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Maximal violation of the Clauser-Horne-Shimony-Holt inequality for two qutrits
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The Bell-Clauser-Horne-Shimony-Hol[BCHSH) inequality (in terms of correlation functionsof two
qutrits is studied in detail by employing tritter measurements. A uniform formula for the maximum value of
this inequality for tritter measurements is obtained. Based on this formula, we show that nonmaximally
entangled states violate the BCHSH inequality more strongly than the maximally entangled one. This result is
consistent with what was obtained by At al. [Phys. Rev. A65, 052325(2002] using the Bell-Clauser-
Horne inequality(in terms of probabilities
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I. INTRODUCTION Il. THE INEQUALITY

Let us consider a gedanken experiment with two observ-
Bell inequality has been proved to be not only as a toolers, each measuring two observables on some state of two
for exposing the weirdness of quantum mechanics, but alsqutrits p. We denote the observables By (i=1,2) for the

as a more powerful resource in a number of applicationsgirst observerAlice) andB!(j =1,2) for the second observer
such as in quantum communication. Bell-Clauser-Home(goh). The measurement of each observable yields three dis-
Shimony-Holt(BCHSH) inequality has been applied in com- tinct outcomes denoted by, ,a},, andal for Alice’s mea-
municating protocolEkert protocol to detect the presence syrement of the observable, abdl,b,, and b}, for Bob's

of the eavesdroppégf]. Furthermore, it has been found that measurement of the observable. Specifically, the observables

two _entangle(ﬁ-dlmensmnal systeméqudlts_) generate COr-  pove the spectral decompositioA= ail|5i1+ai2|§,i2+agw3,
relations that are more robust against noise than those gen

erated by two entangled qubitg—5|. It was suggested that andB!=b;Q;+b3Q;+b3Q%, whereP (!:1’2’3) andQ‘n_]
the higher-dimensional entangled systems may be much s [2:1’2':3) gﬁ mu]:tualila)t/ Qr'ghogtt)r?al prctJJe(}totrﬁ, respectlg/ely.
perior than two-dimensional systems in quantum communi- ie jprg a “_y ob obtaining the set o ree numboers
cation. Naturally, the extension of the protod@ivolving  (&:bm) in a simultaneous measurement of observailes
BCHSH inequality to higher dimension becomes an inter- andB! on the state is denoted byP(a, ,bf;), which can be
esting problem. So, it is necessary and important to investigiven by the standard formula
gate the Bell inequality for higher-dimensional systems. - SN

In an interesting papel6], by using the Bell-Clauser- P(a;,by)=Tr(pP;®Qp,). (1)
Horne inequality(in terms of probabilities[4,5], Acin et al. As introduced and used in RéL1], the correlation func-
have shown that nonmaximally entangled states violate the ~A B ' . i
BCHSH inequality more strongly than the maximally en- tion Q™. ¢ J).(Qii for shor) between Alice and Bob’s
tangled one. Recently, a BCHSH inequaliily terms of cor- measurements s

relation functiony of two qutrits has been obtaindd] by 3
searching the inequality which can give the minimal noise Qij= > &itMP(a b)), 2)
admixtureF,,, for the maximally entangled states. The mini- liomj=1 b

mal noise admixturd-,, for the maximally entangled state

of two qutrits has been obtained numerically by the metho

of linear optimization in Ref[2] and analytically in Refs. S=Rg Q11+ Q15— Q1+ Qyl

[5,8]. The extension of the BCHSH to higher dimension is a

nontrivial and interesting problem. Actually, it has been ap- 1

plied to quantum cryptographi®]. In this paper, we study + 3 IM[Q11~ Q2= Qa1+ Qzl. 3)

the BCHSH inequality of two qutrits for tritter measurements

by considering a class of pure states of two qutrits. A uni-It can be showr7], using the recently discovered Bell in-

form formula of the maximum value of this inequality is equality for two qutrits[4], that according to local realistic

obtained. Based on this formula, we find the states whicliheoryScannot exceed 2; i.eS<2 for local realistic theory.

give the maximum violation of the BCHSH inequality. This However, when using the quantum correlation function given

result is consistent with what was obtained bymet al.[6].  in EQ. (2), Snaxacquires the valug(6+4./3)~2.872 93 for
the state|y)=(1/y3)=3]i)|i), the maximally entangled
state. Following Ref[2], we define the threshold noise ad-

*Email address: fu_libin@mail.iapcm.ac.cn mixture Fy,, (the minimal noise admixture fraction fog))

