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The Bhatia-Davis theorem provides a useful upper bound for the variance in mathematics, and in quantum
mechanics, the variance of a Hamiltonian is naturally connected to the quantum speed limit due to the
Mandelstam-Tamm bound. Inspired by this connection, we construct a formula, referred to as the Bhatia-Davis
formula, for the characterization of the quantum speed limit in the Bloch representation. We first prove that the
Bhatia-Davis formula is an upper bound for a recently proposed operational definition of the quantum speed
limit, which means it can be used to reveal the closeness between the timescale of certain chosen states to the
systematic minimum timescale. In the case of the largest target angle, the Bhatia-Davis formula is proved to be
a valid lower bound for the evolution time to reach the target when the energy structure is symmetric. Regarding
few-level systems, it is also proved to be a valid lower bound for any state in two-level systems with any target,
and for most mixed states with large target angles in equally spaced three-level systems.
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I. INTRODUCTION

How fast a quantum system can evolve as required is
usually referred to as the problem of quantum speed limit in
quantum foundations. This problem is important in quantum
foundations as it is naturally related to the uncertainty rela-
tions and other fundamental properties of quantum mechanics.
For instance, the first bound concerning quantum speed limit
given by Mandelstam and Tamm in 1945 [1] was derived
based on the uncertainty relations. Nowadays, the quantum
speed limit has gone way beyond the quantum foundations
and attracted much attention from the community of quantum
information and quantum technology due to the fact that the
existence of noise is the major obstacle in most quantum
information processing to provide true quantum advantages in
practice, and fast evolutions could be a very useful approach
to reduce the effect of noise in these processes and help to
reveal the quantum advantage.

The historical development of quantum speed limit is
basically the development of mathematical tools. Various
tools have been developed for different scenarios [2], includ-
ing unitary dynamics [1,3,4], open systems [5–24], quantum
metrology [25–27], quantum control [28–32], quantum phase
transitions [33,34], quantum information processing [35–37],
quantum resources [40], geometry of quantum mechanics
[38,39,41], and even the classical systems [42–45]. The
crossover between quantum speed limits has been observed
in an optically trapped single-atom system recently [46].
Most existing tools in this field can be divided into the
Mandelstam-Tamm type and Margolus-Levitin type, which
originate from the Mandelstam-Tamm bound π/(2�H ) [1]

and the Margolus-Levitin bound π/(2〈H〉) [3], where 〈H〉
is the expected value of the Hamiltonian H and �H :=√

〈H2〉 − 〈H〉2 is the corresponding deviation. The major dif-
ference between these two types is that the former one is
depicted by the deviation and the latter one uses only the
expected value.

Different with these two types, an operational definition
of quantum speed limit was proposed in 2020 [34] based
on the optimization of states that can fulfill the target. One
advantage of this operational definition is its independence
of the quantum states, which means it is the systematic
minimum timescale for this target and determined only by
the Hamiltonian structure. However, in quantum technology,
some specific quantum states, like NOON states, cat states, or
certain types of entangled states, may be more worth studying
than a general one in some scenarios, and it is also possible
that one does not care the systematic minimum timescale, but
is more interested in the timescale of these specific states.
In such cases, state-dependent tools could be more handy
than the operational definition. In the meantime, since the
operational definition includes only the information of sys-
tematic minimum timescale and corresponding optimal states,
it cannot reflect the closeness of the timescales between con-
cerned states and the optimal ones. Hence, the state-dependent
tools, especially those can naturally connect to the operational
definition, would be very helpful to reveal this closeness and
thus more useful in practice. Searching such state-dependent
tools is a major motivation of this paper.

In mathematics, for a set of bounded real numbers {xi} with
the expected value x̄ = 1

n

∑
i xi (n is the number of elements),
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Bhatia and Davis provided a very useful upper bound on the
variance var(x) = 1

n

∑
i(xi − x̄)2 in 2000 [47],

var(x) � (M − x̄)(x̄ − m), (1)

where m, M are the lower and upper bounds of the set,
m � xi � M for any element xi in the set. This bound can be
naturally extended to the statistics and further to the quantum
mechanics. In quantum mechanics, the Bhatia-Davis inequal-
ity can be rewritten into �2H � (Emax − 〈H〉)(〈H〉 − Emin)
with Emax and Emin the maximum and minimum energies with
respect to H . Compared to the Mandelstam-Tamm bound, it is
obvious that

π

2�H
� π

2
√

(Emax − 〈H〉)(〈H〉 − Emin)
; (2)

namely, the Bhatia-Davis inequality provides a lower bound
for the Mandelstam-Tamm bound. Physically, the Bhatia-
Davis bound indicates that the evolution time for a state to
reach one of its orthogonal states is bounded by the gap
between the maximum (minimum) energy and the average
energy. However, since the Mandelstam-Tamm bound itself
is attainable only for two-level pure states [2,48], the Bhatia-
Davis bound above would be more difficult to saturate, and
thus lack of practicability. Nevertheless, things are more com-
plicated in the Bloch representation, which gives us a chance
to introduce a similar formula by replacing π to a general
target angle � defined in the Bloch representation, and thor-
oughly study its role in quantum speed limit. In the entire
paper this formula will be referred to as the Bhatia-Davis
formula. The connection between this formula and the opera-
tional definition will be studied, along with its behaviors and
roles in both multilevel and few-level systems from the aspect
of quantum speed limit.

II. BHATIA-DAVIS FORMULA

A. Upper bound of the OQSL

The Bloch representation is a common geometric approach
for quantum states, and widely applied in many topics in
quantum information. In this representation, a N-dimensional
density matrix ρ can be expressed by

ρ = 1

N

(
1 +

√
N (N − 1)

2
�r · �λ

)
, (3)

where �r is a real vector referred to as the Bloch vector, 1 is the
identity matrix, and �λ is the (N2 − 1)-dimensional vector of
SU(N) generators. Throughout this paper, the target angle is
defined by the angle between the Bloch vectors of the initial
state �r and its evolved state �r(t ) [12,13,34]

θ (t, �r) = arccos

( �r · �r(t )

|�r||�r(t )|
)

, (4)

where θ (t, �r) ∈ [0, π ].
Inspired by the Bhatia-Davis inequality, we define the gen-

eral form of Bhatia-Davis formula in the Bloch representation
as

τBD := �

2
√

(Emax − 〈H〉)(〈H〉 − Emin)
, (5)

where Emax and Emin are the highest and lowest energies of the
Hamiltonian H and 〈H〉 = Tr(ρH ) is the expected value with
respect to the state ρ. � is a fixed target angle. In the entire
paper, we denote Ek (|Ek〉) as the kth eigenvalue (eigenstate) of
H with k ∈ [0, N − 1]. Without loss of generality, we assume
Ek � Ej for k < j and there exist at least two different energy
values in H , namely, not all the equalities can be achieved si-
multaneously. Recently, Becker et al. [49] provided a quantum
speed limit, which also contains the maximum energy, with
energy-constrained diamond norms between two unitaries.
Traditionally, whether a bound contains the variance or the
expected value is a major criterion to distinguish Mandelstam-
Tamm-type bounds and Margolus-Levitin-type bounds. From
this perspective, the Bhatia-Davis formula looks more like a
Margolus-Levitin type as it contains the expected value. How-
ever, its dependence on the maximum and minimum energies
makes it not a typical one. Hence, it may be more appropriate
to be treated as a totally different type.

Recently, an operational definition of the quantum speed
limit (OQSL) was provided and discussed [34]. The OQSL
is defined via the set of states that can reach the target angle
S := {�r|θ (t, �r) = �, ∃t}. With this set, the OQSL (denoted by
τ ) is defined as [34]

τ = min
�r∈S

t

subject to θ (t, �r) = �. (6)

The Bhatia-Davis formula has a natural connection with the
OQSL due to the following theorem.

Theorem 1. For time-independent Hamiltonians under uni-
tary evolution, the Bhatia-Davis formula is an upper bound for
the OQSL:

τBD � τ. (7)

The proof is given in Appendix A. The equality can be
attained when the average energy is half of the summation
between the maximum and minimum energies. This theo-
rem indicates that τBD can reflect the closeness between the
timescale of some specific states and the systematic minimum
timescale when the equality is attainable.

