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Abstract
We propose a scheme to realize two-parameter estimation via Bose–Einstein condensates
confined in a symmetric triple-well potential. The three-mode NOON state is prepared
adiabatically as the initial state. The two parameters to be estimated are the phase differences
between the wells. The sensitivity of this estimation scheme is studied by comparing quantum
and classical Fisher information matrices. As a result, we find an optimal particle number
measurement method. Moreover, the precision of this estimation scheme means that the
Heisenberg scaling behaves under the optimal measurement.

Keywords: multi-parameter estimation, Heisenberg scaling precision, three-mode NOON state,
symmetric triple-well potential

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum metrology [1–3] has attracted considerable interest in
recent years due to its wide applications in both fundamental
sciences and applied technologies. As crucial tools in quantum
metrology, the quantum parameter estimation theory [4, 5] and
Fisher information provide the theoretical bases for enhancing the
precision of parameter estimation with quantum resources. In the
previous researches, the single-parameter estimation has been
well studied and a series of achievements have been made [6–8],
such as gravitational wave detection [9], magnetometry [10–12],
atomic clocks [13, 14], and quantum gyroscope [15–17].

Although the single parameter estimation plays a significant
role in many applications, it is often necessary to estimate mul-
tiple parameters simultaneously in practical problems, e.g.
quantum imaging [18–20], waveform estimation [21], measure-
ments of multidimensional fields [22], joint estimation of phase
and phase diffusion [23, 24]. Studying the multi-parameter esti-
mation is thus an urgent need for effectively solving the practical
parameter estimation problems. It has attracted lots of attention
[22–38] in recent years. Most of these works aim to propose a

general theory and framework for multi-parameter estimation.
Few concrete schemes are proposed for realizing practical high-
precision multi-parameter estimations. In this article, we will
propose a scheme to estimate multiple parameters simultaneously
with Heisenberg scaling sensitivity.

The Bose–Josephson junction, formed by confining Bose–
Einstein condensate in the double-well potential (in spatial free-
dom [39] or internal freedom [40, 41] equivalently) is a well-
established model [6, 42–44]. It is widely used in quantum
parameter estimation as interferometries for its high controll-
ability [6, 42–44]. Especially in some of the schemes [41,
45–48], one can prepare condensate into the two-mode NOON
state [49] (also known as GHZ state [50] and Schrödinger cat
state [51]), which can perform single parameter estimation in
Heisenberg limit precision. As an extension of the double-well
interferometry, we will confine Bose condensate in the symme-
trical triple-well potential [52–56] to realize high precision two-
parameter estimation.

Our measurement scheme consists of four stages: initi-
alization, parameterization, rotation, and measurement. We pre-
pare the condensate into the three-mode NOON state
adiabatically as the initial state. The parameters to be estimated
are two-phase differences between the wells caused by the
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external field. The parameterized state is read via the particle
number measurement. In order to study the precision of the
measurement scheme, we calculate the quantum Fisher informa-
tion matrix (QFIM) and classical Fisher information matrix
(CFIM) on the two parameters. By comparing the CFIM and
QFIM, we find that the measurement rotation time significantly
affects the measurement precision, and the optimal rotation time is
given. In addition, the result shows that the optimal measurement
precision of our scheme can approach the Heisenberg scaling.

The paper is organized as follows. In section 2, the model
and basic measurement theory are introduced. In section 3, we
give the scheme of estimating two parameters with the triple-
well system, including initial state preparation, parameterization,
rotation, and measurement. The optimal precision and mea-
surement conditions are given by analyzing the CFIM and
QFIM. At last, we summarize this article in section 4.

2. Model and basic theory

In this section, we sketch our scheme. We confine N Bose
condensed atoms in a symmetric triple-well system (STWS)
[52–56], as seen in figure 1(a). Under the three-mode approx-
imation [52], the Hamiltonian of the condensates reads

ˆ ( ˆ ˆ ) ˆ ( ˆ ) ( )†H J a a U n nh.c. 1 , 1
i

i j
i

i i
1

3

1

3

å å= - + + -
= =

with j= (i+ 1) mod 3+ 1. The operator ˆ ( ˆ )†a ai i is the bosonic
creation (annihilation) operator for atoms in the ground state
mode of ith well and ˆ ˆ ˆ†n a ai i i= is the corresponding particle
number operator. J is the tunneling strength between the
wells. It is controllable via adjusting the barriers between the

wells. U is the atomic on-site interaction, and U> 0 (U< 0)
implies a repulsive (attractive) interaction. It is tunable via the
Feshbach resonances [60]. Here, we only consider attractive
interaction. In this model, the total atom number N ni i1

3= å =
is conserved. The system state can be expanded on Fock state
basis {|n1, n2, n3〉}, with ni particle in the ith well, i= 1, 2, 3.

