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Abstract
We investigate the time-dependent electron wave packet in a one-dimensional geometry with the
potential bent by a homogeneous external field. Based on the behaviors of the wave packet over
time, we observe a crossover time. After this crossover time, the temporal evolution of the wave
packet comes into a new regime, where the wave packet evolves in a self-similar structure. To
establish the time scale of this crossover quantitatively, we utilize the Loschmidt echo function,
through which the time at which the crossover occurs can be extracted. We also find the time of
the maximum ionization velocity can be comparable with the semi-classical tunneling delay time.

1. Introduction

Tunneling is a striking phenomenon in quantum physics, which was addressed in many areas of science,
such as condensed matter physics [1–5], optics [6–8], and attosecond physics [9–11]. The dynamics of
tunneling is at the heart of understanding the general quantum tunneling process and has been a hotly
debated topic over decades, while the issue of tunneling time attracting the most attention has remained
contentious [12–14] since it was first put forward by MacColl [15]. More recently, this issue was triggered
again in the field of the interaction between atoms and strong laser pulses, where the dynamics of ionized
electrons can be tracked experimentally on the attosecond scale by a powerful angular streaking technique
[16, 17]. It determines a tunneling delay time by a streaking angular offset, which is the angle of rotation in
the electron momenta distribution, relative to what would be expected if the most probable electron
trajectory appears at the tunnel exit at the peak of the laser field.

Tunneling dynamics is served as a fundamental process in many different physical fields. Viewed as a
dynamical event, it is very natural to associate a characteristic time with tunneling in quantum mechanics.
And the determined tunneling time would be related to a specific setup for the wave function and a specific
defining scheme. For instance, McDonald, Orlando et al [18, 19] have proposed a tunneling time spent by
the dynamic resonance state isolated from the total wave function reaching a constant ionization rate. In
solid physics, Niu [20] showed a tunneling time describing the regime of the temporal evolution of the
survival probability of the lowest band changing from strong oscillation to exponential decay. Besides, other
tunneling times used to characterize the temporal evolution of wave packets have also been defined in
different physical contexts [21–23].

Still, all of these defined characteristic times are determined by the energy width of the ground state,
induced by an external field or an accelerating potential. However, so far, a detailed description of the
time-dependent evolution of the total electron wave packet in the tunneling dynamics is lacking. And a
tunneling time characterizing the evolution of the total electron wave packet in the presence of a
perturbation is undetermined.
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Figure 1. Left panel: (a) the one-dimensional Coulomb potential VC(x), which defines the effective potential VC(x) − Fx by
applying an external field F. ψ0(x) is the ground state. The momentum distributions with F = 0.6 a.u. at (b) t = 5.0 a.u.,
(c) t = 11.0 a.u. and (d) t = 17.0 a.u. The arrows show the positions of the wavefront. Right panel: the same statement with left
panel except that the Coulomb potential is replaced by the square well potential.

In this paper, we aim to study the temporal evolution of an electron wave packet in a full quantum
mechanical approach. By solving the time-dependent Schrödinger equation (TDSE) and analyzing the
ionized wave function, we find that the evolution of the wave packet steps into a new regime after a
crossover time, at which the wave packet starts to evolve in a self-similar structure. We define this crossover
time obtained from the dynamical evolution of electron wave packet as the tunneling time. To distinguish
the different evolution stages of the wave packet, we quantify this crossover time by applying the Loschmidt
echo function [24, 25]. We also study the time of the maximum ionization velocity (MIV) and find it is of
the same magnitude as the semi-classical tunneling delay time.

The paper is organized as follows. In section 2, we introduce our model for a homogeneous external
field. In the presence of an external field, the temporal evolution of wave packet is discussed in section 3.
Afterwards, we propose a method to characterize the tunneling dynamics of a wave packet in section 4.
Finally, we draw our conclusions in section 5. Atomic units are used throughout the paper unless stated
otherwise.

