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Larmor time of a bound electron wave packet tunneling through a barrier
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The Larmor time of an incident wave packet has recently been measured experimentally [R. Ramos, D.
Spierings, I. Racicot, and A. M. Steinberg, Nature (London) 583, 529 (2020)]. It differs essentially from
previous well-studied free-particle cases, whereas the unique properties of wave packets are unrevealed in their
theoretical analysis and state-of-the-art Larmor clock studies. In this paper, we study the Larmor time of a bound
two-component electron wave packet and supplement the theoretical lack of wave-packet tunneling. We find that
the spin shows a pure Larmor precession in the plane perpendicular to the field without a rotation parallel to
the field. The Larmor time is defined in the limit of vanishing field where the precession angle is proportional
to the field. For relatively weak fields, this precession angle will respond to the field approximately linearly.
For the wave-packet tunneling case, we propose an effective scheme that utilizes the fidelity of the tunneled
wave packets to calibrate an approximate linear-response region. Furthermore, we show that in the approximate
linear-response region the change in the fidelity can be approximately regarded as the result of the accumulated
displacement in phase space. This result reveals the inner mechanism of wave-packet tunneling. Our findings
may have implications for future experiments of the Larmor clock.
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I. INTRODUCTION

Quantum tunneling plays a central role in many physical
contexts. The question of how much time a tunneling particle
spends in a barrier forms the very crux of the tunneling prob-
lem [1]. Over decades, the efforts to define, to understand,
to measure, and to interpret the value of tunneling time have
been continuing by examining the scattering process of an
incoming wave impinging on a potential barrier. Though no
definitive answer has emerged, this has yielded a wealth of
different definitions of tunneling time [2–5], such as the no-
table phase time [6,7], traversal time originally reported by
Büttiker and Landauer [8], and complex time derived with
the path-integral approach [9–11]. Among them, Larmor time
[12–15] is measured via a Larmor clock.

The Larmor clock for measuring tunneling time was orig-
inally proposed by Baz’ [16] and Rybachenko [17]. In their
proposal, an incident spin- 1

2 free particle polarized in the x di-
rection moves along the y direction and impinges on a square
barrier localized in a constant magnetic field along z. The
particle tunneling through the barrier only performs a Larmor
precession in the x-y plane and the precession angle is θy. This
original scheme was later corrected by Büttiker [12]. Since
Zeeman splitting results in the preferential tunneling, another
rotation angle θz alignment along the antidirection of the field
is triggered, as plotted in the sphere of Fig. 1. The two rotation
angles in terms of the spin projections are given by [12]

θy = −arcsin

( 〈Sy〉
(T↑T↓)1/2/(T↑ + T↓)

)
, (1)

θz = 2〈Sz〉, (2)
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where T↑(↓) is the transmitted probability of the spin-up
(spin-down) component. The Larmor times are defined in the
infinitesimal field limit as

τi = θi/ωL, (3)

with the Larmor frequency ωL = e|B|/2Mec and i = y, z,
respectively. It denotes the time a particle spends in the barrier.

A generalization of the Larmor clock analysis to arbitrary
potential barriers was proposed by Leavens and Aers [18].
Early measurements of Larmor times have been conducted in
optical systems [19,20] and with neutrons [21], in analogy to
the electronic Larmor clock. Later, the two Larmor times are
found equivalent to the real and imaginary parts of the weak
value of a dwell-time operator [22–24]. Notably, the Larmor
times have been measured in ultracold Rb atoms with a wide
range of incident energies in recent studies [13–15].