When this STWS is placed into an external field, the
ground state energy of ith well (mode âi) experiences an
energy shift i denoted by the Hamiltonian

ˆ ˆ ˆ ( )†H a a , 2p
i

i i iå=

while the tunneling and interactions are both turned off
(J=U= 0). Particle in mode âi will obtain a phase shift

ti if = after evolution generated by Ĥp with time t. Phase
differences θ1= f1− f3 and θ2= f2− f3 are the parameters
we are aiming to estimate.

Before introducing details of our scheme, let us recall the
framework of multi-parameter estimation as follows (see
figure 1(b)).

(i) Initialization: prepare system to the initial state ∣ iyñ .
(ii) Parameterization: the initial state ∣ iyñ is parameterized

to the output state ∣ ( ) ˆ ( )∣ iq qy yñ = ñ via a unitary
evolution ˆ ( ) q , where θ= (θ1, θ2,K,θd) is a vector
parameter. In this article, we set d 2= .

(iii) Rotation: rotate the output state |ψ(θ)〉 to the measur-
able final state

∣ ˆ ∣ ( ) ( ). 3Rf  qy yñ = ñ

(iv) Measurement: perform a set of projective measurements
{ ˆ }nP (n represents the possible result) on the final state
∣ fyñ . The probability of observing the result n, which
when conditioned to the vector parameter θ, is

∣ ˆ ∣ ( )P . 4n nf fy y= á P ñ

Vector θ is estimated based on {Pn}, statistics of the
measurement results. In this article, we only discuss the unbiased
estimation. The Fisher information lies at the heart of evaluating
the precision of this estimation. For the probability shown in
equation (4), the matrix elements of CFIM Fc are defined as

( )F
P P

P
, 5

n

n n

n

c
, å=

¶ ¶
m n

m n

with ∂μ:=∂/∂θμ and μ, ν= 1, 2. According to the quantum
parameter estimation theory [4, 5], Fc determines the best pre-
cision of the unbiased estimators of θ under the given mea-
surement, when the precision is determined by the covariance
matrixΣ (Σμ,ν=Cov(θμ, θν)). The CFIM and covariance matrix
both depend on the measurement applied. By optimization over
all possible measurements, the CFIM itself is bounded by the
QFIM Fq via the quantum Cramér-Rao inequality (QCRI)

( ) ( ) ( )F F , 6c q1 1 S - -

Figure 1. (a) The schematic diagram of a symmetric triple-well trapped
Bose condensates. (b) Framework of multi-parameter estimation.
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where the matrix elements of Fq is defined as

[ ( )∣ ( )
( )∣ ( ) ( )∣ ( ) ] ( )

F 4 Re

. 7

q
, q q

q q q q

y y

y y y y

= á¶ ¶ ñ

- á¶ ñá ¶ ñ
m n m n

m n

QFIM is solely determined by the parameterized output state and
its dependence on the parameters. Here, Fc and Fq are assumed
invertible.

Following the standard methods, we extract a scalar
measure tr 2d qS = åm m out of Σ to quantify the (inverse of
the) estimation’s precision. According to the QCRI, we have

[( ) ] [( ) ] ( )F Ftr tr tr , 8qc 1 1 S - -

where the first equality can always be attained via the max-
imal likelihood estimation [4, 57, 58]. Thus, the precision of
an estimation scheme with a given measurement is measured
by (inverse of) [( ) ]Ftr c 1- . Furthermore, the attainability of the
second inequality in equation (8) relies on the chosen mea-
surement. It indicates that QFIM gives a lower bound of the
precision over all possible measurements. Based on the above
analysis, we measure the quality of a measurement method
with the gap

[( ) ] [( ) ] ( )F Ftr tr . 9c q1 1D = -- -

A smaller Δ thus indicates a more precise estimation, i.e., a
better measurement method.