2. Theoretical methods

Most of the works [18, 26, 27] that have so far dealt with the tunneling problem have investigated
reduced-dimensionality (1D) systems. The reason for this treatment is that the electric dipole
approximation is applied in tunneling theories, and the effect due to the magnetic field component is
ignored [28]. Thus, the linear polarization of the electric field renders the motion of the electron quasi-one
dimensional, allowing us to investigate general features of tunneling in one-dimensional (1D) scenario. In
what follows, we consider the electron trapped in a 1D potential exposed to a homogeneous electric field
F(F > 0). Here, two different potentials, atomic Coulomb potential and square well potential, are employed
[see figures 1(a) and (e)]. The square well potential is a short-range potential, while the Coulomb potential
is a long-range potential and its tail effect always entangles with the tunneling dynamics in strong-field
ionization of atoms. Hence, by comparing the results of these two potentials, the tail effect can also be
studied.
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For the atomic Coulomb potential, the Hamiltonian of the system takes the form

H = −1

2

∂2

∂x2
+ VC(x) − Fx, (1)

where VC(x) = −1/
√

x2 + b2 represents the soft-core electron–nucleus interaction [29, 30] with b as the
soft parameter. The unperturbed ground state ψ0(x) is set as the initial state, and the TDSE is numerically
solved by the split-operator method [31].

We also use a square well potential VS(x) with the depth −V0 and the width 2a, as shown in figure 1(e),
where the triangular barrier is formed by combining the square well potential with the external field. The
eigenvalue equation of this system is given by

(
−1

2

∂2

∂x2
+ VS(x) − Fx

)
ψE(x) = EψE(x), (2)

where E is the eigenvalue, ranging from −∞ to ∞, and ψE is the corresponding eigenfunction. By
introducing a parameter ξ(x) = (x + E/F)(2F)1/3, the above equation [equation (2)] can be solved
analytically and the solutions are given by

ψE(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z(−)
E Ai[−ξ(x)], x � −a,

α sin(ηx) + β cos(ηx), −a < x < a,

Z(+)
E Ai[−ξ(x)] + N(+)

E Bi[−ξ(x)], x � a,

(3)

where η =
√

2(E + V0) for E + V0 � 0, and η = i
√
−2(E + V0) for E + V0 < 0. Here Ai(x) and Bi(x) are

two linear-independent Airy functions [32]. The five unknown parameters in the above equation are
determined by four continuity conditions that ψE(x) and its derivative are continuous at x = ±a, and by a
normalization condition Z(+)2

E + N(+)2
E = (4/F)1/3, rooted in the outgoing bound condition [32]. Then, by

expanding the initial state (the unperturbed ground state) ψ0(x) in the basis of these eigenfunctions, ψE(x),
the time-dependent wave function ψ(x, t) can be written as

ψ(x, t) =

∫ ∞

−∞
dEg(E)e−iEtψE(x), (4)

where g(E) =
∫

dxψ∗
E(x)ψ0(x) denotes the spectral probability amplitude.

Over time, the electron can tunnel through the potential barrier formed by combining the atomic
Coulomb potential or the square well potential with the electric field’s potential, and subsequently be
ionized. The ionized wave function for both systems is given by

ψion(x, t) = ψ(x, t) −
∑

i

〈ψi(x)|ψ(x, t)〉ψi(x), (5)

where ψi(x) represents the ith (i = 0, 1, 2, . . .) unperturbed bound state.
To make results of the two systems better comparable, we set the same ionization energy Ip = 1.696 a.u.,

where b = 0.097 a.u., V0 = 2.0 a.u., and a = 1.5 a.u. Note that there are two bound states, the even- and
odd-parity states, in the system of square well potential. In this work, the external field F ranges from
0.5 a.u. to 1.0 a.u., corresponding to the intensity I0 changing from 8.75 to 35.01 × 1015 W cm−2.