As stated above, the Larmor times of an incident parti-
cle scattering on a barrier present an ongoing development
[12–15]. The Larmor times of an electron tunneling through
a barrier from a quasibound state [the configuration shown in
Fig. 1(b)] are still not studied. Especially, the previous studies
on Larmor times were based on scattering theory; even for the
case of an incident wave packet [13,15], the inner mechanism
involved in the tunneling of wave packet is undiscovered.
Moreover, though the time of an electron escaping from a
bound state of the atom’s Coulomb potential has been mea-
sured in the strong-field attosecond physics by the “attoclock”
technique [25,26], the starting time of a tunneling event is
hard to identify [13]. In contrast, the Larmor clock starts to
tick at the time when the tunneling event starts. In this paper,
we aim to measure the Larmor times of a bound electron
wave packet by simulating the stationary-state evolution of
the wave packet numerically and supplement the theoretical
lack of wave-packet tunneling.
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FIG. 1. Larmor clock. (a) Scattering sketch [13]: A spin-1/2 par-
ticle, initially polarized along the x axis, hitting on a square barrier.
(b) Sketch of tunneling from a quasibound state: A spin-1/2 particle
is initially bounded in a square-well potential of width 2a and depth
V0 and polarized along the x axis, tunneling through a square barrier
of width d and height Vb. A magnetic field B pointing to the z axis is
confined inside the barrier. After tunneling, the spin has precessed in
the x-y plane with an angle θy and rotated towards the antidirection
of the field with an angle θz, as depicted in the Bloch sphere. ψ0(y)
and ψ (y, t ) are the initial and tunneling spinors.

II. CONFIGURATION AND FORMULATION

We consider a particle trapped in a square-well potential of
width 2a and depth V0 (V0 > 0). Initially, the particle popu-
lates at the ground state ϕ0(y) with energy E0. At the moment
t = 0+, the right of the square-well potential is quenched to a
square potential barrier with width d and height Vb (Vb � V0

but Vb > E0), as shown in Fig. 1(b). In this case, the particle
prefers to escape from the well by tunneling through the bar-
rier. To measure the time the particle takes inside the barrier,
a uniform magnetic field B is localized in the barrier region.
The intrinsic spin of the electron is thus a clock, which ticks
only within the barrier [12,13].

A spinning charged particle constitutes a magnetic dipole.
Placed in a magnetic field B (B = Bẑ), the magnetic dipole
would experience a torque. The energy associated with it
is H = −γ B · S, with the gyromagnetic ratio γ = −e/Mec.
For a particle of spin 1/2 entering into the field, the compo-
nent of spin parallel to the field will have a higher energy.
Equivalently, the potential barrier Vb is changed to V↑ = Vb −
ωL/2 (V↓ = Vb + ωL/2) for the spin-up (spin-down) compo-
nent. Accordingly, the total Hamiltonian of the considered
system is

H =
(

H↑ 0
0 H↓

)
=

(
1
2

∂2

∂y2 + Ṽ↑ 0

0 1
2

∂2

∂y2 + Ṽ↓

)
, (4)

with

Ṽ↑(↓) =

⎧⎪⎨⎪⎩
V0 y � −a,

0 − a < y � a,

V↑(↓) a < y � a + d,

0 y > a + d.

(5)

We denote the spinor wave function at t as

ψ (y, t ) = 1√
2

(
ψ↑(y, t )
ψ↓(y, t )

)
, (6)

with the initial wave function ψ↑(y, 0) = ψ↓(y, 0) = ϕ0(y),
i.e., the particle is polarized in the x direction at t = 0. Since
H is diagonal in this spinor basis, we can handle the time
propagation of the two components separately. Their wave
functions can be expanded as

ψs(y, t ) =
∑

j

g
(
ε j

s

)
e−iε j

s tξ j
s (y), (7)

with g(ε j
s ) = ∫

dyξ j∗
s (y)ψs(y, 0) and s = ↑ and ↓, respec-

tively, where ξ
j

s (y) and ε
j
s are the eigenvectors and eigenvalues

of the field-dressed Hamiltonian Hs.
When the particle tunnels out of the barrier, two rotation

angles θy and θz are obtained. θy sources from the relative
phase accumulation of the two components. Accordingly, in
terms of expectation values of spin angular momentum, θy is
defined as

θy = −arctan(〈Sy〉/〈Sx〉) (8)

= −arcsin(2〈Sy〉/
√

F ), (9)

where F is the fidelity of the tunneled spin-down state ψ↓(y)
and spin-up state ψ↑(y) given by

F =
∣∣∣∣ ∫ dyψ∗

↓ (y)ψ↑(y)

∣∣∣∣2

. (10)

By measuring 〈Sx〉 and 〈Sy〉, the precession angle θy can be
obtained in an experiment from Eq. (8), as discussed in [13].
In terms of calculating θy, Eq. (9) is an equivalent expression
of Eq. (8). We mention that Eq. (9) is an important supplement
for wave-packet tunneling since it can be utilized to infer
the inner mechanism of wave-packet tunneling, as shown in
Sec. IV. Furthermore, Eq. (9) is a direct generalization of
Eq. (1), where the role of the different tunneling probabilities
in the scattering event is replaced by the fidelity F [Eq. (10)].
In our scenario, θz behaves utterly different from that of the
scattering event, as shown in the next section.