3. Two-parameter estimation with the STWS

3.1. The initial state preparation

In quantum metrology, the quantum entanglement is the pri-
mary resource to improve measurement precision. It is well-
known that the quantum entanglement in a two-mode NOON
state can enhance the precision of single-parameter estimation
to the Heisenberg limit. In this section, we will show that one
can initialize our triple-well system to the high-entangled
three-mode NOON state

∣ ∣ (∣ ∣ ∣ ) ( )e e e
1

3
100 1 2 3Tiyñ = ñ = ñ + ñ + ñ

in the adiabatic limit, with ∣ ∣e N , 0, 01ñ = ñ, ∣ ∣e N0, , 02ñ = ñ,
and ∣ ∣e N0, 0,3ñ = ñ. We mention that ∣ 0T ñ is optimal to
estimate the relative phases between the three modes when
there is no reference mode [34].

Before introducing the preparation scheme, we briefly
recall the eigenspectrum structure of the Hamiltonian
equation (1), which is shown in figure 2. In the extreme case
of J= 0 and U< 0, the energy level is completely arranged
by the attractive interaction. It leads to a three-fold degenerate
ground state space N spanned by |e1〉, |e2〉, and |e3〉, where
all N particles are located in a single trap. When J≠ 0, the
ground state space is separated into a single ground state and
a two-dimensional excited space due to the tunneling term.
The two-fold degeneration of the first and second excited
states is induced by the chiral symmetry of the STWS. In the
strong coupling limit (J/|NU|? 1), the tunneling term is
dominant. The ground state and the two-fold degenerate

excited states are well-separated by an energy gap that is
proportional to the hopping strength J.

Next, we introduce the preparation of the target initial
state. Firstly, we prepare STWS into the ground state ∣ J g0y ñ in
the strong coupling limit (J0/|NU|? 1) at t= 0. It is man-
ageable due to the large energy gap. Then we slowly decrease
the coupling strength J to zero with J= J0− vt. The evolving
state is thus given by

∣ ( ) [ ˆ ( ) ]∣ ( )t H J texp i d . 11
t

J g1
0

1

0 òy yñ = - ñ

We adjust the decreasing rate v according to the adiabatic
fidelity [59]. The ground state will evolve into the three-mode
NOON state ∣ 0T ñ at J= 0, if the decreasing rate is lower
enough to meet the adiabatic condition. One can see the
particle distribution changes from figures 3(b) to (c), equally
distributed in |e1〉, |e2〉, and |e3〉. Furthermore, the vanishing
of the relative phases is verified numerically.

Intuitively speaking, this adiabatic process naturally presents
a state in the three-dimensional ground state space N at J= 0 in
the adiabatic limit. The subtle point is that the state we prepared
is ∣ 0T ñ exactly. To show this result more rigorously, we introduce
three basis states of the ground state space N , which reads ∣ 0T ñ,
and ∣ (∣ ∣ ∣ )( ) e e ee e 31 2 1

i2 3
2

i2 3
3T ñ = ñ + ñ + ñp p , respec-

tively. Then we calculate the fidelity ∣ ( )∣ ∣tFida a
2Ty= á ñ for

the whole adiabatic process, with a= 0, 1, 2, respectively. The
result is plotted as figure 3(a). It shows Fid0 increases with
decreasing J. Finally, we prepare the target state ∣ 0T ñ at J= 0
almost certainly, as indicated by Fid0≈ 1. Meanwhile, fidelities
of the other two states, Fid1 and Fid2, vanish not only for J= 0
but all J. It indicates that ∣ 1T ñ and ∣ 2T ñ, hence, all of states in N
other than ∣ 0T ñ, are excluded in the whole adiabatic evolution. It
is strong evidence that the state ∣ iyñ we prepared is precisely the
target state ∣ 0T ñ in the adiabatic limit.

3.2. Parameterization and the QFI

In the last section, the three-mode NOON state ∣ 0T ñ is prepared
as the initial state of STWS. While keeping J= 0, we put the
STWS in state ∣ 0T ñ into an external field. Denote the shifted

Figure 2. Energy spectrum versus J. Here we set N= 30. Only the
lowest 30 energy levels are given.
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energy of mode âi (ground state energy of the ith trap) in this
field as i . Then the mode âi will evolve as â ei

i if with ti if = ,
after time t. The state ∣ iyñ is thus parameterized to the output
state as

∣ ( ) ( ∣ ∣ ∣ ) ( )e e e
1

3
e e , 12N Ni

1
i

2 31 2qy ñ = ñ + ñ + ñq q- -

where θ= (θ1, θ2), with θi= fi− f3, is the vector parameter to
be estimated. We mention that the on-site interaction is negli-
gible for it only contributes a global phase to |ψ(θ)〉.

