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Abstract
To take quantum advantage of collective effects in many-body system, we design an elementary
block for building a quantum battery with the optimal number of atoms in a common thermal
bath, which is charged collectively by a harmonic driving. Free energy is a novel tool to quantify
usable energy in an open system, which includes non-preserved entropy impacts on the stored
energy besides the internal energy. The interesting finding is that the free energy variation in the
steady state increases non-monotonically, and reaches the maximal value at the optimal number of
atoms. It ascribes to the decreasing of the internal energy and the entropy per atom with the
increasing of the atoms. In particular, the elementary block with the optimal number of atoms can
relax to the optimal steady state with the weak damping of the internal energy due to the strong
collective driving. By comparing to each atom parallel charging independently, the optimal battery
cell produces lower heat flow to the thermal bath induced by the entropy, which can not be
neglected in the dissipative system. The existence of the optimal battery cell provide a guideline for
designing a realizable charging scheme.

1. Introduction

Recently, diligent efforts are devoted to explore the possibility of taking advantage of quantum resources to
achieve superior performances in the energy conversion and storage with the control achievement on
multipartite quantum system [1–3]. Quantum battery (QB) is a quantum system for storing energy
supplied by an external source. The battery exploits quantum effects for efficient charging in comparison to
its classical counterpart [4–9]. A renewed effort is devoted to enhance charging of multipartite batteries in a
closed system as a consequence of quantum correlations in many-body systems, which is known as
collective effects [10–13].

When a multipartite battery is subjected to a common thermal bath, it gives rise to interesting quantum
correlations such as the von Neumann entropy, which establishes a link to thermodynamics [14–16]. In the
open charging system, a flow of heat to the bath accounting for non-preserved entropy has been overlooked.
Much efforts have been devoted to investigate the QB for the energy storage in the thermal environment
using different charging protocols [17–20]. An emergence of collective effects in quantum thermodynamics
is attractive quantum phenomenon in dissipative systems [21–23]. Here, we focus on alternative aspect
mostly unexplored, namely, free energy related to internal energy and entropy impacts on the cooperative
many-body effects for the multipartite QB system. In thermodynamic charging process, free energy is an
alternative tool to measure the amount of extractable work as useful energy [24, 25].

Since a harmonic driving as an external source has been proposed as an alternative powerful charging
field due to the tunable driving parameters for maximal stored energy [11]. Inspired by the advantage of the
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Figure 1. (a) Charging protocol of N two-level atoms in parallel. Each atom is subjected to a thermal environment
independently. (b) The elementary building block (blue box) consists of N atoms with a common thermal bath. During the
charging time, the QB interacts with a harmonic driving field A cos(ωt).

collective effects and the harmonic driving, a multipartite QB in a common thermal bath, collectively
coupled to a harmonic driving field, is an attractive battery model for optimal energy storage. The question
is that whether collective effects in many-body system be harnessed to improve thermodynamically
meaningful features in the driven-dissipative charging protocols.

We study an elementary block of the QB with an ensemble of two-level atoms in a common thermal
bath, which are collectively charged by a harmonic driving field. We exploit the free energy to quantify the
useful stored energy, which behaves non-monotonically dependent on the number of atoms N. The reason
is that both of the internal energy and entropy per atom in the steady state decreases as N increase. It
indicates that contributions of entropy can not be neglected in the energy storage. We find that the QB
elementary with the optimal number of atoms relaxes to the optimal steady state, for which the internal
energy decays weakly due to the strong driving compared to the dissipation. It is nontrivial to find the
optimal elementary unit of the QB with the maximum free energy variation, which is prior to the parallel
charging mode.

The paper is outlined as follows. In section 2, we propose a protocol for a multipartite battery consisting
of N two-level atoms in a thermal bath, which is charged by a driving field. In section 3, we study the
parallel-charging mode and the collective charging process, respectively. The internal energy, von Neumann
entropy and free energy are calculated dependent on N. Finally, a brief summary is given in section 4.

2. A protocol for a multipartite QB charging

We consider an open charging system of a multipartite battery, which consists of two-level atoms coupled to
an external driving as a charger to transfer energy. Figure 1(a) shows normal parallel charging strategy with
independent thermal bath. Our charging protocol focus on the elementary building block (blue box),
illustrated in figure 1(b), with N atoms in a common thermal bath. Atoms in each unit are collectively
charged by a harmonic field. The total Hamiltonian consists of the QB-system part Hs and the interacting
part HI as

H = Hs + HI, (1)

Hs = ω0Jz, HI = A cos(ωt)Jx, (2)

where Jα =
∑N

i σ
α
i /2 (α = x, y, z) is the collective operator of N two-level atoms with the energy level

splitting ω0. A and ω are the driving amplitude and the modulated frequency. The Hamiltonian H is
semi-classical Dicke model [26, 27]. Such systems can be described by the Dicke states |J, m〉
(m = −J, . . . , J), which are eigenstates of J2 and Jz.

