pairs a cry
graphic protocol has been presented more recently@9# by
employing tritter measurements.
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zewski, and A. Zeilinger, Phys. Rev. Lett.85, 4418~2000!.
@3# T. Durt, D. Kaszlikowski, and M. Z˙ukowski, Phys. Rev. A64,

024101~2001!.
@4# D. Kaszlikowski, L.C. Kwek, J.L. Chen, M. Z˙ukowski, and

C.H. Oh, Phys. Rev. A65, 032118~2002!.
@5# D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popes

Phys. Rev. Lett.88, 040404~2002!.
@6# A. Acı́n, T. Durt, N. Gisin, and J.I. Latorre, Phys. Rev. A65,

052325~2001!.
@7# J.-L. Chen, D. Kaszlikowski, L.C. Kwek, and C.H. Oh, Mo

Phys. Lett. A17, 2231~2002!.
@8# J.-L. Chen, D. Kaszlikowski, L.C. Kwek, C.H. Oh, and M
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