Substituting equation (12) into equation (7), we can
calculate the four matrix elements of the QFIM on θ directly.
The corresponding QFIM is

( ) ( )F
N4

9
2 1
1 2

. 13q
2

= -
-

It shows that the QFIM only depends on the total particle number
N, independent of θ. Furthermore, based on equation (8), we
have

[( ) ] ( )F
N

tr
3

, 14q2 1
2

qáD ñ =-

where 〈Δ2θ〉≡ 〈Δ2θ1〉+ 〈Δ2θ2〉 is the total variance of θ1 and
θ2. Equation (14) indicates that the upper bound precision of
estimating θ can approach the Heisenberg scaling.

3.3. Projective measurement

We have discussed the theoretical limit of the sensitivity via
the QFIM. However, the accessible sensitivity highly depends
on the measurement scheme. In this section, we focus on
particle number measurement and study its precision with
the CFIM.

In STWS, it is convenient to measure the particle number
in each well on the final state. This measurement is depicted
by a set of projection operators

{ ˆ } {∣ ∣} ( )n n n n n n, , , , , 15n 1 2 3 1 2 3P = ñá

with n= (n1, n2, n3). However, the phases will be eliminated

if we directly perform this measurement on the parameterized
state |ψ(θ)〉. In this way, the parameter θ cannot be inferred.
Hence, as the pretreatment of the measurement, we rotate the
output state |ψ(θ)〉 with

ˆ ( ) [ ˆ ] ( )H Jexp i , 16R R t t= -

where τ= Jt is the rescaled rotation time and

ˆ ( ˆ ˆ ) ( )†H J a a h.c. , 17R
i

i j
1

3

å» - +
=

with j= (i+ 1) mod3+ 1. The tunneling strength J is fixed
throughout the rotation. This Hamiltonian is valid when

∣ ∣J U N . It can be realized by both (1) increasing J via
lowering the energy barrier between two traps and (2) tuning
U≈ 0 via the Feshbach resonance simultaneously. Based on
equations (3), (12), and (16), we have the rotated final state as
(see appendix A)

∣ ( ) ( ) ∣ ( )C n n ne , , 18N

n n i

N n

, 1

3
i

1 2 3i i

1 2

f ååy h t x tñ = ñq

=

-

with ( )!
! ! !

C N

n n n3

1 2

N2 1
1 2 3

= + , ξ(τ)= (e3iτ+ 2)/(e3iτ− 1),

η(τ)= e2iτ− e−iτ, θ3= 0.
Applying the particle number measurement ˆ

nP to the
final state ∣ fyñ , we have the probability of acquiring results
|n1, n2, n3〉 as

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

( ) ( )P C 2 sin
3

2
e . 19n

N

i

N n2
2

i
2

i iåt
x t= q-

The CFIM of probability Pn can be acquired directly via the
definition equation (5). We denote it as Fc(θ, τ), for it
depends on both the estimated vector θ and τ.

3.4. The optimal measurement precision

In this section, we will analyze the measurement precision
with the gap Δ defined in equation (9). The optimal precision

Figure 3. State preparation. (U=−0.5 and N= 30) (a) The fidelity versus J, where ∣ ( )∣ ∣tFida a
2Ty= á ñ , for a= 0, 1, 2. J= J0 − vt with

J0 = 10 and v= 0.2. |ψ(t)〉 is the evolving state from the ground state at J= 10. Three-mode NOON state ∣ 0T ñ is the target initial state.
{∣ ∣ ∣ }, ,0 1 2T T Tñ ñ ñ are the orthogonal basis of the there-dimensional ground state manifolds N at J= 0. (b)–(c) Distribution of quantum states
in basis |n1, n2, n3〉. (b) Ground state at J= 10. (c) |ψ(t)〉 at J= 0, with v= 0.2. It is ∣ 0T ñ approximately. (d) The inset shows the speed
dependence of the state preparation via the final state fidelity Fid0 at J= 0 versus the speed v.
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can be given by optimizing both the encoded parameters θ

and rotation time τ.
Firstly, we discuss the dependence of Δ on θ with a

given rotation time τ numerically. The results are shown in
figure 4, where only one period is given. We observe that Δ
highly depends on θ1 and θ2. For a given τ, the maximal
precision can only be achieved in several points ‘•’. Luckily,
with enough prior information provided, we can shift the
estimand to the vicinity of these points to approach the
maximal precision.

