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Reconstruction of crystal band structure by spectral caustics in high-order harmonic generation
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We propose a method to retrieve the band structure by measuring the caustic points of the harmonic spectrum
generated by the interaction between laser and solid. The relation between the energy ωc of the spectral caustic
points and the external fields F encodes the bandgap of the solid. Specifically, for a simple band structure,
εg(k) = ε0 + ε1[1 − cos(ka0)], according to the semiclassical theory, we map the crystal momentum kc to the
caustic point energy ωc by F since kc is independent of the parameters ε0 and ε1. Furthermore, for the general
band structure, because its first-order form is a simple energy band, we can roughly retrieve the first-order form
of the energy band and obtain the accurate band structure by iterative calculation. Using this method, we solve
the deviation between the retrieved and the target bandgap near the Brillouin zone boundary. Also, we show that
this method is suitable for wide-bandgap materials.
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I. INTRODUCTION

The band structure is an essential property of the material
responsible for explaining the electrical properties of a mate-
rial. At present, the primary method of measuring the energy
band structure in experiments is angle-resolved photoemis-
sion spectroscopy (ARPES) [1]. Recently, the high-order
harmonic spectrum generated by the interaction between a
laser and a solid is expected to be a supplement to ARPES and
become a new all-optical nondestructive detection method for
the energy band mechanism of materials [2–5].

The spectral structure of high-order harmonic generation
(HHG) in solids is shown to be sensitive to the crys-
tal band structure, including multiple plateaus [6–8], cutoff
frequency [9–12], and anisotropy [13–15]. Based on these
properties, the HHG spectrum can be used to reconstruct the
band structure of the material. Recently, Li et al. [5] presented
a temporal Young’s interferometer and demonstrated its ap-
plication in retrieving the band structure of ZnO in which
the interference fringes of the harmonic spectrum can be pre-
dicted by semiclassical theory. The three-step model of solids
successfully explains the generation of interband harmonics,
where the semiclassical motion of an electron-hole pair is
determined by the band structure and external field [16,17]
and provides a new method for band reconstruction [5].

However, many issues and challenges have arisen during
the process of band reconstruction based on semiclassical
theory. For example, a wide bandgap gives rise to a large
frequency shift of the harmonic spectrum, while for a narrow
bandgap, the frequency shift can be neglected. Particularly,
for insulators, a small increase in the bandgap will cause a
significant frequency shift of the HHG spectrum peak, which
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will affect the position of the interference fringes in the HHG
spectrum. In addition, the retrieved bandgap shows a sig-
nificant deviation from the target near the boundary of the
Brillouin zone (BZ). In this paper, to reduce the deviation of
the band reconstruction at the Brillouin zone boundary and
overcome the influence of the wide bandgap, we propose a
new reconstruction method using spectral caustics of HHG.

Spectral caustics can be analyzed within the framework
of catastrophe theory [18,19]. In the solid HHG spectrum,
there are two kinds of caustic enhancement. The first is the
van Hove singularity of the energy band structure, where the
relative velocity of the electron-hole pair at recombination is
0 [20]. These caustic points are determined by the band struc-
ture and can be classified as ‘fold’ catastrophes. The second
kind of caustic enhancement is the coalescence of two or more
semiclassical trajectories with the same recombined energy ω,
where the derivative of ω with respect to the birth time of the
electron-hole pair, t ′

s, is 0, namely, dω/dt ′
s = 0 [21]. Com-

pared with the caustics caused by the van Hove singularity,
the second kind of caustic point is more easily controlled by
the external field. In addition, a stronger enhancement effect
can be obtained by coalescing more than two semiclassical
trajectories with the help of multicolor external fields [22,23].
Therefore, we choose the second kind of caustics to retrieve
the crystal band structure.

In the present work, we investigate spectral caustics with a
swallowtail structure in the HHG induced by a nonresonant
phase-locked two-color laser pulse. Based on the spectral
caustics, we propose a method to retrieve the band structure.
The method is shown to be effective for retrieving the band
structure by considering ZnO as a sample. For wide-bandgap
materials, the retrieving band structure can also reproduce the
target bandgap well. A more accurate band structure can be
obtained using the general band structure and considering the
varying transition dipole moment, the Berry curvature, and
the frequency shift. This paper is organized as follows. In
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Sec. II, the theoretical model and reconstruction methods are
presented. The results and a discussion are reported in Sec. III,
and a brief conclusion is presented in Sec. IV.

