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Abstract
The Ginzburg–Landau theory, which was introduced to phenomenologically describe the
destruction of superconductivity by a magnetic field at the beginning, has brought up much
more knowledge beyond the original one as a mean-field theory of thermodynamics states.
There the complex order parameter plays an important role. Here we propose a macroscopic
theory to describe the features of ferroelectrics by a two-component complex order parameter
coupled to nonabelian gauge potentials that provide more freedom to reflect interplays between
different measurables. Within this theoretical framework, some recently discovered empirical
static and time-independent phenomena, such as vortex, anti-vortex, spiral orders can be
obtained as solutions for different gauge potentials. It is expected to bring in a new angle of view
with more elucidation than the traditional one that takes the polarization as order parameter.

Keywords: ferroelectrics, Gingzburg–Landau theory, electric polarization, spiral order,
vortex order, free energy, nonableian gauge field

(Some figures may appear in colour only in the online journal)

1. Introduction

The ferroelectric material is an insulating system with spon-
taneous polarization [1–4]. The polarity used to domin-
ate the field of ferroelectricity at the beginning [5, 6],
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however, its combination with more exotic features like vor-
tex, skyrmions, and domain walls [7–9] has now entered
the stage and substantially expanded the field of applic-
ations [10–12]. Especially, domain walls and their func-
tionalities, which have long been ignored, are speculated
to be valuable tools for memoristive devices [12, 13] and
be interesting for neuromorphic applications. In order to
construct new types of multifunctional devices, much of
the future progress courts on the delivery of improved
chemistries and microstructures [14, 15], and on bridging
the understanding of current atomistic and phenomenological
descriptions.
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The influence of electric and magnetic fields on the elec-
tric polar topological structures [7–10] has been aware both
in microscopic theories and experiments. Ab-initio calcula-
tion revealed that a cylindrical BaTiO3 nanowire embedded
in a SrTiO3 matrix exhibits a Bloch skymion structure [16].
The material GaV4S8 has both the ferroelectric and ferro-
magnetic orders below 44K, while the excess polarization
may show cycloidal or skymion structure, depending on the
external magnetic field and temperature. The experimental
observation is explained by the spin-driven mechanism [17].
The BiFeO3/GdScO3/BiFeO3 sandwich structure on TbScO3

substrate displays both the flux-closure and vortices topolo-
gical structure [18]. The vortex domain walls were discovered
in the PbTiO3/SrTiO3 superlattice which was explained as the
boundary effect [11]. Not only vortices exist in PbTiO3 layer
but also anti-vortices have been found in SrTiO3 [10, 11].

Phenomenological formalism often provides important
qualitative and reasonable quantitative results with an appro-
priate choice of the coefficients. Conventionally, the mac-
roscopic modeling of ferroelectric properties refers to the
Landau–Ginzburg–Devonshire theory [19–22]. In the conven-
tional literature, the interplay between polarization and mag-
netization is described by introducing terms of their product
in the free energy [23], while the interplay between struc-
tural, ferroelectric and magnetic defects is described by using
an expansion of the free energy in powers of the correspond-
ing order paramers and their gradients [24]. The traditional
approach that directly takes the polarization as order para-
meter captures less intrinsic characteristics because quantum
coherence that is related to phase of complex order parameter
was missing. Note that one is able to go beyond the stand-
ard thermodynamics by introducing a complex order para-
meter in the Ginzburg–Landau (GL) phenomenological the-
ory for superconductors [25]. Meanwhile, various exotic spin
orders [26, 27], such as conical spiral, in-plane spiral, hel-
ical, as well as the ferromagnetic orders can be unified as
different solutions of the Landau–Lifshitz equation with dif-
ferent nonabelian gauge potentials [28]. There the nonabelian
gauge potential plays the role of connection that defines a non-
trivial parallel transport resulting versatile scene frames. The
comprehensive role that nonabelian field played also includes
Rashba spin–orbit coupling in certain semiconductor [29] and
in cold atoms [30, 31]. Thus, whether the Landau’s U(1) order
parameter used to describe superconductors can be developed
further is an promising issue. It is thus worthwhile to set up
a phenomenological theory that provides a unified descrip-
tion for electric polarization orders. Here we show that two-
component order parameters give rise to a general macro-
scopic theory for ferroelectricity. The SU(2) gauge potentials
associated with the two-component order parameter are matrix
valued and characterized by twelve parameters. The interplay
between the electric polarization and other variables is natur-
ally reflected through the coupling between order parameters
and gauge potentials. It is expected to bring in a new angle
of view in phenomenological descriptions with more elucida-
tion. Some empirical static and time-independent phenomena
are featured through solutions of the theory.

2. Phenomenological theory with complex order
parameters

The most essential concept in phenomenological description
of dielectric media is themacroscopic electric polarization that
was regarded [32] as electric dipole moment per unit volume.
However, fallacies were encountered if it were defined by the
dipole of either a macroscopic sample or a unit cell of crys-
talline lattice divided by the corresponding volume. To avoid
this, in a modern theory [6, 33] of polarization (refers to the
electric polarization hereafter for simplicity), the change in
the polarization is shown to be related to a charge flow in
the interior of the sample during an adiabatic process [5, 33,
34]. By introducing a local polarization vector P= P(x,y,z)
in a continuum model, Landau’s symmetry-based formalism
of phase transition [20] was applied to systems with spatially
uniform polarization, which is called Landau–Devonshire the-
ory [19]. It is further developed to nonuniform case [21]
by taking account of the variations in the direction of the
polarization [6]. Conventionally, the free energy density is
written as

FLD = |∇P|2 −E ·P−α|P|2 +β|P|4 (1)

where E is the applied external electric field, and ∇ denotes
spatial derivative. Here the parametersα and β depend on tem-
perature and pressure.

