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Excited-state resonance tunneling in strong-field ionization
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We study the tunneling dynamics of a system with two bound states. We find that the system can be effectively
described by a two-level leakage cavity model, with which we can reproduce the dynamics of tunneling
ionization. It shows that tunneling via the excited-state resonance dominates over the ground-state tunneling
within the field strength considered, where the electron prefers jumping to the excited-state resonance channel
first and then tunneling out. Moreover, several key parameters of the system naturally emerge in our two-level
model. Especially, one of the parameters is the physical correspondence of the tunneling time obtained from the
ground-state tunneling.
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I. INTRODUCTION

Tunneling ionization is currently referred to as the starting
point for essentially most modern strong-field phenomena. At-
tosecond laser pulses access ultrashort time spans to uncover
microscopic details of electron tunneling ionization [1–8].
Electron tunneling has been used in many areas of science
and technology, including scanning tunneling microscopy [9],
tunnel diodes [10], photosynthesis [11], photoelectron holog-
raphy [12], laser induced electron diffraction [13,14], and
many more.

The earliest theoretical treatments on electron tunnel-
ing ionization were based on the strong-field approximation
(SFA), known as the Keldysh-Faisal-Reiss (KFR) approach
[15–17]. For an approximate analysis of electron tunneling
on the subcycle time scale, a convenient closed-form expres-
sion for the ionization rate at every moment is derived [18].
Later, a popular three-step semiclassical model [19,20], which
can well reproduce the experimental results quantitatively for
certain field strength, is developed to analyze the tunneling
electron trajectories. Several approaches have also been de-
veloped to address electron tunneling ionization [21,22]. For
these broadly accepted appealing approaches, however, the
dynamics of the tunneling process has not been involved,
which is at the heart of understanding many pioneering results
in the strong-field tunneling ionization. The most notable is
the interpretation of tunneling time defined by the attosecond
angular streaking experiments [2,4,5,23–26].

When it turns to studying tunneling dynamics, contribu-
tions from the excited states are expected to be non-negligible
[27–30]. In fact, excitation of the atom plays an important
role in various ionization processes. For instance, resonant en-
hancement of below-threshold harmonics [31–33], emission
from excited states via free induction decay [32,34], high-
order harmonic emission through ionization from excited
states [34,35]. By amending the KFR theory and comparing
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the continuum population with the results of the first prin-
ciple calculation, the effect of the excited states is evaluated
[27]. Meanwhile, the contributions of the excited states of-
ten complicate the physical picture of tunneling ionization.
Hence, a method of filter function is developed to eliminate
the masking signal from excited state [30], with which a
tunnel time scaling with the classical Keldysh time [15,36]
is defined with a full quantum approach. The Keldysh time is
defined as τk = √

2Ip/2F , where Ip is the electron ionization
energy and F is the laser electric field. It measures the time a
bound electron with the velocity v = √

2Ip takes to cross the
tunneling barrier with width l = Ip/F .

In this work, we study the tunneling dynamics by solv-
ing the Schrödinger equation (SE) without utilizing the filter
function. We find that the ionization process, including the
contributions of excited states, can be well reproduced by
a two-level model of leakage cavity. Each parameter in this
model has an explicit physical correspondence, which thus
provides a clear picture to show the tunneling process of the
electron and the role of excited state in tunneling dynamics.
Moreover, each parameter is related to a time scale. Thus, the
model suggests a convenient way to quantify the tunneling
process. Interestingly, based on the quantified times extracted
from our model, we have obtained the physical correspon-
dence of the tunnel time defined in Ref. [30] within the field
range in our consideration.

II. TUNNELING THROUGH A BARRIER
IN A HOMOGENEOUS FIELD

We consider an electron trapped in a one-dimensional (1D)
square-well potential interacting with a static electric field.
The electron is initially in its ground state, and the field is
applied instantaneously at t = 0. Within the dipole approxi-
mation and the length gauge, the Hamiltonian is modeled as

H =
{

T + V (x), for t < 0,

T + Veff (x), otherwise, (1)
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FIG. 1. Field-induced tunneling ionization. The square-well po-
tential V (x) and the effective potential Veff (x) are shown in dashed
green and solid red lines, respectively. |ψ0(x)|2 (blue) and |ψ (x, t )|2
(cyan) are the distributions of the (initial) ground electron wave
function and tunneling wave function.

where T is the kinetic energy, V (x) is the potential with the
depth −V0 and the width 2a, and

Veff (x) =
{−V0, for |x| < a,

−xF, otherwise, (2)

F is the static electric field. A plot of the potentials is shown in
Fig. 1. A triangular barrier is formed by combining the square-
well potential with the static field.