For the numerical results presented below, we have arti-
ficially controlled the ratio of splitting energy ωL/2 to the
potential barrier Vb within 2.28%. In other words, the maxi-
mum of the field is set as 5 a.u., and Vb = 0.8 a.u. as a constant
number throughout the calculation.

III. LARMOR PRECESSION AND LARMOR TIMES

Here, we first discuss the spin rotation angle θz. For the
free-particle scattering event, θz derives from the imbalance
of the constant tunneling flux with spin components h̄/2
and −h̄/2. The tunneling rate of each component within
the barrier is also different for the case of tunneling from
a quasibound state. However, the two components both tun-
nel out completely when the particle ends to interact with
the barrier. It indicates that the population of each tunneled
spinor component maintains the initial value, i.e., 〈Sz〉 = 0 is
conserved with integrating the tunneled spinor over the whole
coordinate space. Straightforwardly, we have the Larmor time
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FIG. 2. (a) The Larmor precession angle θy. The dotted red
hatched line region is the approximate linear-response region labeled
as I. (b) The angle θy for d=1.1, 1.8, 2.2, 2.6, 3.0 a.u.. (c) The angle
θy for B=0.5, 2.5, 4.5 a.u.. (d) The field-independent Larmor time τy

changing with d for the cases of E0=0.38, 0.48, 0.69 a.u..

τz = 2〈Sz〉/ωL = 0. As a result, compared to the scattering
event, preferential transmission of the spin component with
greater energy does not trigger a spin rotation in the z direction
in our scenario.

Next, we study the dependence of the Larmor precession
angle θy on the external magnetic field B and the barrier width
d . The results are plotted in Fig. 2(a). For clearness, we further
select several curves that can present the changing behaviors
of θy, plotted in Figs. 2(b) and 2(c). It shows that the response
of the precession angle θy to the field B is not linear generally.
θy is only approximately proportional to B for relatively weak
fields. Moreover, this response behavior is also significantly
affected by the barrier width d . For a fixed field, the precession
angle exponentially relates to the barrier width.

Theoretically, the Larmor times are defined in the limit
of the vanishing field [12]. However, the external field must
be a small but finite value in a realistic experiment. For an
extremely small field, the signal of measuring the Larmor
precession angle will be too weak to be detected. On the other
hand, increasing the field may invalidate the approximate pro-
portional relation [Eq. (3)]. And in this case, the time obtained
from Eq. (3) is incapable of measuring the time required for
the particle dwelling inside the barrier. Choosing a suitable
field strength is thus necessary in measuring the Larmor times.

The suitable field can be well set by identifying the region
where the linear-response relation [Eq. (3)] approximately
holds. As shown in Fig. 2(b), the response of the precession
angle to the field behaves exponentially. Thus, there does
not exist a natural linear-response region. We try to define
an approximate linear-response boundary with the relative
error α. α = (θy − θl )/θl with θl = B ∂θy

∂B |B→0. By artificially
setting α = −0.1%, we obtain the maximal approximate
linear-response field B for different barrier widths d . Then,
a boundary of approximate linear response is marked by red
open circles in Fig. 2(a). It shows that a broader barrier al-
lows a smaller maximal linear-response magnetic field. And
the corresponding linear-response region (labeled as I) with