In the following we take the generalized one-axis twisting
model [50–52] as an example to discuss this theorem. The
Hamiltonian for this model is

H = χJ2
z + δJz, (8)

where Jz =∑n
i=1 σ (i)

z /2 with σ (i)
z the Pauli matrix along z-

direction for the ith spin and χ , δ are the coefficients. The
Dicke state |J = n/2, m〉 (m = 0,±1, . . . ,±J when n is even
and m = ±1/2,±3/2, . . . ,±J when n is odd) is the eigen-
state of Jz with the corresponding eigenvalue m. For the sake
of simplicity, here we assume n is even and χ > 0. According
to Ref. [34], the OQSL in this case can be expressed by
τ = �/(Emax − Emin), where the maximum energy reads

Emax = 1
4 (χn2 + 2|δ|n), (9)

and the minimum energy reads

Emin =
{

χR2
(

δ
2χ

)− δR
(

δ
2χ

)
, for |δ|/χ � n,

1
4 (χn2 − 2|δ|n), for |δ|/χ > n.

(10)
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1% < R < 10%

R < 1%

R > 10%

FIG. 1. (a) The OQSL τ as a function of |δ|/χ for particle number n = 4 (solid red line), n = 8 (dash-dotted blue line), and n = 20 (dashed
black line). (b) The Bhatia-Davis formula τBD and the OQSL τ as a function of φ for different values of δ/χ . The solid red, dash-dotted green,
and circled yellow lines represent τBD for δ/χ = 1.0, 4.0, 8.0, and the dashed black, dotted blue, and squared cyan lines represent τ for
δ/χ = 1.0, 4.0, 8.0, respectively. (c) The difference between τBD and τ (in the scale of log) as a function of φ and δ/χ for n = 10. (d) The
regimes in (c) that the relative difference R = (τBD − τ )/τ < 1% (white area), 1% < R < 10% (light gray area), and R > 10% (dark gray
area). χ is set to be 1 in all panels.

Here R(·) represents the function rounding to the nearest inte-
ger. The OQSL can then be obtained correspondingly. When
δ = 0, the Hamiltonian is a standard one-axis twisting one,
and the OQSL reduces to a simple form

τ0 = 4�

χn2
, (11)

which decreases quadratically with the growth of particle
number n. As a matter of fact, compared to τ0, the linear
term δJz can facilitate the reduction of the OQSL, as shown
in Fig. 1(a). For example, in the case of a small δ, τ ∝
1/(χn2 + 2|δ|n). However, with the increase of |δ|, when it
is larger than χn, the OQSL becomes

τ1 = �

|δ|n , (12)

which shows that the OQSL in this regime is not as sensitive
as τ0 with respect to n.

In this model, a well-used state is the coherent spin
state exp(ζJ+ − ζ ∗J−)|J, J〉 (J± = Jx ± iJy). Since ζ can be
rewritten into ζ = −φ

2 exp(−iϕ) with φ ∈ [0, π ] and ϕ ∈
[0, 2π ], the coherent spin state can also be denoted by
|φ, ϕ〉. For this state, the Bhatia-Davis formula τBD can be
obtained by noticing the mean energy (details are given in
Appendix A) is

〈H〉 = 1
4 (2δn cos φ + χn2 cos2 φ + χn sin2 φ), (13)

which indicates τBD is not affected by ϕ. Figure 1(b) shows the
values of τBD and τ as a function of φ for different values of δ.

In the case of δ = 1.0, two regimes of φ around π/4 and 3π/4
are optimal for τBD to attain τ . However, with the increase of δ

(4.0 and 8.0 in the plot), the optimal regime around π/4 moves
to the right, and the optimal regime around 3π/4 vanishes
completely. To provide a complete picture of the attainable
states, the difference between τBD and τ (in the scale of log) is
given in Fig. 1(c) as a function of φ and δ/χ , which confirms
that the attainable regime for a large φ vanishes with the
growth of δ when it is positive. As a matter of fact, most co-
herent spin states have chances to be the attainable states when
δ is tuned to proper values. Particularly, the required optimal
values of δ are very small when φ is less than π/4 or larger
than 3π/4. The states around φ = π/2 are more difficult to
be the attainable states since they require large values of δ.
However, although τBD for these states are not optimal, when
δ/χ is larger than, for example, around 10.0, there is still a
large regime around π/2 (on the left for δ/χ > 0 and right for
δ/χ < 0) in which the relative difference R = (τBD − τ )/τ is
less than 10%, as shown in Fig. 1(d). In the meantime, the
area in the plot for the regime that R < 1% is around 7.9%
(R < 10% is around 16.4%) of the total area, indicating that in
this case, the timescale for the coherent spin states to reach the
target could be very close to the systematic minimum time for
a loose range of δ. Another interesting phenomenon is that the
behavior of the difference between τBD and τ is dramatically
different for positive and negative signs of δ/χ when it is not
very large. τBD is way closer to τ for a negative (positive) δ/χ

when φ is small (large), which is due to the fact that 〈H〉 is
closer to (Emax + Emin)/2 for a negative (positive) value of
δ/χ when φ is small (large).
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B. Largest target angle � = π

In the study of quantum speed limit, the largest target angle
� = π is worth paying particular attention as done in the
Mandelstam-Tamm bound [1] and Margolus-Levitin bound
[3] since it indicates the highest distinguishability. Due to
the spirt of the operational definition, the set of states that
can fulfill the target. i.e., the set S , should be studied first
as the state-dependent tools cannot reveal this information.
Considering the unitary evolution, we have the following ob-
servations on the set S for the largest target � = π .

Theorem 2. For any finite-level Hamiltonian, there always
exist states to fulfill the target � = π , i.e., the set S cannot be
an empty set. Furthermore, the set

S0 :={�r |r2
j2+2k−1+r2

j2+2k =|�r|2,∀ j ∈ [1,N −1], k ∈ [0, j−1]}
is always a subset of S:

S0 ⊆ S. (14)

Here ri is the ith entry of the Bloch vector �r. This theorem
means that any state in S0 can fulfill the target regardless of the
Hamiltonian structure. In the density matrix representation,
the states in S0 take the form⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
N 0 · · · · · · · · · 0

0 1
N

...
...

...
...

...
...

. . .
... ρk j

...
... ρ∗

k j
...

. . .
...

...
...

...
...

... 1
N

...

0 · · · · · · · · · · · · 1
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

in the energy basis {|Ek〉}, where all the diagonal entries are
1/N , and the only nonzero nondiagonal entries are the k jth
and jkth ones with j ∈ [1, N − 1] and k ∈ [0, j − 1]. Here
|ρk j | ∈ (0, 1/N].

As a matter of fact, the theorem above also indicates that
S0 is the minimum set for S , which leads to an interesting
question that what kind of Hamiltonians own the minimum
set of S? By denoting Ed as the set of all the values of energy
differences,

Ed = {Ej − Ek|∀ j ∈ [1, N − 1], k ∈ [0, j − 1]}, (16)

this question is answered by the corollary below.
Corollary 1. For the target � = π , if a Hamiltonian satis-

fies that the ratio between any two elements in Ed cannot be
written as the ratio between two odd numbers,

Ej1 − Ek1

Ej2 − Ek2

�= 2m1 + 1

2m2 + 1
, (17)

with m1, m2 any two non-negative integers for any two differ-
ent groups of subscripts ( j1, k1) and ( j2, k2), then

S = S0. (18)

Here two different groups of subscripts means that j1 = j2
and k1 = k2 cannot hold simultaneously. The proofs of the
theorem and corollary above are given in Appendix B. A
natural Hamiltonian structure to fit Eq. (17) is that all the
elements in Ed are noncommensurable to each other, which
leads to the next corollary as follows.

FIG. 2. The variety of state number capable of reaching
the target � = π with the change of decay rate γ0 for the
energy structures {1.0, 2.1, 4.5, 8.3, 11.0} (H1, red circles) and
{1.0, 2

√
7, 6

√
2, 6

√
3, 6

√
5} (H2, blue squares). n̄ = 1 in the plot.

Corollary 2. For the target � = π and the Hamiltonians
with noncommensurable energy differences, S = S0.

Corollary 1 could lead to the following no-go corollary for
multilevel systems (with at least three energy levels).