Jvherea=e‘2”’3. Let us define the following quantity:
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Finr=1—2/S,.x. Then for the maximally entangled two s 3

qutrits, we haveF,,=0.30385. For the maximally en- =2 E a aaiTMi(a* ) DliTm=2)
tangled two qubits, one hds;,,=0.292 89. Obviously, en- nk i

tangled qutrits are more resistant to noise than entangled (k=1)(1j+m;,—2) i Ay ,_<,, 8 J)
qubits[2,8]. Xa e'\e Ty 7)

As suggested in Ref§7] and[4], the BCHSH inequality

for two qutrits can be expressed as This shows that the results of the measurement obtained by

Alice and Bob are strictly correlated.
In the following, we will investigate the BCHSH inequal-
ity (4) for the tritter measurements and give analytical dis-

. ) o ~cussions of above results.
On the other hand, the interesting thing is the maximal

Fi, of two qutrits obtained in Refl10] by the numerical
linear optimization method. The authors found that the opti-
mal nonmaximally entangled state of two qutrits is around By substituting Eq(7) into Eq. (3), after some elabora-
3% more resistant to noise than the maximally entangledion, we obtain
one. The maximaF,,, is given byF,,,=0.31386 for such
state (a nonmaximally state Similar result is obtained in S=aja,Tio+aja3T 3+ a,a3T 23, (8)
Ref. [6]. Obviously, the maximal violation of the inequality
should be 2.914 85 for such nonmaximally entangled statesyhere

For simplicity, we consider a gedanken experiment in
which Alice and Bob’s observables are defined by unbiased
symmetric six-port beam splitter on the state of two quitrits, le——[3 coe{go - @22+ qDl - (,021) 3 COE{(,Dl - qo';l

—4<S<2. 4

lIl. THE MAXIMAL VIOLATION

3 B B A A B B
1 + @, =@, ) —3Co% ¢, 2~ @2+ @, 2— @2
|$>:ﬁz a||>|| (5) (P]_ @2 ) 3‘)01 (Pz (P]_ (Pz )
' — 3 sin @}2— @2+ @21 — o5 + /3 sin @)1 -
with real coefficientsa; ; the kets|i) (i=1,2,3) denote the +(pfl 1)+2\/§ S|r(¢1 _(P21+¢1 _‘Pz 2
orthonormal basis states for the qutrit. The unbiased symmet-
ric six-port beam splitter, called tritt¢d 2,13, is an optical ++3 sir(cplz— ¢22+ (,012—(,022)], (9)

device with three input and output ports. In front of every
input port there is a phase shifter that changes the phase of 1
the photon entering the given port. The observers select theT, ;= — —[3 cog ¢, — @4+ @51 — ¢ot) — 3 CO% 12— @2
specific local observables by setting appropriate phase shifts 9
in the beams leading to the entry ports of the beam splitters.
Such a process performs a unitary transformation between
“mutually unbiased” bases in the Hilbert spadet—16. The
overall unitary transformation performed by such a device is

B B A
+ oyt 031 +3 Cog ¢ 0y + 072~ 032)

+ 35“’((,01 _¢31+<D1 _(Pg ) \/§S|r(q01 _(P3

given by S T R NEE ) CASCASNCREe
+\/3 sin@)2— ph?+ @ 2 — , 10
Uy = al~D0-Des, i j=123, (6) AT o) o
V3 and
wherea=¢e'2""® andj denotes an input beam to the device,

. 1
andi an output oney; are the three phases that can be set by T,,= — 5[3 cog (p?l— <p§1+ <p21 <p31) 3 cog goz - (p3
the local observer, denoted é§(<pl,<p2,cp3). The transfor-

mations at Alice’s side are denoted@d=(¢7,¢%,¢%), and 01— 051 +3 cog o2 pl2+ B2 o)
“B_ B B B ), .
¢°=(¢1,95,¢3) for Bob's side.

The observables measured by Alice and Bob are now de- 3 sin €02 - <P31+ 402 - <p3 H+3 S|r(<p2 - (p3

fined as follows. The set of projectors for Alica’th mea-
surement is given by Pi=Uj (¢™)|(I|Ua(e™) (I
=1,2,3), whereU(¢”) is the matrix of Alice’s unbiased 3S|r(<p2 —(p32+ goz —(p3 9] 11
symmetric six-port beam splitter defined by EQG)

Bob's jth measurement is given by QL are three continuous functions of 12 angled and @B
=Ug (¢®)|m)(m|Ug(¢®) (m=1,2,3). Then, from Eq€1)  (i,j=1,2). So,Sis the continuous function of the twelve
and (2), the correlation function for statey) reads variables. The points which satisfy

+oot— ) —2\/3 sin( @yl — i1+ 92— o2?)
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S and
m_o (A=A,B; i=1,2; andj=1,2,3 (12 444
J (|T1|,|T2|,|T3|)=(§,§,§> for TT,T3<0. (14
are the critical points of the functio® According to the
theory of extreme points of continuous functions, we knowComparing the value d6 among these points, we can obtain
that the extreme points belong to the critical points of thethe maximum and minimum values 8for state(5). Assum-
function. So, we can extract the maximum and minimum ofing {K;(i=1,2,3)}={|a;a,|,|a;,a3|,|]aas|}, where ="
Sfrom the critical points by comparing the value®among means the equality of two sets, akd are in decreasing
the critical points, since the maximum and minimum pointsorder, i.e. K,;=K,=Kj, let us define
must be one of the extreme points.