The time-independent Schrödinger equation (TISE) of this
field-dressed system is(

−1

2

∂2

∂x2
+ Veff (x)

)
ψε(x) = εψε(x), (3)

which can be solved analytically [37,38]. ε is the eigenenergy
that ranges from −∞ to +∞ and ψε(x) = 〈x|ψε〉 represents
its corresponding eigenstate wave function. For t � 0, time
propagation is handled by expanding the wave function of
electron |ψ (t )〉 on the basis of these eigenstates as

|ψ (t )〉 =
∑

j

g0(ε j )e
−iε j t |ψε j 〉, (4)

where g0(ε j ) = 〈ψε j |ψ0〉 is the projection coefficient of the
unperturbed ground state to eigenstates. Here, we have chosen
a discrete notation for the energy ε and the spectral probability
amplitude g0(ε) of the continuum states consistent with the
finite box size used in the numerical simulations.

In this work, we choose V0 = 2 a.u. and a = 1.5 a.u.. Under
these parameters, the field-free system contains two bound
states; that is, a ground state |ψ0〉 with eigenenergy E0 =
−1.696 a.u. and an excited state |ψ1〉 with eigenenergy E1 =
−0.846 a.u.. In the numerical calculations, we have used the
absorbed boundary condition. The box size is (−106, 106),
which is far larger than the range of the initial square-well
potential. We have checked the convergence of the results.
Atomic units are used throughout the paper unless otherwise
noted.

A. Single-mode ground-state tunneling

In the presence of the perturbation, the bound electron
would be free from the binding potential by tunneling through
the triangular barrier. In this section, We follow the method
suggested in Ref. [30] to figure out the tunneling dynamics
and obtain the time it takes during this process.

The wave function of electron |ψ (t )〉 for t > 0 can be
described as

|ψ (t )〉 = a0(t )|ψ0〉 + |φ(t )〉, (5)

where |ψ0〉 is the unperturbed ground state and a0(t ) =
〈ψ0|ψ (t )〉. The unnormalized |φ(t )〉 is the part of the wave
function orthogonal to the ground state; that is, 〈ψ0|φ(t )〉 =
0. Substitute Eq. (5) into the time-dependent Schrödinger
equation (TDSE) with the Hamiltonian given in Eq. (1)
and multiply both sides by 〈ψ0|. With assuming |φ(t )〉 =
a0(t )|ϕ(t )〉 and defining �E0(t ) ≡ 〈ψ0|H |ϕ(t )〉, we finally
arrive at the expression

�E0(t ) = i
ȧ0(t )

a0(t )
− E0, (6)

which is the time-dependent generalization of Fano resonance
theory [39]. It determines a finite spectral width of the field-
free ground state. By using the expansion in Eq. (4), �E0(t )
can also be recast as

�E0(t ) =
∑

j ε j |g0(ε j )|2e−iε j t∑
j |g0(ε j )|2e−iε j t

− E0. (7)

Introducing

w0(t ) ≡ −2 Im{�E0(t )} = −∂log[p0(t )]/∂t, (8)

it gives the ionization rate at which probability leaves the
ground state, and p0(t ) is the population probability of ground
state.