Corollary 3. For multilevel systems with Hamiltonians
stated in Corollary 1, no pure state can fulfill the target � = π .

In practice, quantum systems are inevitably exposed to the
environment and therefore suffer from the noises. Hence, the
performance of S must be affected by the noise in general. The
target � = π might be the most sensitive case as it requires a
large rotation of the Bloch vector, which may not be possible
in some type of noises. For example, if there exists a steady
state for some noisy dynamics, it is very possible that the
states, whose angle with the steady state are less than π , can
never reach the target during the evolution for a large enough
decay rate. Hence, the state number in the reachable state set
S could be very limited, and even vanish in such cases. For
the sake of a more intuitive understanding, here we take the
damped five-level system as an example. The decoherence is
described by the master equation [53]

∂tρ = −i[H, ρ] + γ0(n̄ + 1)
(
aρa† − 1

2 a†aρ − 1
2ρa†a

)
+ γ0n̄

(
a†ρa − 1

2 aa†ρ − 1
2ρaa†

)
, (19)

where a (a†) is the lowering (raising) operator, γ0 is
a constant decay rate, and n̄ = 1/[eω0/(kBT ) − 1] is the
Planck distribution with kB the Boltzmann constant and
T the temperature. Now consider two groups of energies
{Ek} = {1.0, 2.1, 4.5, 8.3, 11.0} (denoted by H1) and {Ek} =
{1.0, 2

√
7, 6

√
2, 6

√
3, 6

√
5} (denoted by H2). According to

Corollaries 1 and 2, only the states in the form of Eq. (15),
namely in the set S0, can reach the target � = π in the unitary
dynamics. To show the influence of noise on S , 5000 random
states in S0 are used to test the attainability of the target
� = π , as given in Fig. 2, for H1 (red circles) and H2 (blue
squares). n̄ is set to be 1 in the figure. In the absence of noise
(γ0 = 0), all states can reach the target, just as Theorem 2
stated. With the increase of decay rate, the number of states
capable of reaching the target reduces in an approximately
exponential way. When γ0 = 0.05, a very limited number of
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states can still reach the target, and with the further increase
of γ0, no state can ever reach the target eventually.

With the knowledge of S , we could further study the
Bhatia-Davis formula. In general, the Bhatia-Davis formula
is not a valid lower bound for the evolution time to reach any
target � due to Theorem 1. For those Hamiltonians that the
equality in Theorem 1 is not attainable, τBD is always larger
than τ . In this case, τBD fails to be a valid lower bound for
those states that reaches the OQSL, and hence not a lower
bound in general. However, for the Hamiltonians and states
that the equality can hold, τBD might still be a valid lower
bound. One useful scenario is demonstrated as follows.

Theorem 3. For a finite-level Hamiltonian that the energies
are symmetric about 〈H〉, the Bhatia-Davis formula is a valid
lower bound for the evolution time to reach the target � = π ,
and for the states in S , it reduces to the OQSL.

The proof is given in Appendix B. For such a symmet-
ric spaced energy structure, S must be larger than S0 since
EN−1−k − EN−1− j = Ej − Ek for any k < j � 
N−1

2 � with 
·�
the floor function. In this case, apart from the states in
Eq. (15), the states

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
N 0 · · · · · · · · · · · · 0

0 1
N

...
...

...
...

...

...
...

. . . ρk j
...

...
...

...
... ρ∗

k j
. . . ρN−1− j,N−1−k

...
...

...
...

... ρ∗
N−1− j,N−1−k

. . .
...

...

...
...

...
...

...
. . .

...

0 · · · · · · · · · · · · · · · 1
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

are also always capable of reaching the target. An typical form
of this symmetric structure is the equally spaced structure, i.e.,
Ek+1 − Ek is a constant for any legitimate k. Hence, one can
immediately obtain the following corollary.

Corollary 4. For an equally spaced finite-level Hamilto-
nian, the Bhatia-Davis formula is a valid lower bound for the
evolution time to reach the target � = π , and for the states in
S , it reduces to the OQSL.

Although the Bhatia-Davis formula is not a valid lower
bound in general, how general it is still keeps undiscovered.
For this sake, we numerically test whether τBD is a valid
lower bound for randomly generated five-level Hamiltonians
and random initial states with the target � = π . Since most
randomly generated Hamiltonians satisfy the condition (17) in
Corollary 1, most random initial states cannot fulfill the target
expect for those in S0. This means τBD is indeed a formal
lower bound for these states as the true evolution time to reach
the target is infinity. Hence, we pick only the random states in
S0 for the test. Here 2 × 105 random pairs of Hamiltonians
and initial states in S0 are generated and tested, as shown
in Fig. 3. It can be seen that even limited in the set S0, the
difference between the evolution time t (to reach the target)
and τBD is positive for most states (around 90%), and therefore
τBD is a valid lower bound for these 90% states.

FIG. 3. The difference between the evolution time to reach the
target (t) and the Bhatia-Davis formula (τBD) for 2 × 105 pairs of
randomly generated five-level Hamiltonians and random states in S0.

III. FEW-LEVEL SYSTEMS

A. Two-level systems

The two-level system is the most well-studied model in the
topic of quantum speed limit, and the only system that the
well-known tools like the Mandelstam-Tamm bound [1] and
the Margolus-Levitin bound [3] can be attained [2,48]. In this
system, denoting the ground and excited energies by E0 and
E1 with the corresponding energy levels |E0〉 and |E1〉, we then
have the following theorem.

Theorem 4. For a two-level system under unitary evolu-
tion, the Bhatia-Davis formula is a valid lower bound for the
evolution time to reach any target angle �, and it can be
attained by the states (|E0〉 + eiφ|E1〉)/

√
2 with φ ∈ [0, 2π ).

The proof of this theorem is given in Appendix C. The
attainability condition above comes from the requirement
〈H〉 = (E0 + E1)/2. A corollary with respect to OQSL can
be immediately obtained from this attainability condition.

Corollary 5. For a two-level system under unitary evo-
lution, the Bhatia-Davis formula (bound) reduces to OQSL
when it is attainable.

With respect to the state-dependent bounds, several unified
bounds have been developed. For example, Sun et al. [41]
provide an unified bound based on the changing rate of the
phase in 2021. In the case of two-level systems, a well-known
unified tool for quantum speed limit is [4,25]

τC = max

{ A
�H

,
2A2

π〈H〉
}
, (20)

in which the target angle is defined via the Bures angle A =
arccos f with f = Tr

√√
ρ0ρ1

√
ρ0 the fidelity between two

quantum states ρ0 and ρ1. In the meantime, another tool based
on Bures angle is [5]

τF = 2A√
F

, (21)

with F the quantum Fisher information with respect to the
evolution time t . It is defined by F = Tr(ρL2) with L the
symmetric logarithmic derivative. Here L is determined by
the equation ∂tρ = (ρL + Lρ)/2. In the Bloch sphere (|E1〉 as
the north pole), the density matrix is ρ = (1 + �r · �σ )/2 with
σ = (σx, σy, σz ) the vector of Pauli matrices. Then τF can be
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FIG. 4. The behaviors of different tools as a function of α. The
dashed black, solid blue, dotted green, and dash-dotted red lines rep-
resent the OQSL τ , the bound based on quantum Fisher information
τF, the Bhatia-Davis formula τBD, and the combined formula τm. The
parameters are set as E1 = 2.0, E0 = 1.0, |�r| = 0.8, and the target
angle � = π/2.

expressed by

τF = 2A
(E1 − E0)

√|�r|2 − r2
z

, (22)

which is larger than 2A/�H since here �H = (E1 −
E0)
√

1 − r2
z /2. They are equivalent when the initial state is

pure. Combining several tools to construct a tighter bound for
the quantum speed limit is a common method in the previous
studies in this field. Using this strategy, the quantity

τm = max

{
τBD, τF,

2A2(�)

π〈H〉
}

(23)

is a valid lower bound for the evolution time to reach the
target in the case of two-level systems. Notice that τBD is not
be a valid lower bound in general for multilevel systems as
discussed in the previous section, hence τm cannot be directly
extended to multilevel systems. Here A(�) means the target
is still defined via Eq. (4) and the value of A is calculated
via � and the initial state. As a matter of fact, the fidelity
between two qubits can be expressed by f 2 = Tr(ρ0ρ1) +
2
√

det(ρ0) det(ρ1) with det(·) the determinant [54,55]. For
unitary evolutions, it can be rewritten with the Bloch vectors
into f 2 = 1 − 1

2 |�r|2(1 − cos θ ), where |�r| is the norm of the

initial state. Hence, A(�) = arccos
√

1 − 1
2 |�r|2(1 − cos �),

which indicates A � �/2 and the equality holds for pure
states. Because of this property, the following corollary holds.