3. Temporal evolution of an electron wave packet

In the tunneling ionization (TI), an electron is ionized by an external field and escapes from the potential
barrier formed by combining the Coulomb potential or the square well potential with the external field; see
figures 1(a) and (e). The photoelectron momentum distributions at three different times for the two
systems are also plotted in figure 1. With time, the wave packet spreads rightwards in the momentum space
and the width of momentum distribution increases, which implies the increase of the average momentum
of the system. This increase in the momentum coincides with the motion of classical electrons in the
external electric field. In a semi-classical counterpart, the ionized electrons will be continuously accelerated
by the homogeneous electric field. Apart from a highest peak around p = 0, which keeps its position
constant, there exists a visible moving peak with the spread of ionized wave packet for both cases. We call
this rightwards propagating peak in the region of p > 0 as wavefront [see the positions of arrows in
figure 1]. At the same time, in coordinate space, wavefront denotes the rightwards propagating peak of
probability density |ψion(x)|2 with time in the region of x > 0.
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Figure 2. The momentum distributions at different times for the systems of (a) Coulomb potential and (b) square well potential
with F = 0.6 a.u. (c) The minima of |φion(p � 0)|2 marked by the dashed black line [see (a) and (b)] with respect to time. (d) The
probability of the wavefront of momentum distribution as a function of time.

Figure 3. The ionized wave function for the cases shown in figure 2 except that (c) the maxima of |ψion(x � 0)|2 as a function of
the evolution time. The insets show a magnified portion.

To study the dynamics of electrons in the tunneling regime in detail, we plot the momentum
distributions at different times in figures 2(a) and (b), taking F = 0.6 a.u. as an example. Two prominent
features of the time-dependent wavefunction are observed, which shows that the phenomena in both cases
are similar. One appealing feature is the time-dependent behavior of probability density |φion(p)|2 in the
vicinity of p = 0(p ∈ (−1, 1)). It can be clearly seen in figure 2(c), where we plot the local minima of
|φion(p)|2 [see the black dashed lines in figures 2(a) and (b)] as a function of time. It shows that initially
|φmin

ion (p � 0)|2 oscillates and then decays exponentially with time. This phenomenon is similar to that of the
variation of survival probability over time for atoms in an accelerating optical lattice [20]. As to the
coordinate wave functions, |ψion(x)|2, shown in figures 3(a) and (b), we also consider the temporal behavior
of probability density |ψion(x)|2 in the region of around x = 0(x ∈ (0, 10)) [see the inserts in figures 3(a)
and (b)] and plot the local maxima of |ψion(x)|2 as a function of time in figure 3(c). We find that it
coincides with the behavior of the minima in the momentum distribution [see figure 2(c)]. It should be
noted that it is reasonable to figure out the maximum probability density |ψion(x)|2 simultaneously. The
partial electron wave packets in the coordinate space and momentum space are uncorrelated, while the
electron wave packets in the whole coordinate space and momentum space are interdependent.
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The other outstanding feature is the variation behavior of wavefront. Figure 2(d) shows the probability
density of the wavefront as a function of time. One can see that initially, the value |φfront

ion |2 rapidly rises at
the beginning and later keeps constant. It seems that for longer times, the wavefront translates rightwards
uniformly [also see figures 2(a) and (b)]. For square well potential, the ionized part of wavefunction is
merely subjected to the uniform electric field. It inspires us to calculate a quantum model that a free
electron interacts with a uniform electric field to explain and quantify the motion of the ionized wavefront.
The Hamiltonian of this model can be written as Hfree = p2/2 − Fx. For an arbitrary initial state |ψa〉, its
time-dependent wave function in the momentum space is given by φ(p, t) = 〈p|e−iHfreet |ψa〉 = e−itp2/2

eit2Fp/2eit3F2/3〈p|eiFtx|ψa〉. As a result, the momentum distribution satisfies

|φ(p, t)|2 = |〈p − Ft|ψa〉|2 = |φ(p − Ft, t)|2. (6)