Clearly, it is lack of some essential information in the free
energy (1) where the polarization vector P itself is regarded as
an order parameter. The polarization has nothing to do with the
periodic charge distribution of the polarized crystal because,
quantum mechanically, the charge distribution is related to the
modulus while the polarization is the property of the phase
of the electronic wavefunction [6]. Motivated by the complex
order parameter for superconductors where the electromag-
netic fields was naturally introduced via U(1) gauge transform-
ation, here we consider multi-component complex order para-
meters for ferroelectrics. As its micro-mechanism involves the
interplay between many degree of freedoms, such as spin,
charge, orbital as well as lattice dynamics, the macroscopic
theory in terms of multi-component order parameters is expec-
ted to reflect effects arising from their interplays automatically
and present a unified phenomenological description.

2.1. On complex order parameters

We consider a two-component order parameterΨ† = (ψ∗
1 ,ψ

∗
2 )

and the corresponding free energy density,

F =
1
2
|(∇i+κAi)Ψ|2 + λ2

2

(
|Ψ|2 − η2

)2
+ iΨ†Aa0τ

aΨ− 1
4

(
Faµν

)2
(2)

which is a multi-parameter generalization of Ginzburg–
Landau theory. Here the covariant derivative ∇i+κAi
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(i= 1,2,3) along the ith direction is defined by nonabelian
gauge potentials:

Aµ =
3∑

a=1

Aaµ τ
a, (µ= 0,1,2,3)

that are valued in the Lie algebra of SU(2) group. Here τ a

(a= 1,2,3) refer to the matrix bases of that Lie algebra [35]
satisfying [τ a, τ b] =−ϵabcτ c and hence Aµ =−A†

µ is anti-
hermitian and Aaµ is a real number. Here superscript a,b,c
labels the component in intrinsic space (i.e. Lie algebra space).
These nonabelian gauge potentials define the field strength
tensor [36],

Faµν = ∂µA
a
ν − ∂νA

a
µ −κϵabcAbµA

c
ν (3)

where εabc is the three-dimensional Levi-Civita tensor and
the Einstein abbreviation was adopted in the summation of
repeated indices hereafter. Note that the nonlinear term of
gauge potential in (3) is absent in abelian case. The last term
in the free energy density (2) arises from such a strength
tensor (3). The third term in equation (2) represents the con-
tribution of the interaction between the polarization field and
an external electric field, that implies Aa0 ∼ Ea. For simpli-
city in expression, hereafter we choose the unit of the gauge
potential so that the coupling strength κ= 1. In this paper,
we mainly consider the spontaneous symmetry breaking term
U(|Ψ|) = 1

2λ
2(|Ψ|2 − η2)2 in the free energy (2) at very low

temperature. Higher order terms become not neglectable near
the critical temperature. Here η ̸= 0 for ferroelectric and λ is
related to dielectric constant when η= 0.

The two-component complex order parameter Ψ defines
a spatially dependent physical quantity P= (P1,P2,P3), the
polarization vector field, through the following formula

Pa =Ψ†σaΨ (4)

where σa is the conventional Pauli matrix that provides a
realization of the generators of SU(2), i.e. τ a = iσa/2. This
vector (4) is invariant under the U(1) gauge transformation.
Clearly, the free energy (2) satisfies local SU(2) gauge invari-
ance. Whereas, the expression (4) is not necessarily gauge
invariant since the polarization vectorP changes its direction if
the coordinate frame rotates. The compatibility is guaranteed
by the homomorphism between the SU(2) unitary transform-
ation and SO(3) rotation.

The gauge potential that defines the covariant derivative
can reflect the effects of electric, magnetic as well as certain
intrinsic features arising from chemistries and microstructure
of certain material. Conventionally, the ferroelectricity used
to be described as the result of relative shifts of negative and
positive ions that induce surface charges, the concrete concepts
of charges are not necessary in present formalism. Moreover,
more intrinsic features can be reflected in terms of multi-
component order parameters. Let us analyze the internal sym-
metries hidden in the order parameters we introduced. Since
the charge conjugation will transform the polarization vector

P into −P, which corresponds to a π/2 rotation of the spinor
Ψ, our order parameter transforms as(

ψ1

ψ2

)
→

(
−ψ∗

2
ψ∗
1

)
under charge conjugation. Such transformation can be repres-
ented via operator−iσ2Ĉwith Ĉ standing for complex conjug-
ation and σ2 the y-component Pauli matrix. One can perceive
that the order parameters here define a charge complex plane
that characterizes more implications than the naive picture of
density of positive or negative charge distributions. The inde-
pendence of the choice of bases of the complex plane naturally
implies the existence of SU(2) gauge potential.

2.2. Implications of gauge potentials

We turn to investigate what is naturally implied in the SU(2)
gauge potentials. It will be helpful to observe the force that
a moving electric dipole undergoes in electric and magnetic
fields, E and B. A dipole d= (d1,d2,d3) at r can be regarded
as a positive charge +q at r+ ℓ/2 and a negative charge −q
at r− ℓ/2 such that d= lim

ℓ→0
qℓ. Let v denote the velocity of

the center of the dipole, the velocities of the positive and the
negative charges are v+ ℓ̇/2 and v− ℓ̇/2, respectively. Here
the overhead dot denotes the time derivative. Expanding the
Lorentz forces acting on these two charges, neglecting the
higher orders (in the limit of ℓ→ 0) and noticing that a mov-
ing dipole will experience a torque [37] in electromagnetic

fields, ḋ= d× (E+
v
c
×B), we obtain the total force, f , that

the dipole feels

f= (d ·∇)E+
v
c
× [∇× (B× d)]

+B×
[
(E+

v
c
×B)× d

]
. (5)

This exhibits that the force formula includes nonlinear terms
of electromagnetic fields. Such an esoteric feature is naturally
reflected in the two-component Ginzburg–Landau formalism
with the SU(2) gauge field, in which the force formula is given
by

fi = JaµF
a
µi (6)

and the nonabelian field strength tensor (3) contains quad-
ratic terms bringing in nonlinear terms automatically. Here
Jaµ denotes the dipole four-current in space-time xµ = (x0,r),
x0 = ct. For amoving dipole, the temporal component Ja0 refers
to the dipole moment da and the spatial component Jai to the
dipole current davi/c.