Corollary 6. The Bhatia-Davis formula (bound) is equiva-
lent to τF for two-level pure states.

With this corollary, and noticing that τF = A/�H for two-
level pure states, it is easy to see that τm reduces to τC for
two-level pure states. For mixed states, the relation between
τBD, τF and 2A2/(π〈H〉) is undetermined. However, in many
cases, for instance when (E1 + E0)/(E1 − E0) >

√
2|�r| is sat-

isfied, τF is always larger than 2A2/(π〈H〉), and the value
of τm is taken as the larger one between τF and τBD. More
calculation details can be found in Appendix C. An example is
shown in Fig. 4 for the sake of a more intuitive understanding
on τm. Here α is the angle between the Bloch vector |�r|

and z-axis. The states in the regime α ∈ [�/2, π − �/2] can
fulfill the target [34]. This plot first confirms that τBD (dotted
green line) is an upper bound for the OQSL τ (dashed black
line). However, τF (solid blue line) and τBD do not have a fixed
relation. τF is less than τBD for the states close to the xy plane.
Hence, τm (dash-dotted red line) equals τBD in this regime,
and it is indeed the tightest bound for the evolution time.
2A2/(π〈H〉) is not plotted due to the fact that it is significantly
smaller than the others in this case.

Another advantage of using τBD to construct the bound
is that τm is always larger than τ due to Theorem 1, and
it reduces to τ in the xy plane because of the attainability
of τBD, which means τm can reflect the fact that τ is the
systematic minimum time to reach the target even when it is
not attainable. In the meantime, τF can show this capability
only for some states (light gray area), and it fails to do that
for the states close to the xy plane (dark gray area) as it is
smaller than τ in this regime. Therefore, in the case where τ

is not known, τF cannot be used to estimate the true minimum
timescale.

B. Three-level systems

Three-level systems are very common in the study of quan-
tum optics and quantum information. As is the same as the
general case, the Bhatia-Davis formula

τBD = �

2
√

(E2 − 〈H〉)(〈H〉 − E0)
(24)

is not a valid lower bound in a general three-level system.
However, Corollary 4 shows that τBD is indeed a valid lower
bound in the equally spaced three-level systems for � = π .
To find out if τBD still remains a valid bound for a general
target in this case, we need to study the set S first. Define
x = r2

3 + r2
4 and y = r2

0 + r2
1 + r2

5 + r2
6 with ri (i = 0, . . . , 6)

an entry of the Bloch vector, then for the states in S , x and y
must locate in the following two regimes:⎧⎪⎨

⎪⎩
y � 4|�r| sin

(
�
2

)√
x − 4x,

y � 4x,

y � |�r|2 − x,

(25)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y � 4|�r| sin
(

�
2

)√
x − 4x,

y � 4x,

y � |�r|2 sin2
(

�
2

)
,

y � |�r|2 − x.

(26)

The thorough derivation is given in Appendix D. The full
regime is illustrated in Fig. 5 (gray areas) for different values
of |�r|2 and �. For the same � (columns in the plot), the shapes
of the regime basically coincide for different values of |�r|2,
and its area shrinks with the reduction of |�r|2. On the other
hand, for the same |�r|2 (rows in the plot), the regime becomes
narrower when the value of � increases. These behaviors can
also be reflected by the variety of the ranges of x (y) along
the x axis (y axis), which is in the regime [|�r|2 sin2( �

2 ), |�r|2].
The target � affects only the lower bound of this regime,
which increases with the growth of �. Hence, the area of
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FIG. 5. Regimes of x, y (gray areas) in the reachable states set S
for equally spaced three-level Hamiltonians with different values of
|�r|2 and �. x = r2

3 + r2
4 and y = r2

0 + r2
1 + r2

5 + r2
6 in the plot.

the full regime becomes smaller when � gets larger. In the
meantime, both bounds of this regime are affected by |�r|2,
and the largest range is attained at |�r|2 = 1, indicating that
there exist more choices of x, y for pure states to reach the
target.

Another interesting fact is that the full regime is contin-
uous for the targets less than 2π/3, and it splits into two
areas for those larger than 2π/3. This phenomenon is due
to the fact that the minimum difference between |�r|2 − x and
4|�r| sin( �

2 )
√

x − 4x with respect to x is |�r|2[1 − 4
3 sin2( �

2 )].
When � � 2π/3, this minimum value is always positive,
indicating that all points on the line y = 4|�r| sin( �

2 )
√

x − 4x
are feasible points in S . By contrast, when � > 2π/3, only
some points on this line are feasible, and the full regime then
splits into two areas.

With the information of S , we then provide the following
theorem on the Bhatia-Davis formula.

Theorem 5. For an equally spaced three-level system with
a gap �, the Bhatia-Davis formula is upper bounded by
π/(2�),

τBD � π

2�
, (27)

for any |�r| ∈ (0, 1] and � ∈ (0, π ].
The derivation is given in Appendix D. Since τ is up-

per bounded by τBD according to Theorem 1, this result
directly leads to τ � π/(2�), which is fully reasonable as
τ = �/(2�) in this case [34]. Next we provide a theorem
to show when τBD is a valid lower bound for a general
target.

Theorem 6. For an equally spaced three-level system with
the gap �, the Bhatia-Davis formula is a valid lower bound
for the evolution time to reach any target � ∈ (0, π ] at least

FIG. 6. (a) Regimes of x, y (red/dark gray areas in online/print
version) that τBD is always a valid lower bound in the case that |�r|2 =
1 and � = π/3. x = r2

3 + r2
4 and y = r2

0 + r2
1 + r2

5 + r2
6 in the plot.

(b) The variety of borderline given in Eq. (32) as a function of |�r|2
and �.

for the states in the regimes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y � 4|�r| sin
(

�
2

)√
x − 4x,

y � 4x,

y � |�r|2 sin2
(

�
2

)
,

y � |�r|2 − x,

(28)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y � 4|�r| sin
(

�
2

)√
x − 4x,

y � 4x,

y � |�r|2 − x,

y sin2
(

�τa
2

)
� |�r|2 sin2

(
�
2

)− x sin2(�τa ).

(29)

In this theorem, τa is defined by

τa := �

2�

√
1 − 4

3 (|�r|2 − x − y)
(30)

for x + y � |�r|2 − 1/3 and

τa := �

2�

√
1 −

[
1
2 +

√
1
3

(|�r|2 − x − y − 1
4

)]2
(31)

for x + y � |�r|2 − 1/3. The regime of the states given in
the above theorem is illustrated in the case of |�r|2 = 1 and
� = π/3 [red (dark gray) area in Fig. 6(a)]. For the states not
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in this regime (in the gray area), there exist states for which the
Bhatia-Davis formula fails to be a valid lower bound. An in-
teresting fact is that τBD is a valid lower bound for most edges,
for example, (1) x = 0 and y �= 0, i.e., nondiagonal states
with ρ12 = 0; (2) x + y = |�r|2, which means r2 = r7 = 0, i.e.,
states with all diagonal entries 1/3. The borderline between
the red (dark gray) and gray regimes reads

x sin2(�τa ) + y sin2

(
�τa

2

)
= |�r|2 sin2

(
�

2

)
. (32)

As shown in Fig. 6(b), the area of violation regime (inside the
line) grows with the increase of |�r|2 or the decrease of �, in-
dicating that τBD is a valid lower bound for most mixed states,
especially when � is large. As a matter of fact, apart from
the case |�r|2 = 1,� = π/3, this regime is very insignificant
for other examples given in Fig. 5. Hence, in equally spaced
three-level systems, τBD is indeed a valid lower bound for
most states, especially mixed states with large target angles.