II. THEORETICAL MODEL AND METHODS

We consider a semiconductor that interacts with a laser
pulse. The interaction can be described by two-band semicon-
ductor Bloch equations (SBEs) in the length gauge [16,24].
Under the assumption of the Keldysh approximation, the yield
of the interband HHG in solid can be expressed as [16,25]

Jer (ω) = ω

∫
BZ

dk d (k)
∫ ∞

−∞
dt eiωt

∫ t

−∞
dt ′ d∗(κt ′ )F (t ′)

× e−iS(k,t ′,t )−(t−t ′ )/T2 + c.c., (1)

where κt ′ = k − A(t ) + A(t ′), k is the crystal momen-
tum, and A(t ) = − ∫ t

−∞ F (τ )dτ is the vector potential
with F as the electric field of the laser pulse. d (k) =
−i〈uc(k)|p|uv (k)〉/εg(k) is the transition moment, with
|un′ (k)〉 representing the periodic part of Bloch states and
εg(k) being the bandgap between the conduction and the
valence band at the crystal momentum of k. S(k, t ′, t ) =∫ t

t ′ εg(κτ )dτ and T2 represents the dephasing time.
Compared with the rapid oscillation of exp(−iS + iωt ), the

terms other than the exponent can be regarded as a slowly
varying item, g(k, t ′, t ). Accordingly, Eq. (1) can be solved
using the saddle point approximation and written as

Jer (ω) ∝
∑

ks

g(ks, t ′
s, ts)e−iS(ks,t ′

s,ts )+iωt−(ts−t ′
s )/T2√|S′′(ks, t ′

s, ts)| . (2)

The points (ks, t ′
s, ts) are given by the saddle point equations

∂S

∂k
=

∫ t

t ′

∂εg(κτ )

∂k
dτ = 0, (3a)

∂S

∂t ′ = −εg(κt ′ ) = 0, (3b)

∂S

∂t
= εg(k) + F (t )

∫ t

t ′

∂εg(κτ )

∂k
dτ = ω, (3c)

which describe the classical trajectory of electrons. The deter-
minant of the Hessian matrix is |S′′| = −a(κt ′

s
)a(ks) dω/dt ′

s
with a(κτ ) = ∂εg(κτ )/∂ks [21]. Here a(κt ′

s
) and a(ks) repre-

sent the relative velocity of the electron-hole pair at birth
and recombination, respectively. dω/dt ′

s is the derivative of
the recombined energy with respect to the birth time of the
electron-hole pair.

For direct-bandgap materials, the electron-hole pair is born
approximately at the minimum bandgap corresponding to
a(κt ′ ) = 0. At the same time, the electric field is generally
nonzero at t ′

s, namely, F (t ′
s ) �= 0. Therefore, a singularity also

appears when the trajectories satisfy the condition [21]

dω

dt ′
s

= ∂εg(ks)

∂ks
+ F (ts)

∫ ts

t ′
s

∂2εg(κτ )

∂k2
s

dτ = 0. (4)

As can be seen, dω/dt ′
s depends on the energy band structure

and the external field. Thus we can modulate the caustic points
by adjusting the external field, F . In addition, we denote the
saddle point that satisfies Eq. (4) as (kc, t ′

c, tc).

FIG. 1. The red (left) [blue (right)] arrows denote the mapping
relation between the electric field F and the harmonic energy ωc

(crystal momentum kc) at the caustic point.

Here we consider two cases. The first one is for a simple
band structure, namely, εg(k) = ε0 + ε1[1 − cos(ka0)]. In this
case, we find that the caustic point is independent of ε0 and ε1

through analysis of Eqs. (3a), (3b), and (4), which means that
the mapping relation of F and kc can be obtained with the
help of the semiclassical theory (see blue arrow in Fig. 1).
At the same time, the caustic point energy ωc can be read
from the harmonic spectrum (see red arrow in Fig. 1). By
choosing the appropriate external field, we can ensure that
there is only one caustic point on the harmonic spectrum for
each field strength. As a result, the dependence of εg on kc can
be obtained according to Eq. (3c).