The polarization field P describing a moving single dipole
reads P(r, t) = d(t)δ(r− r̃(t)) with r̃(t) being its trajectory.
Because the dipole can be regarded as a positive charge +q at
r+ ℓ/2 and a negative charge −q at r− ℓ/2, the electric cur-
rent produced by those two charges gives rise to j= lim

ℓ→0
qℓ̇=

ḋ= d× (E+
v
c
×B). The interaction terms contributed by the

first term and the third term in the free energy (2) are JaµA
a
µ,

3
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which is in agreement with the case of a moving dipole [37],

d · (E+
v
c
×B). Then we perceive that the local fields Aa0 and

Aai represent, respectively, Ea and ϵaijBj for such a particular
case at least.

Since in the Maxwell equation we have

∇×B− 1
c
∂E
∂t

=
4π
c
j (7)

which is consistent with the following gauge condition for the
SU(2) gauge potential

∂µAaµ =−4π
c
ja (8)

where we adopted the conventional metric of Bjorken
and Drell, gµν = diag(1,−1,−1,−1). Clearly, the so-called
Lorentz gauge ∂µAaµ = 0 corresponds to the case of vanishing
current j= 0. Note that, only Aa0 stands for electric field Ea
while Aai can be more general than ϵaijBj, the aforementioned
particular case. Actually there are additional six parameters in
Aaµ, namely,

A⃗x = (g1, b3 −Bz, b2 +By)

A⃗y = (b3 +Bz, g2, b1 −Bx)

A⃗z = (b2 −By, b1 +Bx, g3)

A⃗0 = (Ex,Ey,Ez) (9)

where B’s and E’s also obey the other three of Maxwell
equations,

∇·B= 0,

∇×E+
1
c
∂B
∂t

= 0,

∇·E= 4πρ (10)

where ρ includes contributions from both free and bound
charges. In other words, the SU(2) gauge potentials expressed
by equation (9) with constants b’s and g’s together with func-
tions B(r) and E(r) fulfil the Lorentz gauge condition (8).

3. Some solutions of the theory

As applications of the above nonabelian GL formalism, let
us investigate electric polarization in response to the SU(2)
temporal and spatial components, successively, i.e. the case
A0 ̸= 0, Ai = 0 and then the case A0 = 0, Ai ̸= 0.

3.1. Electric ferroelectrics

We have shown in the previous section that the effect of
electric fields is characterized by the temporal component of
SU(2) gauge potentialA0 = 2Eaτ a. In this caseA0 ̸= 0, while
Ai = 0, the covariant derivatives reduce to the conventional
derivatives in flat space and the free energy density then reads

F =
1
2
|∇Ψ|2 + λ2

2
(|Ψ|2− η2)2−EaΨ

†σaΨ− 2(∇Ea)2

(11)

in which the third term corresponds to −E ·P in agreement
with the electromagnetism theory. Let us consider some typ-
ical electric fields that can be easily produced in experiment.
The simplest case is a uniform electric field which we will
revisit later on. In order to observe the effect caused by the
kinetic term in the free energy (11), we need consider nonuni-
form electric field. First example is the electric field produced
by a charged line perpendicular to the x–y plane

E=
γ

x2 + y2
(xex+ yey) (12)

where γ is a constant and ex and ey denote the unit vector along
x- and y-axis respectively. This is the case A⃗i = 0 and A⃗0 =
γ/(x2 + y2)(x,y,0). By minimizing the free energy (11), we
find the polarization far away from the origin to be

P= (±η2 cosθ,±η2 sinθ,0)

where the plus and minus sign corresponds to γ > 0 and γ < 0
respectively. Here θ denotes the azimuthal angle.

Another example is a curling electric field produced by
applying alternative electric current in a thin solenoid placed
in perpendicular to the x–y plane,

E=
γ

x2 + y2
(−yex+ xey) (13)

which means A⃗i = 0 and A⃗0 = γ/(x2 + y2)(−y,x,0). The
polarization far away from the origin is solved as

P= (η2 cos(θ±π/2) ,η2 sin(θ±π/2) ,0).

Again, here the plus or minus sign takes for γ > 0 or γ < 0,
respectively. Figure 1 illustrates the aforementioned two solu-
tions for the distribution of polarization in a round sample. The
detailed derivations are given in the appendix.

3.2. Magnetic ferroelectrics

As we shown in previous section, the magnetic field is related
to the spatial component Ai of the gauge potential. This is
the case of A0 = 0 but Ai ̸= 0, thus the free energy density
is expressed as

F =
1
2
|(∇i+Aai τ

a)Ψ|2 + λ2

2
(|Ψ|2− η2)2 − 1

4
(F a

µν)
2.

(14)

Let us consider several typical magnetic fields. One is themag-
netic field produced by a pairs of opposed Helmholz coils
which was also applied to trap cold atoms.

B= γ(xex+ yey− 2zez).

The magnitude of such field is given by B= γ(x2 + y2 +
4z2)1/2. The corresponding SU(2) gauge potentials are A⃗x =
γ(0,2z,y), A⃗y = γ(−2z,0,−x), A⃗z = γ(−y,x,0), and A⃗0 = 0.
Considering a square-shaped sample in the x–y plane, we
numerically solve the order parameter Ψ(x,y) by minimizing

4
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Figure 1. Schematic illustration of analytical solutions far away
from the origin in response to (a) E= γ(x/(x2 + y2),y/(x2 + y2))
and (b) E= γ(−y/(x2 + y2),x/(x2 + y2)) where the arrows indicate
the directions of P. The helicity of the latter vortex is one while that
of the former is zero.

the free energy (see the appendix for details). Figure 2 exhib-
its the resulting distribution of polarization P, in which the x-
and y-components are plotted out while the z-component is
approximately zero everywhere. We can see that the configur-
ation of polarization field forms an anti-vortex crystal where
one of them is marked by red dash-line circle. The polar anti-
vortex has been experimentally created in PbTiO3/SrTiO3
superlattice recently [11]. Conceptionally, vorticity is a quant-
ity that characterizes topology properties of any vector field
around its singularity point. If the direction of the vec-
tor changes and accumulates precisely a 2π variation after
observing it along a directed close curve around the singularity
point, it is named as a vortex. Instead, if it accumulates in the
opposite direction, saying−2π, it is then named as anti-vortex.
Vortices are further specified by another quantity called heli-
city which is evaluated by the line-integral of the vector field
along a directed close curve. It can be either negative or posit-
ive depending on its curling clockwise or anti-clockwise; and
is zero in case of no curling. For anti-vortex, however, its heli-
city is always zero.