which manifests that the momentum wave function of a free electron will translate rightwards with an
acceleration F, while keeping its shape; see figure 2(b). Therefore, for the short-range square well potential,
the probability density of the wavefront will undoubtedly remain unchanged [see figure 2(d)] as the
electron tunneling out the potential barrier. However, in the case of Coulomb potential, for long times, the
wavefront behaves the same as that of square well potential, as shown in figures 2(a) and (d). Also, if one
compares the snapshots of wavefunction for t = 21 a.u. in figures 2(a) and (b), the wavefront momenta for
both Coulomb potential and square well potential are approximately the same. These indicate that the tail
of the long-range Coulomb attractive potential can be taken as a perturbation when the electron is away
from the parent ion.

Also, figure 3(d) depicts the dependence of the probability density of wavefront on time. Unlike the
behavior of wavefront in the momentum distributions [see figure 2(d)], the probability density of wavefront
for the coordinate wave functions initially performs a rapid rise, then decreases smoothly for longer times.
The decrease is due to the spread of wave packets of different momentum components in the coordinate
space. In coordinate space, the wavefront undergoes a uniformly accelerated linear motion with an
acceleration equal to F. Together with the motion of wavefront in momentum space, the behaviors of the
ionized wavefront coincide with the motion of a free electron subjected to a constant electric field in
classical picture. It shows again that the motion of a microscopic quantum ionized wave packet can be
intuitively understood from a viewpoint of a macroscopic classical particle.

From figures 2 and 3, a regular evolution regime of wavefunction is established when the temporal
behavior of probability density around zero is no longer oscillating but decaying exponentially and the
probability density of wavefront starts to remain unchanged in momentum space or fall smoothly in
coordinate space. This yields that the shape of the wave functions at different times looks similar, namely,
the wave functions adjust themselves to the field. We mark this regular evolution regime as the steady state
of the system and define the corresponding time as the crossover time of the system. Note that the quantum
dot potential is also a short-range potential. It results in that the evolution behavior of time-dependent
wavefunction for quantum dot potential will resembles with that of square well potential. As expected, a
similar structure of wave packet for long times in the case of a 1D quantum dot potential has been
observed [18, 19].

4. Characterization of the crossover time of wave packet dynamics

As discussed above, the tunneling dynamics of the wave packet comes into a steady state and evolves in a
self-similar structure after the crossover time. Note that this behavior is in qualitative agreement at different
reference points around x = 0(p = 0) and the neighboring points of wavefront. Hence, though this time
can be directly read from figures 2 and 3, it is point-dependent with a relative error less than 0.58 pencent.
To quantitatively describe the similarity of the ionized electron wave packet at different times and quantify
the crossover time uniquely, we employ the Loschmidt echo function [24, 25]

L(t; dt) = |
∫ ∞

−∞
dxψ∗

ion(x, t)ψion(x, t + dt)|2, (7)

which is extensively used to describe the similarity of two different states.
Corresponding to the normalized and unnormalized ionized wave functions ψion, we can define two

types of Loschmidt echo function, LN and LUN, respectively. LN only contains the information of the shape
fidelity of the ionized wave function, while in the unnormalized case, LUN also reflects the mode change of
the wave function. Figure 4 plots the Loschmidt echo functions, LN and LUN as a function of time for
F = 0.6 a.u. Both LN and LUN eventually tend to 1 for the small dt in equation (7). With dt = 0,
equation (7) reduces to ionization probability at the instant t. In the well-known Landau–Zener tunneling,
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Figure 4. (a) LUN and (b) LN as a function of time for the systems of Coulomb potential and square well potential with F = 0.6
a.u. and dt = 0.01 a.u.

the survival probability of the lowest band exhibits an exponential decay for long times [20]. Also, the
time-dependent probability density around zero decays exponentially for long times [see figures 2(c) and
3(c)]. Thereby, to extract the crossover time from figure 4, the Loschmidt echo function is fitted as
L(t; dt) = Ae−t/Tc + B without considering some data for relatively short times. Then, the crossover time,
Tc of the system is determined by a unified norm that Tc is the time satisfying L(t; dt) ∝ e−1. Careful
calculations are performed to show that Tc is convergent with respect to the parameter dt. And for the
normalized and unnormalized cases, one can see the crossover times differ significantly.