The other case is for the general band structure. We expand
the bandgap with Fourier series,

εg(k) = ε0 +
N∑

i=1

εi[1 − cos(ika0)], (5)

and set N to 3, while higher-order terms can also be studied
in the same way. Since the caustic points of the semiclassical
prediction and the experimental measurement have a certain
derivation, we choose the iterative method to solve Eqs. (3a)–
(3c) and Eq. (4) instead of solving them directly with four
caustic points.

First, set the dispersion relation as εT
g (k) = ε0 + ε1[1 −

cos(ka0)], which contains the first-order term of the Fourier
expansion of the general band structure. Second, substitute
εT

g (k) into Eqs. (3a)–(3c) and Eq. (4) and obtain the crystal
momentum-dependent harmonics, ωc(kc). Third, fit ωc(kc)
with εg(k) [Eq. (5)]. Finally, set εT

g (k) = εg(k) and repeat
the second and the third steps until reaching the convergent
dispersion relation [see Eq. (5)], namely, a set of solutions of
εi is convergent.

During the reconstruction of the ZnO and square lattice
band structure (see in Sec. III), we find that the convergence
rate is rapid if the term i = 1 dominates the high-order terms,
i.e., ε1 > ε2, ε3, . . . , εN . The reason is that we use εT

g (k) =
ε0 + ε1[1 − cos(ka0)] as the initial approximation of our iter-
ation. Domination of εg(k) by the higher-order term may cause
the convergence rate to slow down. In this case, our simple
iteration can be improved by applying some other optimiza-
tion methods such as the quasi-Newton method or conjugate
gradient method. In the following, we show an example to
verify this reconstruction method.

We choose three-dimensional (3D) ZnO as the target ma-
terial interacting with collinearly polarized two-color laser
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FIG. 2. (a) First Brillouin zone of ZnO (wurtzite structure).
(b) Band structure of ZnO along �-M and �-K .

pulses, consisting of the fundamental wave (FW) and its
second harmonic (SH). Figure 2(a) shows the orientation
of the reciprocal lattice for ZnO (wurtzite structure) where
x̂ � �-M, ŷ � �-K , ẑ � �-A (optical axis). The lattice constant
(ax, ay, az ) = (5.32, 6.14, 9.83) a.u., the reciprocal lattice
vector (bx, by, bz ) = (π/

√
3ax, 4π/3

√
3ax, 2π/az ), and other

band structure parameters can be found in Ref. [26]. Although
the interband HHG is mainly generated by the transition be-
tween the highest valence band and the first conduction band
(CB1), three bands are considered in the simulation.

The multiband SBEs in the length gauge can be expressed
as [21,24]

i∂tρ
k̂
nn′ (t ) = −

(
εk̂

n (t ) − εk̂
n′ (t ) + i

(1 − δnn′ )

T2

)
ρ k̂

nn′ (t )

+ F̂ (t ) ·
∑

m

[
d̂ k̂

mn(t )ρ k̂
mn′ (t ) − d̂ k̂

n′m(t )ρ k̂
nm(t )

]
,

(6)

where ρ k̂
nn′ is the density matrix element with initial crystal

momentum k̂, εk̂
n (t ) is the energy of the nth band at k̂ + Â(t ),

and n = v, ci for the highest valence band and the i conduction
band, respectively. The k̂-dependent dipole d̂ k̂

nm is calculated

by dk̂, j
nm (t ) =

√
Ep, j/2[εk̂

nm(t )]2, where j = x, y, z and Ep, j are
the Kane parameters. Here, we set the dephasing time T2 =
T0/2 and T0 is the period of the FW. The electric field of the
collinearly polarized two-color pulses in which the polariza-
tion of the FW and the SH are along the x̂ axis [orange arrow
line in Fig. 2(a)] can be written as