Figure 2(b) shows the ionization rate w0(t ) of ground
state. It presents strong oscillations for short times, followed
by a steady value. To understand the temporal behaviors of
w0(t ) in the quantized channel picture [30], the spectral den-
sity |g0(ε)|2 (solid blue line) as a function of energy ε at
F = 0.6 a.u. is plotted in Fig. 2(a). The peaks of |g0(ε)|2
reveal the spectral signature of the tunnel ionization dynamics.
These peaks, from left to right, represent the waves coming
from ground-state resonance, the first excited-state resonance,
and other continuum resonances. And the width of the peak
determines the ionization rate of corresponding resonance
channels. For short times, in response to the laser field,
the excited-state resonance creates relatively intense outward
propagating initial waves, which can jump to the ground state
and cause the strong oscillations of w0(t ). For longer times,
the signals via excited-state resonance become weak and de-
cay faster than the oscillation period. Thus, the ionization rate
w0(t ) reaches a steady value.

Afterwards, to eliminate the signal stemming from the
excited-state resonance, a technique of a filter function is
employed. In Fig. 2(a), we plot the filtered |g0(ε)|2 (dashed
red line), which isolates the part of the ground-state wave
function escaping via the ground-state resonance. The filter
function is set as

f (ε) =
{

1 for ε < εc,

e(ε−εc )2/2σ 2
for ε � εc,

(9)

where εc is the central energy of the peak of spectral density
and σ is the width (standard deviation) of the filter function.
σ = 0.125 for F = 0.6 a.u.. After filtering, the probability
current flowing back to the ground state is eliminated. As
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FIG. 2. (a) Spectrum density |g0(ε)|2 as a function of energy, ε

and (b) ionization rate, w0(t ), for the unfiltered (solid blue line) and
filtered (dashed red line) cases. Here F = 0.6 a.u. and parameters of
the 1D square-well potential are V0 = 2 a.u. and a = 1.5 a.u.. (c) Cal-
culated ts as a function of the field strength, F . For comparison, the
Keldysh time τk multiplied by 4π is shown as the dashed red line.

a result, the ionization rate w0(t ) of the ground state rises
monotonically and approaches a steady-state value, as shown
in Fig. 2(b) (dashed red line). We call this tunneling way of
ignoring the ground-state dynamics as single-mode ground-
state tunneling and define the rise time as the single-mode
tunneling time ts, correspondingly.

The time ts is determined at which the relative error is
1% of its steady-state value. We give the time ts for F = 0.6
a.u., and marked it by dash-dotted green line in Fig. 2(b).
Obviously, a shorter time is needed to approach a steady-
state value for the filtered case. Also, we have calculated
the time ts for different field strengths F . As shown in
Fig. 2(c), ts is approximately proportional to the Keldysh time
as ts ≈ 4π × τk . Different from our case, ts ≈ 4.4 × τk for
the quantum dot and ts ≈ 5.8 × τk for the 1D model atom,
respectively in [30]. We mention that the discrepancy in the
proportional coefficient not only depends on the initial state,
determined by the shape of the trap potential, but also re-
lates to the temporal evolution of the wave function, which
is significantly affected by the shape of the barrier potential
[38].

As stated above, the tunneling time ts only represents the
time it takes to establish a steady probability flow from the
ground state. It can only characterize the partial ground-
state tunneling dynamics. With considering the contribution
of the excited states, what will be the physical correspondence

of ts in the whole tunneling dynamics? This will be explained
in detail in the following sections.

B. Tunneling described by a model of leakage cavity

Let us go back to the starting point of the tunneling event
of a bound electron. In this section, we generalize Eq. (5)
to multiple bound states, where the temporal wave function
|ψ (t )〉 can be written in the form

|ψ (t )〉 =
∑

i

ai(t )|ψi〉 + |φ(t )〉, (10)

where |ψi〉 (i = 0, 1, 2 . . .) is the ith unperturbed bound state
and ai(t ) = 〈ψi|ψ (t )〉 is the probability amplitude, corre-
spondingly. The unnormalized |φ(t )〉 is the part of the wave
function ionized from the potential and is orthogonal to the
bound states; that is, 〈ψi|φ(t )〉 = 0 for all i. Inserting Eq. (10)
into TDSE and projecting over the subspace 〈ψi|, we have a
differential equation for ai(t )

iȧi(t ) = Eiai(t ) + 〈ψi|H0 − Fx|φ′(t )〉, (11)

with Ei = 〈ψi|H0|ψi〉, and |φ′(t )〉 = ∑
j �=i a j |ψ j〉 + |φ(t )〉,

contains all the states that can jump to the ith bound state.
Denoting |φ′(t )〉 = ai(t )|ϕ(t )〉, we arrive at the expression