The second one is a in-plane magnetic field

B= γ(xex− yey)

with magnitude B= γ(x2 + y2)1/2. The corresponding SU(2)
gauge potentials read A⃗x = γ(0,0,−y), A⃗y = γ(0,0,−x), A⃗z =
γ(y,x,0), and A⃗0 = 0. We numerically solve the distribution
of P and plot the result in figure 3. Again, Pz is found to be
approximately zero everywhere. One can see the formation of
strip-like pattern, namely, there are four arc-type strips cen-
tering at four corners of the sample, respectively. In the figure,
two red dash-line arrows indicate the track of spiral orders:
along top one the P rotates clockwise while along the bottom
one it rotates anti-clockwise.

Clearly, the curl of the above two magnetic fields vanishes.
An example of magnetic field with non-vanishing curl reads,

B= γ(−yex+ xey)

which satisfies the gauge condition (8) with j3/c= γ/2π.
The corresponding SU(2) gauge potentials are expressed

Figure 2. Numerical solution of polarization in response to
magnetic field produced by a pairs of opposed Helmholz coils. The
black arrows show the distribution of P that forms a anti-vortex
crystal. The red dash-line circle marks one of the anti-vortices. The
parameters are λ= 3, η= 1, h= 0.12 and N= 100.

Figure 3. The polarization distribution with in-plane magnetic field
solved numerically with parameters λ= 4, η= 1, h= 0.12 and
N= 100. The red dash-line arrows show the track of the spiral
orders, where the P rotates clockwise and anti-clockwise,
respectively along top and bottom lines.

as A⃗x = γ(0,0,x), A⃗y = γ(0,0,y), A⃗z = γ(−x,−y,0), and
A⃗0 = 0. The numerical solution in this case gives us the dis-
tribution of P as shown in figure 4. There a bob of nearly
parallel polarizations appear in a domain at the center of

5
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Figure 4. Numerical solution of the polarization distribution in the
presence of magnetic field with non-vanishing curl. The red
dash-line arrow shows a whirling track of spiral orders. The
parameter choices are λ= 4, η= 1, h= 0.12 and N= 100.

the sample, and away from the domain, the polarization vec-
tors change their directions gradually forming certain pattern.
Such pattern contains a spatial spiral (marked by red dash-line
arrow) tipping from the domain wall of the bob and whirling
anti-clockwise.

4. More solutions for constant gauge potentials

A constant gauge potential is meaningless in abelian case,
however, it becomes meaningful in nonablelian case. In the
following, we exhibit two typical cases.

4.1. Spiral-type solutions

Let us consider A⃗x = (0,0,b2), A⃗z = (b2,0,0) and A⃗y = A⃗0 =
0, i.e.Ax = b2τ 3,Az = b2τ 1, andAy =A0 = 0. This implies a
non-vanishing strength tensor, F y

xz =−F y
zx =−b22. The free

energy density (2) then becomes,

F =
1
2
|(∇x+ b2τ

3)Ψ|2 + 1
2
|∇yΨ|2 + b22

2
|τ 1Ψ|2

+
λ2

2
(|Ψ|2 − η2)2 − 1

2
b42. (15)

As focusing on two-dimensional solutions merely, we treat the
order parameter Ψ as independent of spatial variable z, i.e.
∇zΨ= 0 and take z= 0 if it appears in the gauge potential.
Now we have a solution

Ψ=
C√
2

(
e−ib2x/2

eib2x/2

)

Figure 5. Schematic illustration of analytical solution for the
polarization distribution where arrows represent the polarization
direction. (a) The spiral-type solution for Ax = b2τ

3, Az = b2τ
1.

(b) Vortex-like solution for Ax = 2gτ 1, Ay = 2gτ 2, which is
obtained for a round sample of radius R in which the small blank
area refers to the vortex core with vanishing polarization.

with coefficient C=
√
η2 − (b2/λ)2/4 that minimizes the

above free energy (15). This solution gives rise to the follow-
ing polarization of spiral-type orders along x-axis:

P1 = Ccos(b2x),

P2 = Csin(b2x),

uniforming along y-axis. Figure 5(a) shows this solution in the
region between x= 0 and x= 2π/b2 schematically.

4.2. Vortex-like solutions

We consider further case g1 = g2 = 2g, i.e. Ax = 2gτ 1, Ay =
2gτ 2, and Az =A0 = 0, of which the non-vanishing field
strength tensor isF z

xy =−F z
yx =−4g2. The free energy dens-

ity (2) is then given by

F =
1
2

∑
i=1,2

∣∣(∇i+ 2gτ i
)
Ψ
∣∣2 + λ2

2
(|Ψ|2 − η2)2 − 8g4. (16)

The sample is supposed to be a round disc of radius R in the
x–y plane. Minimizing the above free energy under the homo-
geneous approximation (i.e. Ψ is regarded as constant), we
get |P|= η2 − g2/λ2. Clearly, the module of the polarization
depends on the strength g of the field, being nonzero only for
η2 > g2/λ2. To include the spatial variation of the polariza-
tion, we propose a ‘trial wavefunction’ with the order para-
meters being Ψ=

(
a1eiθn1+iϕ,a2eiθn2

)T
where the superscript

T denotes matrix transpose. Here n1 and n2 are integers; a1
and a2 are functions of the radial coordinate r. Substituting the
aforementioned form ofΨ into equation (16) and then minim-
izing the free energy (16), we obtain a solution for the order
parameter Ψ (see the detailed derivation in appendix). This
solution gives rise to the distribution of polarization: P3 = 0,
and the in-plane components,

P1 = (η2 − g2/λ2)cos(θ−π/2),

P2 = (η2 − g2/λ2)sin(θ−π/2),

for r> ξ; but P1 = P2 = 0 for r< ξ. This is a polar vortex
with a vortex core of radius ξ and is exhibited schematically in

6
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figure 5(b). Here ξ is obtained by minimizing ∆F = π(η2 −
g2/λ2)

[
(λ2η2 − g2)ξ2/2− g2(R− ξ)2/ ln(R/ξ)

]
, where ∆F

is the free energy difference between the vortex solution
and the homogeneous solution. The result ∆F < 0 means
that the system always favors a vortex. Recently, the coex-
istence of polar vortices with certain complex-phase and
their response under applied electric fields in superlattices of
(PbTiO3)n/(SrTiO3)n have indeed been observed [7].