F̂ (t ) = F0[cos(ω0t ) + R cos(2ω0t + ϕ)] f (t ) x̂, (7)

where R is the ratio of the amplitude of the SH to the FW
fields and ϕ is the phase delay. The carrier frequency of the
FW is ω0 = 0.0117 a.u. and the envelope f (t ) is trapezoidal,
with five cycles at peak intensity (3-5-3). The high harmonic
spectrum is obtained from the Fourier transform of the time-
dependent induced current Ĵ (t ),

I (ω, F0) ∝ |Ft[Ĵ (t ) · n̂]|2, (8)

where n̂ is the unit vector in the polarization direction.
In this work, we hope to retrieve the bandgap between CB1

and the valence band for ZnO. Besides, since the polarization
direction of the external field is along the symmetry axis x̂ and
the bandgap of ZnO is structurally symmetrical, the classical
action of electron-hole pairs can be regarded as 1D.

FIG. 3. (a) HHG spectra as a function of the phase delay ϕ for
R = 0.48 and the field amplitude F0 = 0.002 a.u. The green line
represents the caustic line predicted by the semiclassical theory.
(b) Optimal phase of the caustic enhancement as a function of the
field strength for R = 0.48.

III. RESULTS AND DISCUSSION

In this section, first, we present the optimal phase for differ-
ent field strengths. Second, we show the results of retrieving
the bandgap of ZnO using the methods proposed in Sec. II
and prove that this method is robust to the focal volume
averaging (FVA) of HHG. Third, we verify that this method
is suitable for wide-bandgap materials. Finally, we show that
the reconstruction method works for a band structure with
degeneracy or a cross.

A. The optimal phase

Figure 3(a) shows the HHG spectra obtained by numer-
ically solving SBEs as a function of the phase delay ϕ for
F0 = 0.002 a.u. and R = 0.48. The color scale ranges from
the brightest to one-tenth of the brightest. As the phase delay
increases, the harmonic order at the caustic points presents
a swallowtail structure (the caustic line). This caustic line
can be well predicted by the semiclassical theory [see green
line in Fig. 3(a)]. We focus on the most caustic enhancement
(brightest point in the diffraction pattern), located near the
convergence of the caustic line. Figure 3(b) shows the opti-
mal phase corresponding to the brightest point of the HHG
spectra in Fig. 3(a) for different field strengths. For the field
parameters used here, the optimal phase is in the range of 5.36
to 5.64 rad as the field strength increases.

Generally, the dispersion relation near the high symmetric
point, such as �, can be approximated as a quadratic function
of the crystal momentum, so the position of the singularity
is determined by the three parameters (R, ϕ, ω) which are
independent of the field strength. In other words, the optimal
phase is fixed. The small oscillation of the optimal phase
(0.28 rad) in Fig. 3(b) results from the nonquadratic dispersion
relation far away from the high symmetric point. Here we
should point out that the HHG spectrum has caustics for any
phase delay and can be used for band reconstruction. The
reason for the choice of R = 0.48 and ϕ = 5.5 rad in the
following calculations is that the caustic point near the optimal
phase has a better enhancement conducive to experimental
measurements.
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FIG. 4. (a) Normalized HHG spectra as a function of the field
strength F0 for R = 0.48 and the phase delay ϕ = 5.5 rad. The
horizontal dashed white line is the maximum bandgap between the
valence and the conduction band, and the open white circles mark
the maximum HHG yield for each field strength. The solid green line
represents the caustic line predicted by semiclassical theory. (b) The
intensity of HHG as a function of the field strength for the 17th
(black squares), 24th (red circles), and 33rd (blue triangles) harmon-
ics. (c) Target (solid black line) and retrieved momentum-dependent
bandgap. Open blue circles represent the retrieved bandgap for a
simple band structure. Filled blue squares, red circles, and cyan
triangles represent the retrieved bandgaps with Eq. (5) for phase
delay ϕ = 5.4, 5.5, and 5.6 rad, respectively.