�Ei(t ) = i
ȧi(t )

ai(t )
− Ei, (12)

with �Ei(t ) ≡ 〈ψi|H |ϕ(t )〉; wi(t ) = −2 Im{�Ei(t )} =
−∂log[pi(t )]/∂t gives the rate at which probability leaves
the ith bound state and escapes to other bound states
or continuums. When i = 0, it turns out to be Eq. (8).
Accordingly, the ionization rate w(t ) at which probability
leaves the trap potential rather than the ground state and
escapes into the continuum is

w(t ) = −∂log[p(t )]

∂t
= −∂t p(t )

p(t )
, (13)

where p(t ) = ∑
i pi(t ) is the total probability of the unper-

turbed bound states.
From the expansion Eq. (4), it is straightforward to rewrite

the expression for ionization rate w(t ) as

w(t ) =
∑

i j i(εi − ε j )e−i(εi−ε j )t Gi j∑
i j e−i(εi−ε j )t Gi j

, (14)

where Gi j = |g0i|2|g0 j |2 + ∑N
e=1 g0ig∗

0 jg
∗
eige j , g0i is short for

g0(εi ), gei ≡ ge(εi ) = 〈ψεi |ψe〉 is the spectral amplitude of the
eth unperturbed excited state, and N is the number of the
unperturbed excited states. In our current considered system,
it contains two bound states, i.e., N = 1.

Equation (14) incorporates information of the spectra of
ground state and excited state, as depicted in Fig. 3(a). To
show the contribution of the excited state, with the same pa-
rameters, we plot the ionization rate of the ground state w0(t )
for the unfiltered case and ionization rate w(t ) at F = 0.6
a.u. in Fig. 3(b). It shows that w0(t ) and w(t ) are different
quantitatively in many characteristics, which include the am-
plitude, the damping rate, the oscillation period, and the time
at which a steady value is achieved. Besides, a time delay
exists between w0(t ) and w(t ). These all imply that the excited
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FIG. 3. (a) Spectrum densities |g0(ε)|2 (solid blue line) and
|g1(ε)|2 (dotted red line) as a function of energy. The first peak and
second peak of the spectra are marked by I and II, respectively. ε1

and ε2 are the corresponding central energies. (b) The ionization rate
of ground state w0(t ) (dotted blue line) and the ionization rate w(t )
(solid red line). The ionization rate w̃(t ) (dash-dotted green line) is
the result of the four peaks marked by I and II. Here, F = 0.60 a.u.

state plays a non-negligible role in the process of tunneling
ionization. We also find that the ionization dynamics can be
well presented by selecting only the first two peaks [marked
by I and II in Fig. 3(a)] of the spectra, whose central energies
are ε1 and ε2, respectively. The resulting w̃(t ) of the four
peaks is shown in Fig. 3(b). Except for the rapid oscillations
for shorter times, w̃(t ) shows in good agreement with w(t ).
This finding is accessible for all other field strengths investi-
gated.

Besides, for different field strengths, the ionization rate
w(t ) displays a similar behavior, as shown in Figs. 4(a)–4(d)
(solid blue lines). They all initially present a strong but
damped oscillation and finally reach a steady value. A tun-
neling time τw can be extracted from this crossover, at which
the relative error of the ionization rate to its steady value
is 1%. Therefore, without considering the rapid oscillations
for shorter times and based on the dissipation and oscillation
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FIG. 4. (a)–(d) The ionization rate w(t ) (solid blue lines) and
the fitted wm(t ) (dash-dotted red lines) for field strength F =
0.30, 0.45, 0.60, 0.75 a.u., respectively.

behaviors of w(t ), we try to introduce a simple two-level
model of leakage cavity to characterize the dynamics of tun-
neling process intuitively. The non-Hermitian Hamiltonian of
a typical leakage cavity can be represented as [40,41]

Hm =
(

E1 − i�1/2 V
V E2 − i�2/2

)
. (15)

We identify E1 and E2 as the two binds of the bound stable
energy states. �1 (�2) determines the leakage rate from the
lower (higher) energy channel E1 (E2). V is the interaction.
Together with �1 and �2, it determines the survival time of
particles in this model.