5. Revisit thermodynamics

To revisit thermodynamics, we take uniform order parameter
(i.e. ∇iΨ= 0) and electric field E in the free energy (2).
Clearly, the dielectric material corresponds to the special
case η= 0, of which the free energy reads F = 1

2λ
2|Ψ|4 −

E ·Ψ†σΨ giving rise to P= 2/λ2E. This means 8π/λ2 =
ε− 1 with ε being the dielectric constant of isotropic medium.
One can also take account of the spatial components in
equation (9), saying b2 ̸= 0 (for Gauss unit b2 = 1/

√
4π). For

simplicity, choosing the direction of electric field as x-axis
that implies A⃗0 = (E,0,0), one obtain from the definition (3)
non-vanishing strength tensors F y

0x =−F y
x0 = E/

√
4π and

F y
xz =−F y

zx =−(4π)−1. Then the free energy (2) becomes

F = F0 −EΨ†σxΨ− 1
8π

E2 (17)

where the zero field terms

F0 = U(|Ψ|)+ 1
8π

(
|τ 3Ψ|2 + |τ 1Ψ|2 + 1

π

)
are the uniform case of equation (15). Then the electric dis-
placement D= E+ 4πP can be derived via the well known
thermodynamics relation

D=−4π

(
∂F
∂E

)
T

.

Since we focused on very low temperature T≪ T0 in study-
ing those solutions in the above, we had taken coefficient of
Landau’s temperature expansion a0(T−T0) simply as −η2λ2
and had not taken account of higher order terms of elec-
tric polarization. To describe the so-called proper ferroelectric
more precisely at finite temperature, particularly, closing to the
transition temperature, higher order terms in U(|Ψ|) become
necessary.

Furthermore, if extending present theoretical frame to
SU(2)× SU(2) by an additional order parameter

Ψ′ =

(
η1
η2

)
where η1 and η2 are complex functions in general, we will nat-
urally have the following free energy for improper ferroelectric

F ′ =a(T−Tc)Ψ
′†Ψ ′ +B(Ψ ′†Ψ ′)2 +CijP

′
i Pj

+
λ2

2
P2 −E ·P− 1

8π
E2 (18)

where P was defined by equation (4) and P ′ =Ψ ′†σΨ ′

namely, P ′
x = η∗1η2 + η∗2η1, P

′
y = i(η∗2η1 − η∗1η2), P

′
z = η∗1η1 −

η∗2η2. The expression in reference [32] corresponds to Czx =
−Cxy = C1, Czy = Cxx = C2 with restriction of real order para-
meter that implies P ′

y = 0.

6. Discussion and outlook

Ferroelectricity [2] can be defined as the electric analog of
ferromagnetism [32], of which the fundamental criterion is
the existence of hysteresis, i.e. the static electric displacement
depends not only on the applied electric field but also on the
past history of the material. The traditional theory is based on
the free energy of equation (1) that is a function of variable
P, FLD = F(P) and its variational derivative δFLD/δP= 0
gives rise toE=−2αP+ 4βP3. Introducing a two-component
order parameterΨ, we proposed a macroscopic phenomenolo-
gical theory for ferroelectricity in the spirit of GL formalism
for superconductors. Since the free energy in our theory is a
functional of the complex order parameter, i.e.F = F(Ψ,Ψ†),
and the electric polarization is defined as quadratic form of
the order parameter, there is always remanent polarization as
long as η ̸= 0. Additionally, such an order parameter defines
a charge complex plane and the independence of the choice
of the bases naturally implies the existence of a SU(2) gauge
potential. The nonabelian feature of SU(2) then automatically
involves the interplays between several degree of freedoms.
Considering the presence of either temporal or spatial com-
ponent of the gauge potential, we obtained several solutions
in the theory, of which some have been created in experiments
[7, 11]. It will be also interesting to apply our theory to under-
stand the recently observed polar skyrmions [8] or to search
more possible exotic polarization topologies [9].

The research enthusiasm on multiferroics, the phenom-
ena that magnetism and ferroelectricity coexist in certain
solids [38–41], is driven by the prospect of controlling charges
by applied magnetic fields [42, 43] and spins by applied
voltages [44]. To directly extend the Landau-Devonshire
theory to describe multiferroics, one has to add, by hand,
the coupling between magnetization and polarization vectors
[23, 41]. Note that a spin SU(2) together with the charge
U(1) was considered [45] in a theoretical understanding of the
fractional quantum Hall effects, and later considered [46] in
exploring spin superfluidity. To include magnetic orders [47],
this might cue us to extend the present formalism to high-
rank groups, saying SUpolar(2)× SUspin(2). Whereas, there is
another passage for the same purpose. Actually, the nona-
belian gauge potential Aaµ in present macroscopic theory
implies more degree of freedoms. The SU(2) gauge potential
contains totally twelve parameters while the U(1) gauge con-
tains four only. In a novel decomposition [48] of the SU(2)
gauge potential that A3

µ was considered as a U(1) gauge field
and A±

µ = A1
µ ± iA2

µ as vector field, the author formulated a
nonlinear sigma-model with unit vector m(r) which is an
example of baby Skyrme model [49]. This may be a possible
clue to formulate a macroscopic theory for spin originated [47]
polarizations in the future.
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Appendix A. Formulae for numerical solutions

For the purpose of numerical calculations, we introduce virtual
time t acting as a relaxation parameter. For the total free energy

F=

ˆ
Fd3r (A1)

which is the functional integrand of the order parameters
Ψ, Ψ† and gauge potentials Aaµ. The variational principle,
∂Ψ/∂t=−δF/δΨ†, together with ∂Aaµ/∂t=−δF/δAaµ give
rise to the following equations of motion,( ∂