Secondly, by comparing figures 4(a) and (b), we find that
the maximal precision over parameters θ highly depends on
the rotation time τ. Specifically, we define

( ) [ ( )] ( )
{ }
min ln 20

,1 2

d t = D
q q

to study the effect of rotation time τ on the optimal precision
over θ. As shown in figure 5(a), δ(τ) varies periodically with

τ. There are three short periods with duration 2π/3 in a long
period with duration 2π. More importantly, δ(τ) takes the
minimum value at points

( ) ( )k2 1

3 9
, 21t

p p
»

+


with k Î . We further show its validity numerically in
figure 5(b), which indicates that τO= 2π/9 is one of the
optimal rotation times.

Now, one can acquire the optimal precision of our
scheme by choosing the optimal phases (θ1, θ2) at an optimal
time τ given in equation (21). It can be done numerically. An
example with τ= τO= 2π/9 is given in figure 4(b), where the
point ‘H’ is one of the optimal sets of phases.

To evaluate the quality of the optimal precision, we study
the scaling of CFIM with particle number N at τ= τO= 2π/9
both numerically and analytically. The numerical result is
shown as the red line in figure 6. By searching the minimum

Figure 4. ( )ln D versus (θ1, θ2) with a given τ. (a) τ= 0.2π. (b)
τ= τO = 2π/9. The maximum precision (minimum of ( )ln D ) for a
given τ is marked as the black dots ‘•’. θG = (2π/3, 2π/3). Here, we
set N= 30.

Figure 5. (a) δ(τ) versus τ. (b) Λ versus Δτ. Λ= δ(τ)− δ(τO), ‘Δ±’

denote the line for τ= τO ±Δτ, with τO = 2π/9. Λ decreases to
zero from above as Δτ approaches 0. Here, we set N= 30.

5

Commun. Theor. Phys. 74 (2022) 045103 F Yao et al



of [( ) ]Ftr c 1- over the phase parameter θ at τO= 2π/9, we find
the optimal precision satisfies the following linear relationship

[( ) ] ( )
{ }

F
N

min tr 3.87
1

. 22c

,

1
2

O1 2

» ´
q q t

-

It indicates a Heisenberg scaling precision. To show it more
concretely, we further give a lower bound of the optimal
precision analytically. The precision for the optimal phase
point at τO is challenging to be given analytically. Hence, we
calculate the precision for point ‘G’ instead, which is located
near the optimal point ‘H’. The phase parameter GNq of the
point ‘G’ is given by Nθ1= Nθ2= 2(N+ 1)π/3, with N
denoting the particle number. The CFIM of the state ‘G’ is
(see appendix B)

⎛
⎝

⎞
⎠ ( ) ( )F

N
,

2

9 3
2 1
1 2

. 23c
G

2

Nq p
= -

-

And the corresponding precision is

[( ) ] ( )F
N

tr
4

. 24c 1
2

=-

The result is shown as the blue line in figure 6 in comparison
with the optimal precision given by equation (22). It shows
that the scaling of the two precisions is very close.

We mention that equation (24) is valid for all particle
numbers N. It indicates that, with the proposed measurement
scheme, the optimal measurement precision of θ can always
show a better Heisenberg scaling than equation (24). Fur-
thermore, as indicated by figures 4(b) and 6, the precision is
robust around the optimal parameters, e.g. |ψ(θG)〉 with
parameters θG still have relatively high precision with a
Heisenberg scaling. It significantly reduces the demands for
practical studies, which relieves the working parameters’
constrain from a point ‘H’ to, e.g. the white zoom in
figure 4(b). With a relatively larger acceptance zoom of the

parameter shifts, the demands for the prior information about
the estimand θ are also highly reduced.