Denoting c1(t ) and c2(t ) as the time-dependent probability
amplitudes of the two states in the model, they satisfy the
equations

iċ1(t ) = (E1 − i�1/2)c1(t ) + V c2(t ),

iċ2(t ) = V c1(t ) + (E2 − i�2/2)c2(t ). (16)

In analogy to the tunneling event of a bound electron and
Eq. (13), we have the leakage rate wm(t ) of this model

wm(t ) = −∂t (|c1(t )|2 + |c2(t )|2)

|c1(t )|2 + |c2(t )|2 . (17)

With assuming E2 > E1 and �2 > �1 in our considered case,
the Eq. (17) for longer times becomes

wm(t → ∞) = Im[�] + �1 + �2

2
, (18)

with � = √
�E2 + 4V 2 and �E = E2 − E1 − i(�2 − �1)/2.

This implies that the asymptotic value of the ionization rate
relates to all parameters. The set of parameters (δE , �1, �2,V )
involved in the leakage process are obtained by fitting wm(t )
with w(t ).

Figure 4 shows the fitting results wm(t ) (dash-dotted red
lines) for a wide range of field strengths. Surprisingly, we
find that the fitting results well coincide with the original data
for long times. Since the long-time behavior of w(t ) largely
comes from the contributions of the sharp peaks of the spectra
[42], as w̃(t ) shows. Hence, this leakage model can be used to
reproduce the process of tunneling ionization.

III. REVEALING AND QUANTIFYING
THE TUNNELING PROCESS

Since the parameters in the leakage model have their own
physical meaning and characterize the leakage behaviors of
particles, we can reveal the dynamics of electron tunneling
based on these parameters of this model. We numerically
fit the set of parameters (δE , �1, �2,V ) for different exter-
nal laser strengths F . The result is plotted in Fig. 5(a). It
shows that �2 drastically increases with increasing F . �1 is
about three orders of magnitude smaller than �2. This implies
that the leakage channel of the lower state is nearly turned
off. And, the interaction V , by which the particles can be
transported from the lower state to the higher state, is approx-
imately proportional to the field strength F . Specifically, we
have V ≈ 0.35 × F 〈ψ0|x|ψ1〉, which shows a tight connec-
tion between V and the transition element of two bound states.
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FIG. 5. (a) Parameters (δE , �1, �2,V ) as a function of field
strength F . The energy gap δε = ε2 − ε1, and V ′ = 0.35 ×
F 〈ψ0|x|ψ1〉. (b) Kinds of typical times as functions of field strength
F . The blue region (F � 0.56 a.u.) and gray region (F > 0.56
a.u.) represent the first excited state being bound and unbound,
respectively.

Note that the external laser field turns discrete bound states
into mixed bound-continuum resonance states with a finite
spectral width. In Fig. 3(a), the sharp peak marked by I rep-
resents tunnel ionization via the ground-state resonance, and
the broad peak marked by II corresponds to ionization via the
excited-state resonance. From the result of w̃(t ) [dash-dotted
green line in Fig. 3(b)], the long-time behavior of w(t ) is thus
captured by the interference between the outward propagating
waves coming from the resonance channels of ground state
and excited state. Interestingly and importantly, as shown in
Fig. 5(a), δE is approximately equal to the central energy gap
δε (δε = ε2 − ε1) of the two peaks of spectra. This approx-
imate agreement reveals a notable physical correspondence
that the two levels of the leakage model roughly correspond
to the resonance channels of ground state and excited state.

This roughly physical correspondence suggests an ex-
plicit picture of the ionization dynamics in the tunneling
process based on the behaviors of the set of parameters
(δE , �1, �2,V ) in the model. Initially, an electron populates at
the ground state. Switching on the external field, the electron
tunnels out of the barrier via the two resonance channels. The
electron probes a potential barrier of larger height and width in
the ground state, it thus prefers to tunnel in two steps: first, it
leaves the ground state and jumps to the resonance channel of
excited state; second, it tunnels out by this excited-state chan-
nel, within the field strength we consider. From this tunneling
picture, the time delay between the first oscillation peaks of
w0(t ) and w(t ) [see Fig. 3(b)] becomes clear. The first peak of
w0(t ) is formed by the first step. While, that of w(t ) is mainly

contributed by these two combined processes, and the second
step takes time generally.