IV. CONCLUSION

Inspired by the Bhatia-Davis theorem in mathematics and
statistics, in this paper we construct a formula, referred to as
the Bhatia-Davis formula, for the characterization of quantum
speed limit in the Bloch representation. In a general multi-
level system, we first prove that the Bhatia-Davis formula
is an upper bound for the operational definition of quantum
speed limit, and it reduces to the operational definition when
the average energy is half of the summation between the
maximum and minimum energies. The behaviors of both the
operational definition and Bhatia-Davis formula are discussed
in the generalized one-axis twisting model as an example. In
the case of largest target angle, the reachable state set S are
first studied and the Bhatia-Davis formula is then proved to be
a valid lower bound for the evolution time to reach the target
in systems with symmetric energy structures.

With respect to few-level scenarios, the two-level systems
are first studied, and the Bhatia-Davis formula is proved to
be a valid lower bound in this case, and it reduces to the
operational definition when attainable. Another alternative
state-dependent bound is also constructed using the Bhatia-
Davis formula, which is tighter than the bound given by the
quantum Fisher information. In the case of equally spaced
three-level systems, the regime that the Bhatia-Davis formula
remains a valid lower bound is given. Even though it is not
in general, the violation becomes very insignificant for mixed
states, especially when the target angle is large. Therefore, it
could be approximately treated as a valid lower bound for
most mixed states with large target angles in this type of
systems.
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APPENDIX A: CALCULATION DETAILS FOR THEOREM 1
AND ITS APPLICATIONS

We first introduce the notation again for a better reading
experience of the Appendix. Ei is the ith energy of the Hamil-
tonian H with the corresponding eigenstate |Ei〉. Without loss
of generality, here we assume E0 � E1 � · · · � EN−1 with N
the dimension of H . In the energy basis {|Ei〉}, a density matrix
can be expressed by ρ =∑i j ρi j |Ei〉〈Ej |, which immediately
gives 〈H〉 =∑i ρiiEi. Now define a function

f (x) :=
∑

i

ρii(Ei − x)2. (A1)

It is easy to see that x =∑i ρiiEi = 〈H〉 is the minimum value
of this function by calculating the first and second derivatives.
Therefore, one can obtain

f
(E0 + EN−1

2

)
� f (〈H〉). (A2)

Next, by noticing that

f
(E0 + EN−1

2

)
− f (〈H〉)

= 1

4
(EN−1 − E0)2−(EN−1 − 〈H〉)(〈H〉 − E0), (A3)

one can obtain

1
4 (EN−1 − E0)2 � (EN−1 − 〈H〉)(〈H〉 − E0), (A4)

which leads to the result of our theorem below,

�

2
√

(EN−1 − 〈H〉)(〈H〉 − E0)
� �

EN−1 − E0
, (A5)

where � is the target angle and �/(EN−1 − E0) is the OQSL
for time-independent Hamiltonians [34]. Theorem 1 is then
proved. �

Now consider the generalized one-axis twisting Hamilto-
nian

H = δJz + χJ2
z , (A6)

where the angular momentum Jz =∑n
i=1 σ (i)

z /2 with σ (i)
z the

Pauli matrix along the z-axis for ith spin. The coherent spin
state can be expressed by

|ψ〉 = eζJ+−ζ ∗J−|J, J〉, (A7)

where J± = Jx ± iJy. Since [J±, Jz] = ∓J± and [J+, J−] =
2Jz, one can obtain

e−(ζJ+−ζ ∗J− )Jze
ζJ+−ζ ∗J−

= cos(2|ζ |)Jz + sin(2|ζ |)
2|ζ | (ζJ+ + ζ ∗J−), (A8)

which immediately gives 〈ψ |Jz|ψ〉 = J cos(2|ζ |) and

〈ψ |J2
z |ψ〉 = J2 cos2(2|ζ |) + 1

2 J sin2(2|ζ |). (A9)

Hence, the expected value is

〈H〉 = δJ cos(2|ζ |) + χJ2 cos2(2|ζ |) + χ

2
J sin2(2|ζ |).
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Due to the fact that |ζ | = φ/2 and J = n/2, the equation
above can be rewritten as

〈H〉 = 1
4

(
2δn cos φ + χn2 cos2 φ + χn sin2 φ

)
. (A10)

APPENDIX B: CALCULATIONS AND PROOFS
IN THE CASE OF LARGEST TARGET ANGLE

For the time-independent Hamiltonians under unitary evo-
lution, the set S in the energy basis {|Ek〉} can be written
as [34]

S =
{

�r
∣∣∣1 − cos � = 1

|�r|2
N−1∑
j=1

j−1∑
k=0

{1 − cos [(Ej − Ek )t]}

×(r2
j2+2k−1 + r2

j2+2k

)
, ∃t

}
, (B1)

where N is the dimension of Hamiltonian, ri is the ith entry
of the Bloch vector. Here the SU(N) generators {λi} are gen-
erated via the rules

(1) λl2−2 =
√

2

l (l − 1)
diag(1, 1, . . . , 1 − l, 0, . . . ) (B2)

for l = 2, 3, . . . , N , namely, the first l − 1 diagonal entries
are 1, the lth entry is 1 − l , and zero for others. (2) For
j ∈ [1, N − 1] and k ∈ (0, j − 1], the only nonzero entries in
λ j2+2k−1 are the k jth and jkth ones, and the corresponding
values are 1. (3) For j ∈ [1, N − 1] and k ∈ (0, j − 1], the
only nonzero entries in λ j2+2k are the k jth and jkth ones, and
the corresponding values are −i and i, respectively. Specifi-
cally, in the basis {Ek} they can be expressed by

λ j2+2k−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · · · · 0

0 0
...

...
...

...
... · · · . . . · · · 1

...
... 1 · · · . . . · · · ...
...

...
...

... 0
...

0 · · · · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B3)

and

λ j2+2k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · · · · 0

0 0
...

...
...

...
... · · · . . . · · · −i

...
... i · · · . . . · · · ...
...

...
...

... 0
...

0 · · · · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

In the case that the target � = π , the constraint on t in the
equation above reduces to

2 =
N−1∑
j=1

j−1∑
k=0

{1 − cos [(Ej − Ek )t]}
r2

j2+2k−1 + r2
j2+2k

|�r|2 . (B5)

Since 1 − cos[(Ej − Ek )t] � 2 and

1

|�r|2
N−1∑
j=1

j−1∑
k=0

r2
j2+2k−1 + r2

j2+2k � 1, (B6)

the only solutions for Eq. (B5) are

(Ej − Ek )t = (2m + 1)π, m = 0, 1, 2, . . . (B7)

for all pairs of j and k that satisfy r2
j2+2k−1 + r2

j2+2k �= 0. In the
meantime, these solutions are valid only when the equality in
inequality (B6) are attained, which also requires the following
additional condition:

rl2−2 = 0,∀l = 2, 3, . . . , N. (B8)

A useful fact is that in this case, regardless of the energy
structures, the state satisfying

r2
j2+2k−1 + r2

j2+2k = |�r|2 (B9)

for j ∈ [1, N − 1] and k ∈ [0, j − 1] can always reach the
target � = π at the time

t = π

Ej − Ek
. (B10)

Hence, S is not an empty set here, and in the meantime, the
set

S0 ={�r∣∣r2
j2+2k−1+r2

j2+2k =|�r|2,∀ j ∈ [1, N −1], k ∈ [0, j−1]
}

(B11)

is always a subset of S . Theorem 2 is then proved. �
In fact, since λl2−2 (l = 2, 3, . . . , N) is a diagonal SU(N)

generator, Eq. (B8) indicates that in the energy basis, the
diagonal entries of the density matrices which leads to valid
solutions of t must be 1/N . In the case of N > 2 it cannot be
pure states. Corollary 3 is then prove. �

One should notice that whether Eq. (B7) has more solu-
tions apart from Eq. (B10) depends on the energy structure.
Recall that we assume E0 � E1 � · · · � EN−1 and there exist
at least two different energies. Now denote Ed as the set of all
energy differences:

Ed = {Ej − Ek| ∀ j ∈ [1, N − 1], k ∈ [0, j − 1]}. (B12)

If the ratio between any two elements in Ed cannot be written
in the form of (2m1 + 1)/(2m2 + 1) with m1, m2 any two
non-negative integers, then only one pair of ( j, k) is allowed
to satisfy r2

j2+2k−1 + r2
j2+2k �= 0 to make sure Eq. (B7) has

solutions, which means there are no other solutions except for
Eq. (B10), namely, S = S0. One interesting specific example
here is that all the elements in Ed are noncommensurable to
each other, which naturally fit the case that any two elements
cannot be written in the form of (2m1 + 1)/(2m2 + 1).