∂t
+ iAa0τ

a
)
Ψ= λ2(η2 − |Ψ|2)Ψ+

1
2
(∂i+Aai τ

a)
2
Ψ,

∂

∂t
Aaµ =

(
∂νF

a
µν − ϵabcAbνF

c
µν

)
+ Jaµ (A2)

where the polarization four-currents are given by

Ja0 =Ψ†τ aΨ,

Jai =
1
2

[
(∂iΨ)†τ aΨ−Ψ†τ a∂iΨ

]
+

1
4
|Ψ|2Aai . (A3)

In deriving the above results, we used the fact that (τ a)† =
−τ a. The time evolution equation (A2) are very useful for
searching a steady solution numerically from a proper trial
‘initial’ order parameter. The second term in above equation
can be regarded as the analogy of London equation in the GL
phenomenology theory for superconductors.

In our numerical calculation, we consider a two-
dimensional sample located in the x–y plane and hence take
∂zΨ= 0 and z= 0 when evaluating the free energy. The gauge
potential Aaµ(x,y) which is determined by the external elec-

tric and magnetic fields, is fixed in this paper, i.e. we set
∂Aaµ/∂t= 0 in the virtual-time evolution. Discretizing the x–y
plane into a square lattice of edge Nh for lattice constant h
and a large integer N (e.g. N= 100), we numerically solve
the first one of equation (A2) till a large enough t so that
|∂Ψ/∂t|2 is below a threshold magnitude ε which is set in
advance. We choose a small ε, hence, Ψ at the end of evol-
ution is a good approximation of its steady solution, i.e. the
minimum point of

´
Fdxdy. Different initial Ψ’s have been

also tested to guarantee that what we obtain is the global
minimum.

Appendix B. Derivations for analytical solutions

In the following, we give our derivations on several analyt-
ical solutions in detail. Two situations, (a)A0 ̸= 0,Ai = 0 and
(b) Ai ̸= 0 while A0 = 0 are investigated successively.

B.1. The case A0 ̸= 0 while Ai = 0

In this case, the free energy is expressed as

F =

ˆ
d3r

∑
i=1,2

1
2
| ∇iΨ |2 +U(|Ψ|2)−EaΨ†σaΨ

 . (B1)

B.1.1. Electric field produced by a charged line. We first
consider an external electric field given in equation (12)
that can be produced by a charged line perpendicular to the
x–y plane. As the external field is of axial symmetric, we
employ the polar coordinates (r,θ) and consider the sample to
be a round disc in the two-dimensional plane with the center
being at the origin. In general, it will be a hard task to minim-
ize the free energy (B1) for a two-component complex order
parameterΨ. As a crucial step, we consider it be of axial sym-
metric by assuming the following form

Ψ=

(
a1(r)e

in1θ+iϕ

a2(r)e
in2θ

)
(B2)

where r and θ denote the radial coordinate and the azimuthal
angle, respectively, and a1(r) and a2(r) are real functions to be
determined. Here n1 and n2 must be integers so that the Ψ is
single-valued at every point, and ϕ (0⩽ ϕ < 2π) is a constant
that refers the phase difference between the two components
of Ψ. The ansatz (B2) greatly simplifies our problem of min-
imizing the free energy F , meanwhile keeping the possibility
of expressing abundant topological structures in the polariza-
tion distribution.

In terms of the expression (B2), the polarization is given by

P1 = 2a1a2 cos [(n2 − n1)θ−ϕ] ,

P2 = 2a1a2 sin [(n2 − n1)θ−ϕ] ,

P3 = a21 − a22, (B3)

8
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and the free energy turns to be

F(n1,n2) =
1
2

ˆ R

0
drr
ˆ 2π

0
dθ
[
ȧ21 + ȧ22

+
1
r2

(
n21a

2
1 + n22a

2
2

)
+λ2

(
a21 + a22 − η2

)2
− 4γ

a1a2
r

cos [θ (n2 − n1 − 1)−ϕ]
]
,

(B4)

where the overhead dot denotes derivative with respect to r
for simplicity in expression, i.e. ȧ1 = da1/dr and ȧ2 = da2/dr.
Clearly, we need to discuss the cases of n2 − n1 = 1 and
n2 − n1 ̸= 1 separately. For n2 − n1 ̸= 1, the integrand of the
last term in equation (B4) taken over θ vanishes. It is straight
forward that F(n1,n2) takes its minimum when n1 = n2 = 0.
Thus F(0,0) is nonnegative and takes its minimum value
F(0,0) = 0 if and only if a21 + a22 = η2 with a1 and a2 being
constants (i.e. ȧ1 = ȧ2 = 0).When n2 − n1 = 1, the free energy
can be negative due to the contribution from the last term in
equation (B4). In this case, the free energy reads

F(n1) = π

ˆ R

0
drr

[
ȧ21 + ȧ22 +

1
r2

(
n21a

2
1 +(n1 + 1)2a22

)
+λ2

(
a21 + a22 − η2

)2 − 4γ cosϕ
a1a2
r

]
.

(B5)

Thus either n1 = 0 or n1 =−1minimizes the free energy (B5).
Consequently, one component ofΨ has a constant phase, while
the other’s phase shifts by 2π once a circle. The contribution
from the third term of equation (B5) can be neglected at large
r since it decays much faster than the γ-term due to the factor
1/r2. TominimizeF , we obviously need to take ȧ1, ȧ2 → 0 and
a21 + a22 → η2 in the limit r→∞. If the radius R of the sample
is large enough, the first three terms in equation (B5) can then
be neglected and the fourth term should equal to zero. It is
then easy to see that a1 = a2 = η/

√
2 and ϕ= 0 (if γ > 0) or

ϕ= π (if γ < 0) minimize F . Thus the free energy F(n1,n1 +
1)≈−2πR |γ|η2 is negative. Recalling that the minimum free
energy for the case n2 − n1 ̸= 1 is zero, we conclude that the
solution with n2 = n1 + 1 is more favorite in free energy. This
solution gives rise to the following polarization

P1 =±η2 cosθ,
P2 =±η2 sinθ,
P3 = 0, (B6)

where the sign ‘ + ’ and ‘− ’ hold for γ > 0 and γ < 0 respect-
ively. It is worthwhile to mention that the above expression
of polarization is correct only for the place far away from the
origin. We do not analyze how the polarization changes when
one goes close to the origin.