B. Bandgap reconstruction of ZnO

Figure 4(a) shows the normalized HHG spectrum as a
function of the FW field strength. The spectrum has been
divided by the maximum HHG intensity between 10th and
45th order at each field strength value. The caustic points [see
the open white circles in Fig. 4(a)] read from the HHG spectra
and the caustic line [see solid green line in Fig. 4(a)] predicted
by the semiclassical theory are in remarkable agreement. Both
of them show that the caustic point energy in the HHG spec-
trum can cover the entire bandgap with adjustment of the FW
strength, while the caustic enhancement disappears when the
harmonic energy is greater than the maximum bandgap [see
dashed white line in Fig. 4(a)]. This suggests that we can
directly read the maximum bandgap from the HHG spectra.

As shown in Fig. 4(a), the caustic points depend on both the
field strength and the harmonic order. However, the harmonic
order at the caustic point is discrete [see Figs. 3(a) and 4(a)].
Therefore, for convenience, we read the caustic point from
the HHG yield as a function of the field strength for a fixed
harmonic order. Figure 4(b) shows the HHG yield with respect
to the field strength for the 17th, 24th, and 33rd harmonics. As
can be seen, as F0 increases, the plateau appears. We regard the

field strength at the first peak on the plateau as the position of
the caustic point [see orange arrows in Fig. 4(b)].

Figure 4(c) shows the band structure using the recon-
struction method presented above. For comparison, the target
bandgap is also plotted [see the solid black line in Fig. 4(c)].
In the case of a simple band, the retrieved band structure [see
the open blue circles in Fig. 4(c)] well reproduces the target
bandgap when the crystal momentum is close to � (kx = 0),
namely, kx < 0.7 bx, while it deviates from the target bandgap
when kx > 0.7 bx. The deviation is proportionate to kx and
it is caused by omission of the higher-order terms of the
target bandgap. To get a more accurate reconstructed band,
we also consider the higher-order terms of the dispersion
relation [see Eq. (5)]. In the iterative calculation process, we
fixed the maximum value of the bandgap, which can be read
from Fig. 4(a) with an error of less than one photon energy.
The resulting bandgaps for different phase delays (filled blue
squares, red circles, and cyan triangles) are in remarkable
agreement and all of them show that an accurate bandgap
can be reconstructed using the reconstruction method. A more
accurate bandgap can be obtained by considering the higher-
order terms.

C. Focal-volume averaging

In the above simulation, only a single field strength is
considered. However, since the intensity distribution of the
focused laser beam is spatial non-uniform, the actual ex-
perimental result includes the emitted harmonics induced by
lasers of various intensities. To further illustrate the feasibility
of this method in the experiment, focal volume averaging
(FVA) has to be taken into account in the simulations. There-
fore, the total harmonic spectrum at a peak field strength F0 is
written as

I (ω, F0) =
∫ F0

0
I (ω, F )

∂V

∂F
dF. (9)

For simplicity we choose the form ∂V/∂F as [27]

∂V

∂F
∝ 1

F

(
F 2

0

F 2
+ 2

)√
F 2

0

F 2
− 1. (10)

Though the form can be improved by considering the shape
and volume of the solids or the interference effect, we can see
that our method is robust to the average because of the very
sharp caustic transition.

Specifically, Fig. 5(a) shows the field strength dependence
of the 17th-, 24th-, and 33rd-order harmonic after consider-
ing the FVA with filled black squares, red circles, and blue
triangles, respectively. For comparison, the field strength de-
pendence of the 17th-order harmonic corresponding to the
single field strength is shown again with the dotted-dashed
black line. The orange arrow denotes the caustic field strength
Fc of 17ω0. As can be seen, the interference oscillation has
been smoothed by the average. However, the transition from
the very low yield of HHG with F < Fc to the plateau yield
with F > Fc corresponds to the transition from the “dark side”
of the caustic to the “bright side” [28,29]. The very sharp
caustic transition makes it easy for us to determine Fc through
the inflection point of I (ω, F0). Using the caustic point reading
from the HHG spectra, including the FVA effect, we achieve
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FIG. 5. (a) The intensity of HHG as a function of the field
strength for the 17th-order (black squares), 24th-order (red circles),
and 33rd-order (blue triangles) harmonics after considering the focal
volume average, respectively. The dotted-dashed line is the same as
the black squares in Fig. 4(b). (b) Target bandgap (solid black line)
and retrieved momentum-dependent bandgaps using a simple (open
blue circles) and a general (filled red circles) band structure.

a good reconstruction of the bandgap [see solid black line and
open blue circles in Fig. 5(b)].