Furthermore, due to the expressions of λ j2+2k−1 and λ j2+2k
given in Eqs. (B3) and (B4), in the density matrix representa-
tion, the states in S0 must take the form⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
N · · · · · · · · · · · · 0
... 1

N

...
...

...
...

...
...

. . .
... ρk j

...
... ρ∗

k j
...

. . .
...

...
...

...
...

... 1
N

...

0 · · · · · · · · · · · · 1
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B13)

where all the diagonal entries are 1/N , and all the nondiagonal
entries are zero except for the k jth and jkth ones. Corollaries
1 and 2 are then proved. �
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In the following we continue to prove Theorem 3. Since
the generators λl2−2 for l = 2, 3, . . . , N are diagonal, Eq. (B8)
indicates that

�r · Tr(H �λ) =
∑

jk

r jEk〈Ek|λ j |Ek〉 = 0. (B14)

This is due to the fact that for those nonzero entries of �r, the
corresponding SU(N) generators have no nonzero diagonal
entries. Therefore, the average energy reads

〈H〉 = 1

N
Tr(H ) = 1

N

N−1∑
k=0

Ek . (B15)

In the case that the energies are symmetric about (E0 +
EN−1)/2,

EN−1 + E0 = EN−1−k + Ek, (B16)

for any subscript k satisfying Ek � (E0 + EN−1)/2, the aver-
age energy further reduces to

〈H〉 = 1
2 (E0 + EN−1), (B17)

and the Bhatia-Davis formula reduces to

τBD = π

EN−1 − E0
, (B18)

which is nothing but the OQSL [34]. Hence, τBD is a valid
lower bound in this case. For the states not in S , the target
cannot be fulfilled, meaning that the time is infinite, and τBD is
also a valid formal lower bound. Thus, for a symmetric spaced
Hamiltonian, τBD is a valid state-dependent lower bound for
� = π . Theorem 3 is then proved. �

Moreover, Eq. (B16) indicates that

EN−1−k − EN−1−m

Em − Ek
= 1 (B19)

for k < j � 
N−1
2 � with 
·� the floor function, which means

Eq. (B7) for the pairs of subscripts j, k and N − 1 − k, N −
1 − j can always hold simultaneously. Hence, the states satis-
fying

|�r|2 = r2
j2+2k−1 + r2

j2+2k + r2
(N−1−k)2+2(N−1− j)−1

+r2
(N−1−k)2+2(N−1− j) (B20)

can always fulfill the target � = π in this case. In the density
matrix representation, due to Eqs. (B3) and (B4), these state
are of the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
N 0 · · · · · · · · · · · · 0

0 1
N

...
...

...
...

...

...
...

. . . ρk j
...

...
...

...
... ρ∗

k j
. . . ρN−1− j,N−1−k

...
...

...
...

... ρ∗
N−1− j,N−1−k

. . .
...

...

...
...

...
...

...
. . .

...

0 · · · · · · · · · · · · · · · 1
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

APPENDIX C: CALCULATION DETAILS
IN TWO-LEVEL SYSTEMS

Now we prove that the Bhatia-Davis formula is a valid
lower bound in two-level systems under unitary evolution.
For a two-level system, the Bloch vector of a state can be
expressed by

�r = η(sin α cos ϕ, sin α sin ϕ, cos α)T, (C1)

where η ∈ (0, 1], α ∈ [0, π ], ϕ ∈ [0, 2π ] and the superscript
T represents the transposition. In this case, the set S reads [34]

S =
{
�r
∣∣∣η ∈ (0, 1], α ∈

[
�

2
, π − �

2

]
, ϕ ∈ [0, 2π ]

}
. (C2)

From the analysis in Appendix D of Ref. [34], one can see that
for α � π/2, the evolution time for the states in S to reach the
target angle � can be expressed by

t = 2

E1 − E0
arcsin

(
sin( �

2 )

sin α

)
, (C3)

for α > �/2, and t = π/(E1 − E0) for α = �/2. Further-
more, τBD in this case can be calculated as

τBD = �

(E1 − E0)
√

1 − η2 cos2 α
, (C4)

from which one can see that τBD is a monotonically increasing
function with respect to |�r|:

τBD � �

(E1 − E0) sin α
. (C5)

From the trigonometric inequality sin x � x, it is easy to see
x � arcsin x. Utilizing this inequality, we have

sin
(

�
2

)
sin α

� arcsin

(
sin( �

2 )

sin α

)
, (C6)

which immediately gives

t � �

(E1 − E0) sin α
� τBD. (C7)

Furthermore, one should notice that τBD can be attained when
α = π/2. The case of α > π/2 can be analyzed similarly due
to the symmetry of the dynamics. For the states out of S , the
target angle cannot be reached, indicating that any finite value
could be a mathematically valid lower bound for it. Therefore,
τBD is also a valid bound in this regime. Theorem 4 is then
proved. �

Recall that τF = 2A/
√

F and τC = max{ A
�H , 2A2

π〈H〉 }, now
we prove that τF � τC for two-level systems. First, through
some straightforward calculations (more mathematical tech-
nologies for the calculation of quantum Fisher information
and quantum Fisher information matrix can be found in
Refs. [56,57]), one can obtain that

τF = 2A
(E1 − E0)

√|�r|2 − r2
z

= 2A
(E1 − E0)η sin α

. (C8)

Also,

A
�H

= 2A
(E1 − E0)

√
1 − η2 cos2 α

(C9)
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and

2A2

π〈H〉 = 2A2/π
1
2 (E1 + E0) + 1

2η cos α(E1 − E0)

= 4A2/π

(E1 − E0)
(E1+E0

E1−E0
+ η cos α

) . (C10)

It is easy to see that η sin α <
√

1 − η2 cos2 α, hence, τF �
A/�H . As a matter of fact, in the case of two-level systems,

A = arccos
√

1 − 1
2 |�r|2(1 − cos �) � �/2, which means τBD

is also larger than A/�H . Next, due to the fact 2A < π , one
can have

2A2

π〈H〉 � 2A
(E1 − E0)

(E1+E0
E1−E0

+ η cos α
) . (C11)

Hence, when

E1 + E0

E1 − E0
�

√
2η (C12)

is satisfied, the right-hand term of inequality (C11) is less than
τF, indicating that τF � τC in this case.

APPENDIX D: CALCULATION DETAILS
IN THREE-LEVEL SYSTEMS

1. Conditions for Bloch vectors

In the case of three-level systems, the density matrix ρ can
be expressed by

ρ = 1
3 (1 +

√
3�r · �λ), (D1)

where �r = (r0, r1, r2, r3, r4, r5, r6, r7)T is the Bloch vector,
and the specific form of SU(3) generators in the energy basis
{|E0〉, |E1〉, |E2〉} (E0 � E1 � E2) given in Eqs. (B2), (B3),
and (B4) are nothing but the following Gell-Mann matrices:

λ0 =

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠, λ1 =

⎛
⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎠, (D2)

λ2 =

⎛
⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎠, λ3 =

⎛
⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎠, (D3)

λ4 =

⎛
⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎠, λ5 =

⎛
⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎠, (D4)

λ6 =

⎛
⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎠, λ7 = 1√

3

⎛
⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎠. (D5)

Substituting �r and Gell-Mann matrices into Eq. (D1), the
density matrix can be written as⎛
⎜⎜⎝

1
3 + 1

3 r7 + 1√
3
r2

1√
3
r0 − i√

3
r1

1√
3
r3 − i√

3
r4

1√
3
r0 + i√

3
r1

1
3 + 1

3 r7 − 1√
3
r2

1√
3
r5 − i√

3
r6

1√
3
r3 + i√

3
r4

1√
3
r5 + i√

3
r6

1
3 − 2

3 r7

⎞
⎟⎟⎠.