We have discussed the optimal precision under the pro-
jection measurement. However, the result is acquired under
the approximation equation (17). If the on-site interaction
between atoms cannot be tuned to zero precisely in the
rotation operation, the total Hamiltonian reads

ˆ ( ˆ ˆ ) ˜ ˆ ( ˆ ) ( )†H J a a h c U n n. . 1 , 25R
i

i j
i

i i
1

3

1

3

å å¢ = - + + -
= =

where Ũ denotes a small residual interaction induced by the
imperfect control of the Feshbach resonance. To discuss the
effect of residual interaction on the optimal precision, we
define ( ˜ )U,Od t as the generalization of δ(τO) (equation (20))
by substituting ˆ ( )R O t to the imperfect rotation

ˆ ( ) [ ˆ ] ( )H Jexp i . 26R O R O t t¢ = - ¢

( ˜ )U,Od t gives us the optimal precision over θ acquired under
the imperfect rotation. We plot the ratio ( ˜ )U,Od t as a function
of Ũ in figure 7. Although ( ˜ )U,Od t decreases with increasing
Ũ , the precision ( ˜ )U,Od t is roughly on 99% of δ(τO) when
∣ ˜ ∣NU J 0.1= . Even when ∣ ˜ ∣NU J 1» , i.e., the residual
interactions and tunneling energy are on the same level, there
still exists a platform around ( ˜ ) ( )U, 0.89O Od t d t= . Thus,
imperfect rotation with small residue interaction Ũ has accep-
table influence on the optimal precision.

4. Conclusion and discussion

In this work, we have proposed a scheme for two-parameter
estimation via a Bose–Einstein condensate confined in a
symmetric triple-well potential. The three-mode NOON state
has been prepared adiabatically as the initial state. The two

Figure 6. The precision ( [( ) ]F1 tr c 1- ) versus N2. Here, we set
τ= τO = 2π/9. The red line denotes the numerical optimal
precision. The blue line is analytical result at GNq , which
reads [( ) ]F Ntr 4c 1 2=- .

Figure 7. The precision ( ˜ )U,Od t versus Ũ , with τO = 2π/9.
( ˜ )U,Od t is the optimal precision acquired via the imperfect rotation

ˆ ( )R O t¢ . δ(τO)= δ(τO, 0). Here, we take J= 10, N= 30.
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parameters to be estimated are the two-phase differences
between the wells, which are encoded into the initial state via
the external fields. We perform the particle number mea-
surement in each well to read the parameterized state.
Moreover, a rotation operation is adopted on the output state
before the measurement. We optimize both the parameters
and rotation time to maximize the estimation precision. As a
result, we have approached the Heisenberg scaling precision
on simultaneous estimating two parameters under the optimal
measurement.

We mention that our scheme is discussed in the ideal
scenario in this article. To study it more rigorously, one
should build an open quantum system model and introduce
noise analysis based on practical experiments. We will
advance this research in further studies. We expect to realize
the high precision estimation of the two-dimensional fields,
such as the magnetic field and gravity field, via ongoing
research in this triple-well system.
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Appendix A. The derivation of the rotated final state

The parameterized output state is
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The output state ∣ ( )qy ñ can be transformed into the eigenbasis
vector of ĤR via equation (A2). The transformation of ∣ ( )qy ñ

is thus given as below,
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with θ3= 0, n1+ n2+ n3= N. It is equivalent to
equation (18).

Appendix B. Scaling of the CFIM entries

In this section, we will show that: for a final state ∣ fyñ with
τ= 2π/9, there exist parameters GNq with Nθ1=Nθ2=
(N+ 1)2π/3, such that the QFI entries
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We begin with the cases where the total particle number
N= 3k, k Î +. Set Nθ1= Nθ2= 2π/3, we have the prob-
ability of acquiring the result |n1, n2, n3〉 as
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which is equivalent to equation (19). And the derivatives read
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For simplicity, we further reformulate the CFIM entries as
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The value of fμν(n) only depend on n mod 3. We list them in
table B1. We mention that the coefficient of fμν(n) in
equation (B5) is invariant under the arbitrary permutation of
{n1, n2, n3}. Hence, fμν(n) can be further divided into three
types with { } { }n n n, , mod 3 0, 0, 01 2 3 = , {1, 1, 1}, and {0,
1, 2}, respectively. And Fc
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Because, for a set of given {n1, n2, n3}, this substitution keeps
the average of fμν(n) over the permutations of this set invar-
iant. Furthermore, we have the summation:
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Make the substitution (B7) and (B8) on equation (B5), then
insert the summation (B9) and (B10), we have the CFIM
entries

( )F F
N

F F
N2

3
,

3
. B11c c c c

11 22

2

12 21

2
= = = = -

We have thus shown the validity of equation (B1) for particle
number N= 3k with k Î +. Its validity for N= 3k+ 1 and
N= 3k+ 2 can be verified with the same methods.
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