B.1.2. Curling electric field. For a curling electric field given
in equation (13) that can be produced by applying alternative
electric current in a thin solenoid placed in perpendicular to

the x–y plane, we take the same Ψ ansatz of (B2) and obtain
the free energy as follows

F =
1
2

ˆ R

0
drr
ˆ 2π

0
dθ

[
ȧ21 + ȧ22 +

1
r2

(
n21a

2
1 + n22a

2
2

)
+λ2

(
a21 + a22 − η2

)2 − 4γ
a1a2
r

× sin [θ (n2 − n1 − 1)−ϕ]

]
.

(B7)

The minimum point of the above free energy solves n2 = n1 +
1, a1 = a2 = η/

√
2 and either ϕ=−π/2 (if γ > 0) or ϕ= π/2

(if γ < 0). This solution gives rise to the following polarization

P1 = η2 cos(θ±π/2) ,

P2 = η2 sin(θ±π/2) ,

P3 = 0,

(B8)

in which one takes ‘ + ’ or ‘− ’ depending on γ > 0 or γ < 0.

B.2. The case Ai ̸= 0 while A0 = 0

For the second case Ai ̸= 0 while A0 = 0, we consider the
gauge field to be A1 = 2gτ 1, A2 = 2gτ 2 and A3 = 0 where
g is a constant. Let us focus on the case of g2 < η2λ2, in which
there exists a nonzero Ψ. The gauge field is now a constant
and the sample is assumed to be round-shaped, thus the solu-
tionΨ possesses axial symmetry and is still considered to take
the ansatz form of equation (B2). The covariant derivative in
the polar coordinates is now evaluated as

|D1Ψ|2 + |D2Ψ|2

= ȧ21 + ȧ22 +
1
r2

(
n21a

2
1 + n22a

2
2

)
+ 2g2

(
a21 + a22

)
+ 2gsin [(n1 − n2 + 1)θ+ϕ]

×
(
a2ȧ1 − a1ȧ2 −

a1a2
r

(n1 + n2)
)
. (B9)

The integral over the polar coordinates is expressed as´ 2π
0 dθ

´ R
0 drr where R is the radius of the sample. The free

energy needs to be discussed for the cases of n2 − n1 = 1 and
n2 − n1 ̸= 1 separately.

When n2 − n1 ̸= 1, the integrand of the last term of
equation (B9) with respect to θ vanishes and the free energy
becomes

F(n1,n2) = π

ˆ R

0
drr

[
ȧ21 + ȧ22 +

1
r2

(
n21a

2
1 + n22a

2
2

)
+
(
2g2 − 2λ2η2

)(
a21 + a22

)
+λ2

(
a21 + a22

)2]
.

(B10)

Since
(
n21a

2
1 + n22a

2
2

)
/r2 is always nonnegative,F(n1,n2)must

take its minimum at n1 = n2 = 0. It is straight forward to see
that the minimization of equation (B10) leads to ȧ1 = ȧ2 = 0
(i.e. a1 and a2 are constants) and |Ψ|2 = a21 + a22 = η2 − g2/λ2

9
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since g2 < η2λ2. Thus the minimum value of the free energy
is

F(0,0) = πR2−λ2

2

(
η2 − g2/λ2

)2
(B11)

where πR2 is the area of the sample. In fact, n1 = n2 = 0 cor-
responds to a uniform polarization without vortex.

When n2 − n1 = 1, the free energy becomes

F(n1,n1 + 1)

= π

ˆ R

0
drr

[
ȧ21 + ȧ22 +

(
2g2 − 2λ2η2

)(
a21 + a22

)
+λ2

(
a21 + a22

)2
+

1
r2

(
n21a

2
1 +(n1 + 1)2 a22

)
+ 2gsinϕ

(
a2ȧ1 − a1ȧ2 −

a1a2
r

(2n1 + 1)
)]
. (B12)

As will be shown, the last term is negative, leading to
F(n1,n1 + 1)< F(0,0). Therefore, n2 = n1 + 1 is indeed the
global minimum point.

It is obvious that a1,a2 → 0 in the limit r→ 0, otherwise,
the integral in equation (B12) would be divergent. The vari-
ational principle δF = 0 gives rise to second order differential
equations:

d2a1
dr2

=

[
n21
r2

+ 2g2 − 2λ2η2 + 2λ2
(
a21 + a22

)]
a1

− 1
r
da1
dr

+ gsinϕ

[
−2

da2
dr

− 2n1 + 2
r

a2

]
,

d2a2
dr2

=

[
(n1 + 1)2

r2
+ 2g2 − 2λ2η2 + 2λ2

(
a21 + a22

)]
a2

− 1
r
da2
dr

+ gsinϕ

[
2
da1
dr

− 2n1
r
a1

]
.

(B13)

On the one hand, in the limit r→ 0, we assume a1 ∝ rα1 and
a2 ∝ rα2 and substitute them into equation (B13). Here only
the leading terms on both sides of equation (B13) are kept (e.g.
in the presence of rα1−2 term, rα1 and rα1−1 can be neglected
because they tend to zeromuch faster). By comparing the lead-
ing terms in the left- and right-hand sides of the equation,
we find α1 = |n1| and α2 = |n1 + 1|. On the other hand, in
the region far away from the origin (in the limit r→∞), the
terms with the factor 1/r2 or 1/r in equations (B12) and (B13)
can be neglected. It is then reasonable to assume ȧ1, ȧ2 → 0
that means the order parameter distributes uniformly in the
bulk except slight variations merely at the vicinity of the ori-
gin. To minimize the free energy far away from the origin,
we need to let a21 + a22 = η2 − g2/λ2 with a1 and a2 being
constants. Without loss of generality, we set a1(r→∞) =
cosχ

√
η2 − g2/λ2 and a2(r→∞) = sinχ

√
η2 − g2/λ2 with

χ being a tunable parameter. All together, a1 (or a2) should

approach to rα1 (or rα2) in the limit r→ 0 and approach to a
constant in the limit r→∞. We thus assume

a1 =
(
1− e−(

r
ξ )

α1
)√

η2 − g2/λ2 cosχ,

a2 =
(
1− e−(

r
ξ )

α2
)√

η2 − g2/λ2 sinχ,
(B14)

where ξ is a tunable parameter referring to the radius of the
vortex core.