Since ρ is positive semidefinite, due to the Schur comple-
ment theorem one could have (1) the matrix

A =
(

1
3 + 1

3 r7 + 1√
3
r2

1√
3
r0 − i√

3
r1

1√
3
r0 + i√

3
r1

1
3 + 1

3 r7 − 1√
3
r2

)
(D6)

is positive semidefinite and (2) the Schur complement

1
3 − 2

3 r7 − �v †A−1�v � 0 (D7)

with �v = 1√
3
(r3 − ir4, r5 − ir6)T. Since the eigenvalues of A

are 1
3 [1 + r7 ±

√
3(r2

0 + r2
1 + r2

2 )], the positive semidefinite
property indicates

1√
3

(1 + r7) �
√

r2
0 + r2

1 + r2
2 . (D8)

Also, from the expression of the density matrix, to guarantee
all diagonal entries non-negative, i.e., 1

3 + 1
3 r7 + 1√

3
r2 � 1

and 1
3 − 2

3 r7 � 0, r2 and r7 need to satisfy

r7 � 1

2
, |r2| �

√
3

2
. (D9)

2. Calculation of S in equally spaced three-level systems

In the case of equally spaced Hamiltonian, the constraint in
Eq. (B1) reduces to

2x cos2(�t ) + y cos(�t ) − 2x − y + |�r|2(1 − cos �)=0,

(D10)
where

x = r2
3 + r2

4 , (D11)

y = r2
0 + r2

1 + r2
5 + r2

6 . (D12)

It is easy to see that x, y are both non-negative and satisfy

x + y � |�r|2. (D13)

The search of S is equivalent to the search of regimes of x and
y [together with Eqs. (D7) and (D8)] that allow reasonable
solutions of t . It is not difficult to see that there is no solution
for t when x = y = 0. Hence, the discussion can be divided
into two parts, (1) x = 0 (y �= 0) and (2) x �= 0. Now we
discuss them individually.

In case (1) x = 0 (y �= 0), Eq. (D10) reduces to

cos(�t ) = 1 − 2

y
|�r|2(1 − cos �). (D14)

The right-hand term is naturally not larger than 1, and re-
quiring it to be not less than −1 immediately leads to y �
1
2 |�r|2(1 − cos �) = |�r|2 sin2( �

2 ). Therefore, a feasible regime
for legitimate solutions of t is

x = 0, y ∈
[
|�r|2 sin2

(
�

2

)
, |�r|2

]
. (D15)

In case (2) x �= 0, the formal solution for Eq. (D10) is

cos (�t )=
−y±

√
(4x+y)2−16x|�r|2 sin2

(
�
2

)
4x

:= f±. (D16)
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To make sure there exist legitimate solutions, the first require-
ment is (4x + y)2 � 8x|�r|2(1 − cos �):

y � 4|�r| sin

(
�

2

)√
x − 4x. (D17)

In the case that y = 0, it reduces to x � |�r|2 sin2( �
2 ). Hence,

on the x axis, the feasible regime for legitimate solutions
of t is

x ∈
[
|�r|2 sin2

(
�

2

)
, |�r|2

]
, y = 0. (D18)

The second requirement is that at least one of the condi-
tions f+ ∈ [−1, 1], f− ∈ [−1, 1] can be satisfied. Due to the
fact that f± � 1 is always satisfied, we need to consider only
the case that at least one of f+ � −1 and f− � −1 is satisfied.
Since f± � −1 can be rewritten into

y � 4x ±
√

(4x + y)2 − 16x|�r|2 sin2

(
�

2

)
. (D19)

For the sake of the largest regime, we need to take only the
positive sign one:

y � 4x +
√

(4x + y)2 − 16x|�r|2 sin2

(
�

2

)
. (D20)

When y � 4x, this inequality is naturally satisfied. When y �
4x, it reduces to

y � |�r|2 sin2

(
�

2

)
. (D21)

In a word, the second requirement can be rewritten into y � 4x
or {

y � 4x,
y � |�r|2 sin2

(
�
2

)
.

(D22)

Combing both requirements, the conditions for x and y that
guarantee legitimate solutions of t are⎧⎪⎨

⎪⎩
y � 4|�r| sin

(
�
2

)√
x − 4x,

y � 4x,

y � |�r|2 − x,

(D23)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y � 4|�r| sin
(

�
2

)√
x − 4x,

y � 4x,

y � |�r|2 sin2
(

�
2

)
,

y � |�r|2 − x.

(D24)

3. Proof of Theorem 5

In the case of three-level systems, the Bhatia-Davis for-
mula reads

τBD = �

2
√

(E2 − 〈H〉)(〈H〉 − E0)
. (D25)

In the energy basis {|E0〉, |E1〉, |E2〉}, the expected value
of H is

〈H〉 = 1

3
(E0 + E1 + E2) + 1√

3
r2(E0 − E1)

r7

r2

1
2

√
3

2 Θc

r7

r2
√

3
2

1
2

FIG. 7. Illustration of the proof of Theorem 5, including (a) min-
imization of x + y, (b) maximization of 1√

3
r2 + r7 for |�r|2 = 1 and

� ∈ [�c, π ], (c) maximization of 1√
3
r2 + r7 for |�r|2 = 1 and � ∈

(0, �c], and (d) maxr2,r7 �τBD as a function of target �. Here �c =
2 arccos(1/

√
3).

+1

3
r7(E0 + E1 − 2E2). (D26)

In the case that the energy levels are equally spaced, i.e.,
E1 = E0 + � and E2 = E0 + 2� with � a constant gap, 〈H〉
reduces to

〈H〉 = E0 + �

(
1 − 1√

3
r2 − r7

)
, (D27)

which directly gives that

τBD = �

2�

√
1 − ( 1√

3
r2 + r7

)2 (D28)

and

cos(�τBD) = cos

⎛
⎝ �

2
√

1 − ( 1√
3
r2 + r7

)2
⎞
⎠. (D29)

To prove Theorem 5, we need to calculate the maximum
value of 1√

3
r2 + r7 for states in set S . The mathematical state-

ment of this problem is

max
1√
3

r2 + r7

subject to (D23) and (D24), (D30)

for a fixed |�r|2 and �.
Conditions (D23) and (D24) are not direct constraints on

r2 and r7, but on x and y. Since r2
2 + r2

7 = |�r|2 − x − y, these
constraints can affect only the value of r2

2 + r2
7 . Hence, the

first optimization in this case is to minimize x + y, which
corresponds to the maximum r2

2 + r2
7 . In the regime given by

inequalities (D23) and (D24), as illustrated in Fig. 7(a) (we
take these specific values of |�r|2 and � only for demonstra-
tion; the calculation is valid for any value), different values
of x + y mean different position of the dashed black line in
the plot. It is obvious that the minimum value is attained
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when the line is closest to the original point, which gives
min x + y = |�r|2 sin2( �

2 ):

max
x,y

r2
2 + r2

7 = |�r|2 cos2

(
�

2

)
. (D31)

The expression above can be further optimized with respect
to |�r|2, i.e., max|�r|2 r2

2 + r2
7 = cos2( �

2 ). Next, we need to
optimize the value 1√

3
r2 + r7 with the constraint r2

2 + r2
7 =

cos2( �
2 ). Due to the semidefinite property of density matrix

discussed in Appendix D 1, there we have r7 � 1/2 and r2 �√
3/2, as the gray areas shown in Figs. 7(b) and 7(c). Also, the

constraint equation r2
2 + r2

7 = cos2( �
2 ) is a circle (blue circles

in the plots). The dashed red line represents 1√
3
r2 + r7 = c

with c a constant. Regardless of the constraints r7 � 1/2
and r2 �

√
3/2, the maximum value of 1√

3
r2 + r7 is always

attained (denoted by the black dot) with the dashed red line
being the tangent line of the circle. The values of r2 and r7 for
this crossover point are

r2 = 1

2
cos

(
�

2

)
, r7 =

√
3

2
cos

(
�

2

)
. (D32)

Now let us take into account the constraint on r2 and r7. For
large values of �, the crossover point stays in the gray area, as
shown in Fig. 7(b), then the maximum value of 1√

3
r2 + r7 is

attained by this point. For small values of �, it is possible that
the value of r7 for this point [orange point in Fig. 7(c)] is out
of the gray area. In this case the maximum value is attained
by the point on the circle with r7 = 1/2. The critical target
�c satisfies