Specifically, we can verify analytically that the LUN reflects the ionization process in essence. Substituting
equation (5) into (7), as dt is small (dt is less than 0.01 a.u. in our model), we can expand LUN to first order
in perturbation,

LUN =

∣∣∣∣1 − a(t) + ib(t)dt − idt

∫ ∞

−∞
dE|g(E)|2E

∣∣∣∣
2

, (8)

where

a(t) =

∫ ∞

−∞
dE′

∫ ∞

−∞
dE|g(E)|2|g(E′)|2e−i(E−E′)t ,

b(t) =

∫ ∞

−∞
dE′

∫ ∞

−∞
dE|g(E)|2|g(E′)|2e−i(E−E′)tE.

Here 1 − a(t) and −2 Im[b(t)]dt represent the ionization rate and its change, respectively, and
2 Re[b(t)]dt −

∫
dE|g(E)|2Edt is the total phase change of the ionized wave function. Interestingly, the time

Tc determined by a(t), Re[b(t)] or Im[b(t)] is nearly equal to Tc calculated by LUN [equation (8)] according
to the exponential fitting formula Ae−t/Tc + B, considered above.

Also, we calculate the time-dependent ionization velocity (|ψion(t + dt)|2 − |ψion(t)|2)/dt for the two
systems. And the ionization velocity is equal to −2 Im[b(t)] [see equation (8)] for square well potential. The
time of the MIV is denoted as TMIV, which is a full-quantum time. By contrast, the time of maximum
probability current (MPC) at the tunneling exit is also calculated. This position-dependent time TMPC is
obtained by setting t0 = 0.0 (the time when the field strength reaches the maximum) and it right
corresponds to the tunneling time delay τA defined in reference [26].

Figure 5 presents the various typical times as a function of field strength. As can be seen, the crossover
time is, especially for weaker F′s, several orders of magnitude higher than the other times (TMIV and TMPC)
and decreases much faster with increasing the field strength. This points to the important difference
between the definitions of the crossover time and the other times. The crossover time, extracted from the
time-dependent behavior of probability density reflects the time needed by a majority parts of wavefunction
to escape through the barrier. As shown in the inset of figure 5, the ionization probability
[Pion = 1 − |〈ψ0|ψ(t)〉|2] at the crossover time is more than 60% for both systems of Coulomb potential
(blue line) and square well potential (blue-dashed line). Such high ionization probability results in that the
crossover time will be extremely sensitive on the barrier shape and barrier wall, created by the superposition
of the bare potential and the laser field. A larger electrostatic field bends the barrier lower and narrower,
providing a chance for the electron escaping from the barrier faster. Thus, the crossover time is more easily
achieved for a stronger field strength. Whereas the other times (TMIV and TMPC) reflect the time needed by a
small fraction of wavefunction to pass the barrier. They will be much smaller and are less sensitive on the
barrier width than the crossover time.

Moreover, the crossover times for LN and LUN in the system of the square well potential are always
greater than that of the Coulomb potential in the field range, although the general features are the same.
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Figure 5. Kinds of typical times as a function of field strength F for the systems of Coulomb potential and square well potential.
The times of maximum probability current (TMPC) are calculated in the system of Coulomb potential for F = 0.5, 0.6, 0.7 a.u.
The blue and grey regions represent the tunneling ionization (TI) and the over-the-barrier ionization (OBI) regimes, respectively,
for the case of Coulomb potential. The inset shows the ionization probabilities at crossover times for Coulomb potential (blue
line) and square well potential (blue dashed line).