On the other hand, we can know that,|<3,|t;g <3, 4 4
and|t,d=<%. However, the above three formulas are strongly Su(l¥)) = 3Kt —\/—(K2+ Ks) (19
correlated, sd,, t13, andt,; cannot reach their maximum 3v3
value at the same time. It happens that when ong.oft,3,
andt,; reaches its maximum valug, the others can reach
their submaximum value 4(&. If we considet,,, t;3, and 4
t,3 as three coordinates, then they can form a complicated S,(|))= §(K1+ Ky—Kj). (16)
polyhedron. The polyhedral vertices are the points where
t13, andt,; reach their extreme values.

Lemma For the formulanEiN:lgi R;, where¢; areN
real parameters, the maximuminimum) points of G must Smad | #)) =ma{ Si(|4)),S,(|¥)]. (17)
be on the boundary of the region formed Ryfor any &; .

Proof. Giving G°==L  &R?, if R? (i=1,2,...N) are  From Egs.(15) and (16), we know thatS,(| )= S;(| %))
in the inner region formed byr;, we can always hav& only for K3/K,<2—/3. If taking =;a’=3 into account,
=G%+3]L £AR;, in which AR; are infinitesimal values one can prove that when méa(,|as).as)=(6+313)Y%2
satisfyingg AR >0 (i=1,2,... N), sothatG>G% or AR, =1.67303, Sy(|¢))=S,(|¢)). Let us define Apgy
are infinitesimal values satisfying £§AR<0 (i =max(ay,|ay,|ag|), finally we obtain that
=1,2,...N), so thatG<G°. So, we can know that the
maximum (minimum) points of G can only find on the Spa(|¥))
boundary. 12

Theorem The maximum and minimum values 8ffor a f (6+3\/§)
given state(5) must be found at the vertices of polyhedron 3 2
formed byt;; (i#j;i,j=1,2,3). = 1/2

Proof. Wé know that the maximum points &belong to E(Kﬁ K,—Kj), M
the critical points ofS. For the critical points in the inner 3
region formed by (;,,t13,t53), from the Lemma we know (18)
that the value of such critical points must be less than some
values ofSon the boundary, so they cannot be the maximunmWe can also prove that the minimum $fis
points of S. For the same reason, if the critical point on the
boundary(except for verticels we can know that the value of
Son this point must be less th&on one of the vertices on
this boundary. Then, the maximum value ®must be only
found on the vertices of the region formed Ry(t;3,t53). Obviously one can easily find that for maximally entangled
In analogy with the above discussion, the minimum value ofstate| ¢>=(1/\/§)2i3|i>|i> (i.e., a;=1), we haveS,,=3(6

and

Then, we can know that the maximum valueSmust be

Kyt (4/3V3) (Kot Ks),  Apa=

max 2

4
Sminl 1) = = 5 (K1 +Ko 4 Ko). (19

Scan also be found on the vertices. +443) and Sy,;,=—4, which are the same as the results
To find out the maximun{minimum) value, we have to  gptained in Refs[4,6,10,17.
calculate the vertices of the polyhedron formedtQy For In Fig. 1, we give the comparison between the theoretical

convenience, we denof; as one of{ti,,ti3,to3f, T2 @S results and the numerical calculations obtained by multi-
one of {tiptistpg/{T,}, and Ty as one of random-search optimization method, which shows a perfect
{ti2,t13,t23/{T1,T}; where{}/{} means division of sets, agreementta) for S,.and(b) for S, in whicha, changes
nam9|y, if T12t121 then TZe{t121_tl31t23}/{t12}:{t137t23}1 in region [_\/§’\/§]’ a,= /(3_a21)8, and as
{ahnd So on. In the(:jfollkc))wmg_, we list t.?e.’ vertices formed by _ (3—aj)(1—¢) (0<e=<1). One can find some inflection
e maximum and submaximum of (it is enough, points in Fig. 1a), for example, at the poird; =1 whene
=0.5. These inflexion points are due to the discontinuous
change oK, the maximum value amorig,a,|,|a;as|, and
>
) for TiT2T5=>0, layag|, e.g., fore=0.5, K;=a,az=[(3—a3)/2] whena,
(13 <1, but whena;>1, Klzalazzal\/(S—azl)/Z. On the