0.4 1.2 2 2.8

0.5

1.5

2.5

3.5

4.5

0.2

0.4

0.6

0.8

1

100 200 300 400
0

3

6

9

|
|

0.5 1.5 2.5 3.5 4.5

0.975

0.98

0.985

0.99

0.995

1

0.7 0.8 0.9 1 1.1 1.2
0

2

4

6

8

FIG. 3. (a) Fidelity [Eq. (10)] changing with d and B. The green
line (labeled as l3) shows F = 0.996 a.u.. The dotted red hatched
line region and the dashed purple hatched line region correspond
to the linear-response region I with α = −0.1% and the applicable
region of Eq. (14). The blue line (labeled as l2) is the approximate
linear boundary with α = −0.02%. The cyan line (labeled as l1) is
F = 0.9995 a.u.. [(b), (c)] The distributions of spin-up (solid red
line) and spin-down (dotted blue line) wave functions at d=1.5 a.u.
and B=5 a.u. in (b) coordinate space and (c) momentum space. The
insets show the magnified portion. δy and δp are the position and
momentum differences of the highest peak of the two components.
(d) For different B, the fidelity [Eq. (14)] at d=0.5 a.u. (solid green
line), 1.0 a.u. (dotted red line), and 1.5 a.u. (dashed blue line) and
the fidelity [Eq. (10)] at d=0.5 a.u. (green open circles), 1.0 a.u. (red
triangles), and 1.5 a.u. (blue plus signs).

E0 = 0.48 a.u. is also shown in Fig. 2(a). The Larmor time is
thus well measured in this region with an accepted error. We
mention that one can acquire a more precise time by setting
the boundary with a smaller |α|.

In the above discussions, we have fixed the energy E0

(E0 = 0.48 a.u.) of the initial wave packet, whereas the Lar-
mor time is also affected by this initial energy. As depicted
in Fig. 2(d), we calculate the Larmor times τy for different
energies E0 in the weak-field limit. It shows that the Larmor
time τy depends on d exponentially. And τy becomes very
sensitive to the energy E0 at a bigger d .

IV. FIDELITY AND THE TUNNELED WAVE PACKETS

Equation (9) is regarded as the direct generalization of
Eq. (1). In the free-particle scattering event, except for 〈Sy〉,
the Larmor precession θy [Eq. (1)] is determined by the differ-
ent transmission probabilities of the two components, while
θy [Eq. (9)] is connected with the fidelity of the two tunneled
wave packets for the case of tunneling from a quasibound
state. Hence, fidelity is vital in analyzing the precession angle,
and it can be used to study the unique properties of wave-
packet tunneling. In this section, we will show these in detail.

Figure 3(a) shows the fidelity at different barrier widths
and magnetic fields. It monotonously decreases with increas-
ing d and B. This results from the fact that the two spinor
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components possess different exponential decays within the
barrier, which read

κ↑ =
∑

j

|g(ε j
↑)|2(2Vb − 2ε

j
↑ − ωL )1/2, (11)

κ↓ =
∑

j

|g(ε j
↓)|2(2Vb − 2ε

j
↓ + ωL )1/2, (12)

caused by the energy difference ±ωL/2. Quantitatively, a
stronger field gives rise to a bigger difference between the
decay rate of each component. And a broader barrier causes
more time difference between the two components tunneling
out of the barrier. As a result, the average position of the
wave packet for the spin-up component deviating from that
of the spin-down component increases at the bigger d and B,
inducing the fidelity decreases.

Since fidelity is encoded in the precession angle, the re-
sponse behaviors of the precession angle to the field must
be relevant with the change in fidelity. We again plot the ap-
proximate linear-response region I (α = −0.1%) in Fig. 3(a).
On the boundary of the approximate linear response (red line
labeled as l4), the fidelity changes from 0.993 to 0.996. If the
fidelity of the tunneled two components is more than 0.996,
the corresponding parameter region will be the approximate
linear-response region. The difference between the approxi-
mate linear-response region I and the region with F � 0.996
(the region to the right of the green line labeled as l3) is quite
small, as marked by the solid black hatched line in Fig. 3.
Thus, the fidelity can be taken as a practical criterion to ensure
the external auxiliary field is suitable and the measured time
is the time required for a bound particle tunneling through
the barrier. In fact, the reasonability of this criterion results
from the fact that the decrease in the fidelity and the effect of
nonlinear response are both caused by the different ionization
rates of the two components.

Note that though the boundary of the approximate linear
response is obtained artificially it is tightly associated with the
inner fidelity of the system. For more explicitness, we tune the
relative error α = −0.02%. The corresponding approximate
linear-response boundary is marked by a blue line (labeled as
l2) and the maximal fidelity F = 0.9995 on this boundary is
also marked by a cyan line (labeled as l1) in Fig. 3(a). As
expected, the difference between the line l2 and the line l1
is small. And, a more precise time will be measured in this
recalibrated linear-response region.