Furthermore, every parameter in this model is related to a
time scale. Due to the good reproducibility of the model, the
tunneling process can be quantified via these parameters.

We obtain kinds of typical times, as presented in Fig. 5(b).
The tunneling time τw is the response time it takes the part
of the wave function tunneling from the barrier to establish a
steady ionization rate. The damping time τd = 1/�2 charac-
terizes the interference time of the initial waves coming from
the resonance tunneling channels of ground state and excited
state. It determines the damping period of the ionization rate
w(t ). As expected, the behaviors of τw and τd changing with
the external field F are the same qualitatively. As the field
strength F increases, smaller width and lower height of the
barrier are formed. This yields that the initial waves from the
excited-state ionization channel pass beyond the bound region
more quickly, resulting in the descent of τw and τd .

We define an interaction time as τV = π/V . V determines
the speed of transporting the electron from the ground state to
the excited state. To figure out more clear physics involved
in the single-mode ground-state tunneling, the single-mode
tunneling time ts is again plotted in Fig. 5(b). Interestingly,
we find that it is nearly identical to the time τV . Hence, we
take τV as the correspondence of ts within the field strength
we considered. It indicates that the single-mode ground-state
tunneling only characterizes one step, the electron leaves the
ground state, in the whole tunneling ionization process. In
general cases, leaving the ground state is not equivalent to tun-
neling out of the barrier, since the second step of our tunneling
picture is also time consuming. As a result, without utilizing a
filter function, we present the main results in Ref. [30] and
also emphasize the non-negligible role of the excited state
playing in tunneling dynamics.

In addition, the field is separated into two regions in Fig. 5.
For F � 0.56 a.u., the excited state is bound. Otherwise, it
is over the barrier. We can see that regardless of the excited
state being bound or unbound, the fitting parameters and
the typical times change smoothly with increasing the field
strength. Besides, the ionization rates w(t ) for F > 0.56 a.u.
display the same temporal behaviors as F � 0.56 a.u., as
shown in Fig. 4. These indicate that it seems unnecessary to
distinguish between tunneling and over-the-barrier ionizations
in the study of tunneling dynamics. Similar findings have been
presented in Ref. [38].

IV. CONCLUSIONS

In conclusion, the introduced two-level model of leakage
cavity has well reproduced the tunneling ionization of a bound
electron and presented a clear picture of electron tunneling,
among which the excited-state resonance tunneling can domi-
nate over the ground-state resonance tunneling. Based on this
model, the single-mode ground-state tunneling, suggested in
Ref. [30] is only an indispensable step in the tunneling process
within the field strength range in our study.

In this case of static field, the electron finds a more effi-
cacious tunneling way; that is, tunneling occurs readily from
the resonance channels. An analogous and attractive tunneling
pathway has also been excavated when the atom is subject
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to a time-varying field whose frequency is not resonant with
transition to an eigenstate [43]. The smart electron will first
gain energy by virtual absorption of photons to reach virtual
off-the-energy-shell states and then tunnel from them effi-
ciently.

In this current studied system, which contains two field-
free bound states, two dominated resonance channels have
been obtained. If, within a range of field intensities, the
ground-state resonance and the excited-state resonance always
play a major role in the tunneling dynamics regardless of
the number of unperturbed bound states, the generalization
of our model to a multilevel system may be achieved. We
also hope that we can generalize the current methods to more
realistic potentials (for instance, Coulomb potential) in a full-
dimensional system by using a time-varying field. Moreover,

an exponential decay in time corresponds to a Lorentzian
spectrum. From the view of Lorentzian spectrum, one may
construct a more general model to reproduce the predictions
of Schrödinger equation. This may suggest another convenient
way to help us reveal more physical details involved in the
tunneling dynamics of an electron.
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