Substituting equation (B14) into equation (B12), we are
able to calculate the free energy and conveniently consider
∆F = F(n1,n1 + 1)−F(0,0) that is the free energy differ-
ence between the vortex solution and the uniform solution.
Clearly, the system favors a vortex solution if ∆F < 0 while
it favors a uniform polarization if ∆F > 0. According to
equation (B12), ∆F is an integral with respect to r and the
integrand contains several terms. Some of them decay expo-

nentially (∼ e−(
r
ξ )

α1,2

), thereafter, the integral
´ R
0 dr can be

replaced by
´∞
0 dr as if R is larger than several times of ξ. We

will show later that such a condition ξ/R≪ 1 is indeed sat-
isfied. The other terms either decay much slowly (∼ 1/r) or
do not decay at all. The integrand of these terms are propor-
tional to lnR or R, respectively. Note that the last term in the
integrand gives rise to −2gsinϕa1a2(2n1 + 1), therefore, n1
here should be a large integer so as to minimize ∆F . It will
be shown that the value of n1 indeed satisfies n1 ≫ 1 when the
sample’s radius R is large enough. Under these two conditions
(i.e. n1 ≫ 1 and R≫ ξ), we obtain

∆F =π
(
η2 − g2/λ2

)[n1
4
+

sin2χ
4

+
(
λ2η2 − g2

) ξ2
2

+ n21 cos
2χ

(
ln
R
ξ
+
C− ln2
n1

)
+(n1 + 1)2 sin2χ

(
ln
R
ξ
+
C− ln2
n1 + 1

)
− 2gsinϕsinχcosχ(2n1 + 1)(R− ξ)

]
(B15)

where C= 0.577 . . . is the Euler constant. In the cal-
culation, we have used α1 = n1, α2 = n1 + 1 (n1 >

0), e−(
r
ξ )

α1−( r
ξ )

α2

≈ e−2( r
ξ )

α1

and
´∞
0 drre−(

r
ξ )

α1

=

ξ2

α1
Γ
( 2
α1

)
=
ξ2

2
Γ
( 2
α1

+ 1
)
≈ ξ2

2
for α1 ≫ 1, and

lim
ϵ→0+

Ei(−ϵ)− lnϵ= C. Here Γ(x) =
´∞
0 dte−ttx−1 is the

gamma function and Ei(x) =−
´∞
−x dte

−tt−1 is the exponen-
tial integral function.

We are in the position to minimize ∆F in equation (B15)
with respect to the variables ϕ, χ, ξ and n1. In equation (B15),
n1/4, and sin

2χ/4 aremuch smaller than the other terms due to
n1 ≫ 1. Similarly, (C− ln2)/n1 is much smaller than lnR/ξ.
Thus these terms can be neglected. Without loss of generality,
we choose b> 0 and sinχcosχ > 0, and then obtain sinϕ= 1,
namely,

10
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Figure 6. Parameter dependance of vortex core and free energy
density. The ratio of the vortex-core radius to the sample radius
(ξ/R) as a function of the renormalized field B= g2/(λ2η2). The
corresponding free energy density ∆f=∆F/

(
πR2) in unit of λ2η4

is also plotted.

ϕ= π/2. (B16)

The value of χ is determined by ∂∆F/∂χ= 0 and hence

sin2χ=
2g(R− ξ)√(

ln R
ξ

)2
+ 4g2 (R− ξ)

2

. (B17)

Now ∆F is a quadratic form of n1 and it takes the minimum
at

2n1 + 1=

√√√√√1+
4g2 (R− ξ)

2(
ln R

ξ

)2 . (B18)

The condition n1 ≫ 1 suggests 2g(R− ξ)/ ln(Rξ )≫ 1. Under
such a condition, we have χ≈ π/4 and

∆F ≈ π
(
η2 − g2/λ2

)[(
λ2η2 − g2

) ξ2
2
− g2 (R− ξ)

2

ln R
ξ

]
.

(B19)

Minimizing the above expression (B19), we obtain ξ and
the corresponding free energy difference. We plot in figure 6
the ratio ξ/R and the free energy density ∆f=∆F/

(
πR2

)
as

a function of the renormalized field B= g2/(λ2η2). Note that
g2 < η2λ2 and hence B ∈ (0,1) for nonzero polarization. For
arbitrary g, the sample’s radius is at least three times of the vor-
tex’s radius, thereafter, our assumption ξ/R≪ 1 fulfills. As
∆F is always negative, it manifests the existence of vortex
solution. Choosing ξ/R= 0.3, we obtain 2g(R− ξ)/ ln(Rξ ) =
1.16gR. Therefore, the condition n1 ≫ 1 fulfills if gR≫ 1.
Actually, n1 ⩾ 10 is enough for our approximation in the cal-
culation of free energy to be a good one, which corresponds to
R⩾ 18/g. But for a weaker field, ξ/R is smaller, and gR has
to be chosen sufficiently large.

Under the condition n1 ≫ 1, we have χ≈ π/4 and sinχ=
cosχ= 1/

√
2 and find that P3 ≈ 0 and the magnitude of P1

and P2 are quite different between in the regions r> ξ and
r< ξ, that is

P1 ≈
(
η2 − g2/λ2

)
cos(θ− π

2 ),
P2 ≈

(
η2 − g2/λ2

)
sin(θ− π

2 ),
(B20)

for r> ξ; while for r< ξ

P1 = P2 = 0. (B21)

Consequently, the polarization P vanishes inside the core of
the vortex (when r< ξ) and it rotates clockwise in the x–y
plane with a fixed length outside of the core. Similarly, for
the other case, g< 0, the P rotates anticlockwise.
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