As discussed above, the different tunneling rates alter the
tunneled wave-packet distributions of the two spinor com-
ponents, which results in the decrease in the fidelity. To
discover the relative change between the two wave packets
after tunneling, we plot the tunneled spinor wave functions
in Figs. 3(b) and 3(c). Assuming the relative deformation is
negligible, we characterize the tunneled spinor wave function
as

ψ (y) ≈ 1√
2

(
eiθy/2ei δp

2 yφ
(
y + 1

2δy
)

e−iθy/2e−i δp
2 yφ

(
y − 1

2δy
)), (13)

where φ(y) is the tunneled wave function in the absence of
magnetic field. The parameters (δy, δp) are the relative shift
of the highest peak of spin-up and spin-down wave functions,
plotted in Figs. 3(b) and 3(c). They are the functions of

magnetic field B and barrier width d . Intuitively, the relative
shift δy and δp will increase for a stronger B and bigger
d , which implies the descent of F . θy is the relative phase
shift of the two components, by which the Larmor time is
obtained. Expanding the approximate spinor wave function
ψ (y) up to the second order of δy and δp, we have the
fidelity

F ≈ 1 − δrTgFδr, (14)

where gF = (Var(p) −�

−� Var(r)) is the Bures metric [27,28],

with Var(a) = 〈â2〉 − 〈â〉2, � = Re〈p̂ŷ〉 − 〈ŷ〉〈p̂〉, and 〈â〉 =∫ +∞
−∞ dyφ∗(y)âφ(y). δrT = (δy, δp) is the shift in phase

space.
Compared with the fidelity calculated by Eq. (10), the

fidelity resulted from Eq. (14) is also shown in Fig. 3(d)
for d=0.5, 1.0, and 1.5 a.u. One can see that the results
are in good agreement. Based on a unified criterion that the
relative error of the approximate F [Eq. (14)] to the exact
F [Eq. (10)] is 0.1%, we figure out a good agreement pa-
rameter region of this approximate spinor ψ (y) for different
d and B. And this region (dashed purple hatched line) is
marked in Fig. 3(a), which contains the approximate linear-
response region I (dotted red hatched line). This indicates that
Eq. (14) is accessible in the linear-response region, where
the complicated deformation is negligible, and only consid-
ering the relative displacement between the wave packets is
already a well-approximated treatment. Thus, apart from the
phase shift, Zeeman effect also differentiates the two spin
components for wave-packet tunneling [13]. This effect of dif-
ferentiation can be regarded as the displacements of the wave
packets in phase space in the approximate linear-response re-
gion. This is the unique property of wave-packet tunneling and
reveals the inner mechanism of the two wave packets in the
tunneling process. Moreover, it is non-negligible in analyzing
the Larmor process.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, distinct from the plane-wave scattering
event [12], the fidelity of the tunneled two components in
the wave-packet tunneling process is changed due to Zeeman
splitting, henceforth encoding the fidelity in the definition
of precession angle θy. The change in fidelity in the linear-
response region can be approximately regarded as the result
of accumulated displacement in phase space. This reveals
the inner mechanism of wave-packet tunneling. Additionally,
Zeeman splitting does not alter the z component of the spin in
our scenario.

Releasing the restriction of vanishing field, the precession
angle is no longer proportional to the field intensity. We
have shown that the fidelity can serve as a good measure to
figure out the approximate linear-response parameter space,
where the Larmor time can be measured. Defining a Larmor
time for the nonlinear-response case is still a worthwhile prob-
lem to be researched in the future.

We can roughly estimate the Larmor time of hydrogen
atoms tunneling through a barrier in the presence of a strong
field [29,30], where the barrier width can be approximately
considered as 2.0 and 3.0 a.u, and the times would be around
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171 and 604 as, respectively. In fact, cold atoms trapped
in a quasibound state tunneling through a potential barrier
have been realized experimentally [31,32]. We expect that the
Larmor time needed by the atoms tunneling from a quasi-
bound state can be measured in the system of cold atoms.
Also, combining the current experiments of Larmor times
[13,15], we hope that this research will inspire more stud-
ies to reveal the abundant inner mechanisms of wave-packet
tunneling.
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