These phenomena are consistent with the behavior of the Bohmian tunneling time [23], and they explain
again that the tunneling dynamics has a strong dependence on the actual shape of the barrier. However, the
method introducing the crossover time in this work is utterly different from that of the Bohmian tunneling
time [23]. Note that we do not refer to the barrier width, which is given approximately by Ip/F within the
strong field approximation [33–35] and causes the other four tunneling times for hydrogen to become
divergent in a relatively intense field [23]. Besides, as compared to the LN, the crossover time calculated by
LUN is a bit delayed. But the delayed time reduces as the field strength increases, since the ionization rates in
both cases (LN and LUN) at the crossover time are approaching slowly with increasing F. We also display the
Keldysh tunnel time τ k (grey dash-dotted line). For the Coulomb potential, TMIV approaches the Keldysh
time at relatively intense field strength. And the full-quantum time TMIV can be comparable with the time
TMPC.

In addition, the field strength F = 0.72(1.13) a.u. is the boundary between the TI and the
over-the-barrier ionization (OBI) regimes for the system of Coulomb potential (square well potential).
However, whether the TI or the OBI, the probability distributions of the bound electron display common
behaviors in the temporal evolution [see figures 2(c) and (d) and 3(c) and (d)]. Hence, the crossover time
we proposed in this work is applicable in the IT and the OBI regimes, and it seems to make little sense to
distinguish between the TI and the OBI when the tunneling dynamics of electrons is discussed fully
quantum mechanically. We hope that not only in the TI regime, the attoclock experiment can also be
extended to the OBI regime in the future.

5. Conclusion

To summarize, a detailed and systematic study about the overall behavior of the tunneling dynamics of the
wave packet in the electronic ground state has been presented. TI occurs at the instant switching on the
laser field. For times shorter than the crossover time Tc, the ionized wavefunction still couples with the
binding potential and its temporal evolution is dominated by the combined effect of binding potential and
external field. After the crossover time, the coherence between ionized wavefunction and binding potential
fades away, resulting in the escaping parts of wavefunction is solely exposed to the external field and evolves
regularly. From the perspective of coupling and decoupling, the crossover time can be explained as the time
required for completed ionization of the entire wave packet. For relatively weak fields, this crossover time
can be comparable with the cycle duration of central wavelength λ = 800 nm. Whereas for a time-varying
field, based on the well-accepted viewpoint, main contribution of ionization comes from the instant of
maximal electric field strength, which means that only parts of electrons are ionized in one-cycle pulse. This
indicates that the tunneling time in attoclock experiments reflects the time it takes minor parts of electrons
to be ionized.

After the crossover time, the ionized wavefunction decouples with the binding potential, which is a
general result and is independent of the form of trapped potentials. Also, the numerical findings rely
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exclusively on the analysis of evolution behavior of wave packet, so the method proposed can be directly
generalized to the system of quantum dot potential [18, 19]. Thus, our results are universal to some extent
for low-dimensional quantum systems. Regardless of the dimensionality, the ionized wavefunction will
eventually behaves the same as a free particle in a static field. Then, a regular evolution of wavefunction is
expected to appear, perhaps allowing us to generalize the extraction of crossover time from Loschmidt echo
function to two- or three-dimensional atomic systems.

Moreover, the constant field is a consequence of adiabatic limit of time-dependent field. For a periodic
field, plenty of Floquet states ascribed to the virtual absorption of photons will be involved in the process of
TI [36]. Also, the ionized electrons move in the field back and forth, and are even captured by the parent
ion. These cause that the ionized wavefunction will possess much richer structures. Whereas, it is possible
for the ionized wavefunction to exhibit a periodic structure in the presence of this periodically varying field,
which renders us to define a crossover time. This uncertainty issue provides us a motivation to carry on a
detailed study in the future.
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