D. Wide-bandgap material

The method is also applicable to reconstruction of a
large bandgap. Figure 6(a) shows the HHG spectra for a
large bandgap, where we manually increase the width of the
bandgap to εg(k) → εg(k) + 5ω0. Compared to the case of
a narrow bandgap [see open white circles in Fig. 4(a)], the
caustic points for the wide bandgap [see open white circles in
Fig. 6(a)] are shifted upward by about 5.5ω0. The extra shifted
frequency 0.5ω0 is caused by the widening of the bandgap.
The caustic enhancement disappears at the 44th-order har-
monic, which covers the entire bandgap in this case, allowing
us to reconstruct the band structure. As shown in Fig. 6(b),
the result of the simple band assumption still reconstructs
the target bandgap of the wide bandgap well for kx < 0.7bx.
In the case of the general band, the retrieved bandgap is in
good agreement with the target bandgap near the Brillouin
zone boundary and �. The maximum deviation between the
retrieved and the target bandgaps is only about 0.01 a.u.
(≈0.03bx) at kx ≈ 0.4bx.

FIG. 6. (a) Normalized HHG spectra as a function of the field
strength for the bandgap as εg(k) → εg(k) + 5 ω0. The field parame-
ters used are the same as in Fig. 4(a). (b) Target (solid black line) and
retrieved momentum-dependent bandgaps using a simple (open blue
circles) and a general (filled red circles) band structure.

FIG. 7. (a) Normalized HHG spectra as a function of the field
strength F0 for R = 0.48 and phase delay ϕ = 5.5 rad. (b) HHG
spectrum of the F0 = 0.003 a.u. section. The left (right) solid red
line is the minimum (maximum) bandgap between the second and
the fourth bands. The left (right) dashed purple line is the minimum
(maximum) bandgap between the third and the sixth bands. (c) The
second to sixth bands of a two-dimensional square lattice. (d) Re-
trieved bandgap (filled red circles) and target bandgap (solid black
line).

The reconstruction method in this paper does not ac-
count for the frequency shift. The frequency shift can be
estimated by assuming that the frequency shift of each har-
monic order is the same. As a result, the caustic structure
read from the HHG spectra remains unchanged and the
band structure can be approximated as εg(ks) = εt

0 + εt
1[1 −

cos(ksa)]. Additionally, according to Eq. (4), ks is indepen-
dent of the simple band structure, so that the band structure
can be solved by choosing two caustic points. Accord-
ingly, the overall frequency shift caused by the bandgap can
be estimated as �ε0 = εt

0 − εl
0, where the exact minimum

bandgap εl
0 can be accurately measured with linear optical

methods.

E. Two-dimensional square lattice

In this subsection, we further show the effect of multi-
bands on the reconstruction method with spectral caustics.
Figure 7(c) shows the second to sixth bands of the 2D square
lattice along �-X , where the periodic potential of the 2D
square lattice V (x, y) = −0.4(1 − cos 2πx

a0
)(1 − cos 2πy

a0
) and

a0 = 6 a.u. Initially all electrons are in valence bands, namely,
the second and third bands. According to the solution of the
Schrödinger equation, only bands with the same color have
dipole-allowed couplings. The ratio R and the phase delay ϕ

of the electric field are 0.48 and 5.5 rad, respectively.
Figure 7(a) shows the normalized HHG spectra for the 2D

square lattice. The caustic energy range of the HHG above
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the minimum bandgap is 12ω0 to 38ω0, corresponding to
the minimum (ε24

g,min ≈ 11ω0) and maximum (ε24
g,max ≈ 38ω0)

bandgap between the second and the fourth bands, respec-
tively. Therefore, the caustics of HHG spectra in Fig. 7(a) are
generated by the transition between the second and the fourth
bands.