|T||T||T|—(‘—1ii
( 1l 20 3)_ 3:3\/513\/5

022323-3



FU, CHEN, AND ZHAO

3.0

PHYSICAL REVIEW A68, 022323 (2003

0.00 017 034 051 068 085 102 119 136 153 1.70

ST, =R 1.0 P TP R TP SR NP BRI S S | 110
25 (8) / 0.9-. .-0.9
«=0.5 0.8 Lo.8
20 0.7 Loz
g 1 / / o.s- -0.6
015 X . -
15 e=0.9 0.5 Los
J U] ] L
0.4 4 04
1.0 ] I
0.3 4 0.3
05 O Numerical 1.0 024 L o2
’ —— Theoretical 1 -
‘l [L 0.1 Lo.1
0.0- ! N ! i ! ! ! ! * J 0.0 —T T T T =700
-1.5 -1.0 -0.5 0.0 0.5 1.0 15 000 0.17 034 051 068 085 102 119 136 153 1.70
a, la,]
0.0 = FIG. 2. The figure shows the states that violate the inequality for
] (b) ©  Numerical tritter measurements. The states in the shaded region violate the
0.5 Theoretical . .
| inequality.
1.0 . . .
J One sees that for this value the threshold amount of noise is
1.5 about F;,,=0.3139, which is the same as what has been
obtained in recent calculatiof§,10,17. So, this result gives
Wl another evidence for inequality).
25 On the other hand, we can also calculate the minimum
1 value of S;,, denoted asS,,,,
3.0
35 Smn=—4 for {|laji| |az].lasl}={1,115. (22
0. Then, we can know that
1.5 1.0 05 00 05 1.0 15

: : . 11
a, 0<S =1+ \/Z —4<8S,,,=0. (23

FIG. 1. (8. The maximal value of the inequality for tritter mea- bvi v, f . he left hand of | |
surementsS;,., for the state given by Ed5), wherea; changes in Obviously, for tritter measurements, the left hand of inequal-

region[ — 3,\3]; a,=\(3—ad)e; andas=(3—a2)(1—¢), O ity (4) would never be violated, and the right hf_;md only be
<e<1. The solid lines are theoretical results, circles are numericaY'OIated by some of pure states_. We can easily find the states
dates, the dotted line shows the maximal value predicted by th&hat violate the inequality for tritter measurements from for-
local realistic theory, and the dashed line marks the value of théhula (18). In Fig. 2, we show the states described by
maximally entangled stateg) The minimal value of the inequality, [a1,8,=+/(3—a%)e,az=+/(3—aj)(1—¢)], which violate
Shin - the inequality for tritter measurements. The states which vio-
late the inequality are in the shadow region; the states of

other hand, we can see from Fig(all that the maximally  which S,,,=2 are on the boundary of the shadow region; the
entangled states are not the states that give the maximal vigtates in other regions cannot violate the inequality for tritter
lation of the Bell inequality. measurements.

Considera; as variables; we can obtain the maximal value We should add here that some similar calculations as well

of Spax (denoted asS,,,), by calculating the extreme value as some equivalence results were obtained by Cer¢d@dia
of Eq. (18), and after some elaboration we get where the author compared some of the two-qutrit inequali-

ties and investigated them in detail.
_ 11
Smax: 1+ \/g’ (20)

IV. DISCUSSION

In the above discussion we only concentrate on tritter

when

{lasl.|az].lasl}

-

(21)

measurements which can be easily carried out for technology
used nowadaygl2]. By studying the BCHSH inequality of
two quitrits in detail, we give formulas of the maximum and
minimum values of this inequality, and obtain the states
which give the maximal violation of the BCHSH inequality.
The maximal violation we obtained is the same as Refs.
[6,10].
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Indeed, one should use general measurements to study the However, by employing tritter measurements, it can re-
problem of maximizing the Bell violation for a state, or in veal many important properties of Bell inequality of en-
other words, for some states the tritter measurements are ntaingled two qutrits. For instance, for the maximally en-
optimal. tangled state|y)=(1/y3)=3[i)|i) and the states that

So, some states do not violate the inequality using tritteimaximally violate the inequality, the tritter measurements are
measurements, but may violate the inequality when generaptimal, and based on such entangled qutrit pairs a crypto-
measurements are taken into acco{ihf]. For example, graphic protocol has been presented more recdSiyby
for the state withja;|=1.56 ande=0.5, S,5,=1.964 for  employing tritter measurements.
tritter measurements, which does not violate the inequality;
but if we employ the following measurements: ACKNOWLEDGMENTS
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