√
3

2 cos( �c
2 ) = 1

2 , which gives �c = 2 arccos( 1√
3

).
Thus, in the case of � ∈ [�c, π ], max �τBD reads

max
r2,r7

�τBD =
√

3�

2
√

1 − 2 cos �
, (D33)

and in the case � ∈ (0,�c], it is

max
r2,r7

�τBD = �

2

√
1 − 1

4

[√
1
3 (1 + 2 cos �) + 1

]2
. (D34)

Both Eqs. (D33) and (D34) are plotted in Fig. 7(d) as a
function of �. It can be seen that the maximum value with
respect to � is attained at � = π , and the corresponding value
of �τBD is π/2. Hence, one can obtain that

�τBD � π

2
(D35)

for any legitimate values of |�r|2 and �. Theorem 5 is then
proved. �

4. Analysis and proof of Theorem 6

With Theorem 5, we need to consider only the solutions of
Eqs. (D14) and (D16) within the regime (0, π

2 ] as the solutions
not in this regime are obviously larger than τBD. Now we
compare the values of cos(�t ) in Eqs. (D14) and (D16) with
cos(�τBD). We first consider Eq. (D14), i.e., x = 0. In this
case, when � � π

2 , there is

1

y
|�r|2(1 − cos �) = |�r|2(1 − cos �)

|�r|2 − r2
2 − r2

7

� 1, (D36)

FIG. 8. (a) Minimum values of h1 and h2 with respect to c
(minc h1 and minc h2) as a function of �. (b) Numerical test of the
violation of t � τBD in the case |�r|2 = 1 and � = π/3. The blue and
orange dots represent the states that t � τBD is violated or not. The
red (dark gray) areas in online (print) version are the regimes that
t � τBD is guaranteed to hold.

indicating that cos(�t ) � 0. Therefore, t � τBD in this case.
When � < π/2, if r2

2 + r2
7 ∈ [|�r|2 cos �, 1

2 |�r|2(1 + cos �)],
cos(�t ) is also negative and then t � τBD. Therefore, the only
problem left is that if this inequality is still valid for r2

2 + r2
7 ∈

[0, |�r|2 cos �]. That is equivalent to proving the expression

cos

⎛
⎝ �

2
√

1 − ( 1√
3
r2 + r7

)2
⎞
⎠+ |�r|2(1 − cos �)

|�r|2 − r2
2 − r2

7

(D37)

is larger than 1. In this expression, the minimum value with
respect to |�r|2 is attained at |�r|2 = 1. With this condition,
we further use a two-step method to locate the minimum
value of the expression above. The first step is to optimize

1√
3
r2 + r7 with a fixed value of r2

2 + r2
7 , i.e., r2

2 + r2
7 = c with

c a constant. Then the second step is to optimize c. In the
first step, when cos � � 1

3 , the maximum value of 1√
3
r2 + r7

is 2
√

c√
3

, which is attained by the tangent line on the circle with

r2 =
√

c
2 and r7 =

√
3c
2 , as discussed in the proof of Theorem

5. In this case, the minimum value of Eq. (D37) reduces to

cos

⎛
⎝ �

2
√

1 − 4
3 c

⎞
⎠+ 1 − cos �

1 − c
:= h1. (D38)

When cos � > 1
3 , the expression still keeps to be the one

above for the case c ∈ [0, 1
3 ]. Whereas for c ∈ [ 1

3 , cos �], the

maximum value of 1√
3
r2 + r7 is attained by r2 =

√
c − 1

4 and

r7 = 1
4 , and the minimum value of Eq. (D37) reduces to

cos

⎛
⎜⎜⎝ �

2

√
1−
[

1
2 +
√

1
3

(
c− 1

4

)]2

⎞
⎟⎟⎠+ 1−cos �

1−c
:= h2. (D39)

The minimum value of h1 and h2 with respect to c, i.e., minc h1

(solid blue line) and minc h2 (dash-dotted red line), are given
in Fig. 8(a) as a function of �. It can be seen that in both cases
the minimum values for any � is not smaller than one (dashed
black line). Therefore, Eq. (D37) is indeed always larger than
1 and t � τBD holds here.
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In the case that x �= 0, we need to compare Eq. (D16) with
cos(�τBD). It is obvious that the solution f− is negative and
the corresponding �t is larger than π/2, indicating that t �
τBD. With respect to the solution f+, we first consider a simple
case that r2 = r7 = 0, which means the diagonal entries of the
density matrix are all 1/3. In this case, cos(�τBD) reduces to
cos( �

2 ) and f+ reduces to

f+ =
−y +

√
16x2 cos2

(
�
2

)+ 8xy cos � + y2

4x
. (D40)

A non-negative cos( �
2 ) − f+ means

4x cos

(
�

2

)
+ y �

√
16x2 cos2

(
�

2

)
+ 8xy cos � + y2.

As both sides are positive, this inequality can be further sim-
plified by taking the square on both sides, which is of the form

8xy

[
cos

(
�

2

)
− cos �

]
� 0. (D41)

This inequality naturally holds since � ∈ (0, π ] and x, y � 0.
Hence, t � τBD for the states with r2 = r7 = 0. In the mean-
time, in the regime 2x + y � 2|�r|2 sin2( �

2 ), f+ is still negative.
Hence, in the crossover regimes between (D23), (D24) and
2x + y � 2|�r|2 sin2( �

2 ), t is always not smaller than τBD.
All the three regimes discussed above are plotted in

Fig. 8(b) as the red (dark gray) areas. In the regime 2x + y �
2|�r|2 sin2( �

2 ), the situation is a little complicated. Now we
first consider the case that x and y are fixed, which means
x + y is also fixed. Due to the fact r2

2 + r2
7 = |�r|2 − x − y,

this condition indicates r2
2 + r2

7 = c is also fixed (c a real
constant). Then according to the discussion in the proof of
Theorem 5, the maximum value of τBD becomes

max
r2,r7

τBD = �

2�

√
1 − 4

3 (|�r|2 − x − y)
:= τa,1 (D42)

for x + y � |�r|2 − 1/3 and

max
r2,r7

τBD = �

2�

√
1−[ 1

2 +
√

1
3

(|�r|2−x−y− 1
4

)]2 :=τa,2

(D43)

for x + y � |�r|2 − 1/3. Since the solutions of evolution time
t (to reach the target �) are related only to x and y, t is fixed

once x and y are fixed. If t is indeed larger than τa,1 and τa,2,
then for all the states within the circle r2

2 + r2
7 = c, τBD is a

valid lower bound. Otherwise, τBD fails to be a lower bound at
least for the states on the circle. To provide an intuitive picture
of this, we randomly generate 10 000 states in the regime 2x +
y � 2|�r|2 sin2(�/2) in the case of |�r|2 = 1 and � = π/3, as
shown in Fig. 8(b), to test if τa,1 and τa,2 are lower than t .
It can be seen that though τBD remains a valid lower bound
for most states (orange dots), the violation (blue dots) indeed
happens. The borderline is nothing but the equation

cos(�τa,i ) − f+ = 0, (D44)
where i = 1 for x + y � |�r|2 − 1/3 and i = 2 for x + y �
|�r|2 − 1/3. Substituting the expression of f+ in Eq. (D16) into
the equation above, it reduces to

x sin2(�τa,i ) + y sin2

(
�τa,i

2

)
= |�r|2 sin2

(
�

2

)
. (D45)

Hence, in the regime

x sin2(�τa,i ) + y sin2

(
�τa,i

2

)
� |�r|2 sin2

(
�

2

)
, (D46)

the Bhatia-Davis formula is a valid lower bound.
Furthermore, due to the fact that the violation regime

x sin2(�τa,i ) + y sin2

(
�τa,i

2

)
� |�r|2 sin2

(
�

2

)
(D47)

is within the regime y � 4x. Together with Eqs. (D23) and
(D24), the full regime in which τBD is a valid lower bound is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y � 4|�r| sin
(

�
2

)√
x − 4x,

y � 4x,

y � |�r|2 sin2
(

�
2

)
,

y � |�r|2 − x,

(D48)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y � 4|�r| sin
(

�
2

)√
x − 4x,

y � 4x,

y � |�r|2 − x,

y sin2( �τa,i

2 ) � |�r|2 sin2( �
2 ) − x sin2(�τa,i ).

(D49)

Theorem 6 is then proved. �
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