The multiband effect is demonstrated in the HHG spectrum
in Fig. 7(b). Two plateaus appear in the spectrum. The HHG
intensity at the cutoff frequency (ωcut) [see orange arrows in
Fig. 7(b)] shows a significant enhancement. The HHG inten-
sity difference between the two plateaus is about six orders
of magnitude because ε36

g,min (or ε25
g,min) is much greater than

ε24
g,min. Therefore, we can distinguish multiple caustic points

caused by multiple bands and reconstruct the bandgap ε24
g (k).

We can see that, though the energies of the states at the
cross are the same, the symmetries [see filled red circles and
blue squares in Fig. 7(c)], velocities, and effective masses of
the states are different. Therefore, HHG caustics originating
from the coupling between the second and the fourth bands
can be distinguished. The result of the retrieved bandgap using
the caustics at the first plateau is shown in Fig. 7(d) by the
filled red circles. The good agreement between the retrieved
and the target bandgap shows that the method works for the
band structure with degeneracy.

In addition, we should point out that the transition between
the third and the fourth bands in the 2D square lattice is
only strictly forbidden on the symmetry axis, and the other
points are dipole-allowed. In the solution of the SBEs, two
factors suppress HHG related to these regions and make the
approximation used here reasonable. First, we denote the crys-
tal momentum of the electron-hole pair at birth as (kxb, kyb),
then an increase in |kyb| will cause an increase in ε34

g (kxb, kyb),
which leads to a rapid decay of the electron tunneling rate.
Second, the electrons and holes there have opposite nonzero
transverse velocities preventing them from recollision and
harmonics generation.

IV. CONCLUSION

In summary, we have proposed and verified a method to
reconstruct the band structure of material using the caustic
points of the HHG spectra. This method is based on a multitra-
jectory coalescence in which electron-hole pairs are born and
recombined at zero separation and have the same recombined
energy. Here, we show that the retrieved bandgaps are in
remarkable agreement with the target bandgaps for wurtzite
ZnO and a 2D square lattice.

For more general materials, many bands are degenerated or
crossed, which puts some limitations on our approach. It has
been noted that besides different symmetries, these crossed

bands usually have different effective masses. The different
effective masses lead to different tunneling and diffusion
rates [30,31], which strongly influence the HHG progress.
When the symmetries and effective masses cannot distinguish
the multiple crossed bands, our method cannot reconstruct
the band structure because more than two bands are entan-
gled and contribute significantly to the same plateau. When
the symmetries and effective masses can help us distinguish
the two dominated bands from the many crossed bands, our
method is applicable to material with spatial inversion sym-
metry, and it is robust to the FVA of the field strength, such
as the ZnO and 2D square lattice discussed in this work.
Besides, although the cutoff frequency of each HHG plateau
has caustic enhancement and could be used for multiband
reconstruction, HHG on the second or higher plateau may
come from multiple paths, such as sequential and direct
excitation, which prevents direct application of the present
method.

Three additional factors should be mentioned: the varying
transition dipole moment, the Berry curvature, and the fre-
quency shift. The simulations in this work include the varying
transition dipole moment and the frequency shift. These two
factors do not affect the band reconstruction in this work,
illustrated by the good agreement between the retrieved and
the target bandgaps in ZnO and a 2D square lattice, which
is consistent with Ref. [21]. For wide-band materials, the
additional caustics arising from the rapidly varying dipole
moment may become important and cannot be neglected, so
we should consider the varying transition dipole moment in
the semiclassical analysis following the approach outlined in
Ref. [31]. Also, the model considered in this work has spatial
inversion symmetry, and thus the Berry curvature vanishes.
Materials without spatial inversion symmetry will exhibit an
interband transition dipole phase as well as an intraband Berry
phase [31–35], resulting in additional terms in the classical
action. In this case, the semiclassical analysis of electron-hole
pairs, including the abnormal velocity arising from the Berry
phase, can follow the approach proposed in Ref. [36]. In
future work, we will consider these three factors further to
improve the reconstruction method and make it feasible for
more general materials.
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