In the practical application, the QB are coupled also to the environment, which is modeled as the
thermodynamics dissipation. We consider that the QB system weakly interacts with a thermal bath [28]. So
each angular momentum J sector approximately evolves independently. We consider the Hilbert space in the
maximum angular momentum sector J = N/2. And quantum correlations emerge in the symmetric Dicke
states. Initially, N atoms decouple with the driving field. The initial state of the N atoms is the Gibbs

thermal state ρN
s (0) = e−βHs/Z with the partition function Z =

∑N/2
m=−N/2 e−mω0β .
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3. Driven-dissipative dynamics for the collective charging process

The QB system evolution involves energy transferred from the coherent driving field and energy dissipation
into the thermal thermal. To measure the amount of energy stored in the QB, the importance is to define
the usable energy as extractable work. In the normal charging without thermal environment, the internal
energy change of QB can be utilized in the later retraction. Yet, only part of the internal energy can be
extracted in the charging process within the thermal environment. In the open system, von Neumann
entropy quantifies the correlations in the QB system [29, 30], and is defined as S(ρN

s ) = −Tr(ρN
s ln ρN

s ).
The entropy is not preserved in the evolution due to dissipation, which is different from the preserved
entropy in a closed system. The corresponding heat flow to the thermal bath induced by the entropy is given
by Q = kBTS, which plays a negative contribution in the energy storage. Thus, the useful energy stored in
the QB is measured by the free energy

F(ρN
s ) = E(ρN

s ) − kBTS(ρN
s ), (3)

where E(ρN
s ) = Tr(Hsρ

N
s ) is the internal energy of the QB system.

For the charging dynamics, energy exchanges between the different subparts. The change of the energy is
given by ΔE(t) = E(ρN

s (t)) − E(ρN
s (0)), which is associate with the energy transferred from the driving field

and the energy flow into the bath. Meanwhile, the change of th entropy is given by ΔS = S(ρN
s (t)) −

S(ρN
s (0)). So the difference in the free energy ΔF = ΔE − kBTΔS measures the useful energy stored in the

QB. At zero temperature T = 0 or with no dissipation, the free energy change is equivalent to the internal
energy, ΔF(ρN

s ) = ΔE(ρN
s ). Here we only consider the situation with one thermal bath during the charging

and later retraction process with the same temperature. The similar definition of the useful work is well
discussed in the quantum thermodynamic resource discussions [31].

3.1. Parallel charging
We first consider the QB system in the parallel charging in figure 1(a). Each two-level atom couples to a
distinct thermal bath at the temperature T. For N = 1 QB system, Liouvillian master equation describes the
individual driven-dissipative dynamics

dρ1
s/dt = −i

[
ω0

2
σz +

A

2
cos(ωt)σx, ρ1

s

]
+ γ[n(T) + 1](2σ−ρ

1
sσ+ − {σ+σ−, ρ1

s}) + γn(T)

× (2σ+ρ
1
sσ− − {σ−σ+, ρ1

s}), (4)

where the loss rate γ fixes the timescale of the dissipation process, and the mean occupation number of
thermal photons at an inverse temperature β = (kBT)−1 is n(T) = [exp (ωβ) − 1]−1.

Initially, the QB system is in the Gibbs thermal state, ρ1
s (0) = e−βHs/Z with the partition function

Z = Tr(e−βHs ). The initial internal energy is E1(0)/ω0 = (e−βω0/2 − eβω0/2)/(2Z). The dynamics of the
internal energy is obtained approximately by neglecting the fast oscillation terms (see appendix A)

E1(t)

ω0
= − γ2χ

2γ2χ2 + A2

{
1 − e−Γ

2χγ2

{
[
(
2χγ2(1 + αχ) + αA2] cos(Ωt)

− γ

2Ω

[
2γ2χ2(1 + αχ) + A2(4 + αχ)

]
sin(Ωt)

}}
, (5)

where α = Tr[σzρ(0)], and the oscillation Rabi frequency is Ω =
√

A2 − γ2χ2/4 with χ = [1 + 2n(T)].
Dissipation effects are reflected in the decoherent relaxation rate Γ = 3γχ/2, which results in fast damping
for high temperature T. The driven system performs exponentially damped Rabi oscillations between the
states |g〉 and |e〉, tending towards s steady state

E1(t →∞)

ω0
= − γ2χ

2γ2χ2 + A2
. (6)

In the absence of driving as A → 0, it covers E1(t →∞)/ω0 →−1/2. In the opposite limit, when A
becomes very large compared to γ, the internal energy reaches its maximal value E1(t →∞)/ω0 → 0 in the
steady state, which is so-called the optimal steady state. The corresponding population is shared almost
equally between the ground and excited states in the long time limit.

Especially, at zero temperature T = 0, equation (5) reduces into

E1(t)

ω0
=

−γ2

2γ2 + A2

[
1 +

A2

2γ2
e−3γt/2

(
cos Ωt +

3γ

2Ω
sin Ωt

)]
. (7)
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Figure 2. The internal energy E/ω0 in the parallel-charging mode obtained by the analytical solution (dashed black line) as a
function of time t for different driving strength and thermal photon occupation (a) A/ω0 = 0.05, n(T) = 0, (b) A/ω0 = 0.5,
n(T) = 0, (c) A/ω0 = 0.05, n(T ) = 1, and (d) A/ω0 = 0.5, n(T ) = 1. The driving frequency is chosen as ω = ω0 = 2, and the
dissipation rate is γ = 0.01ω0. The numerical results are listed for comparison (solid red line).

For a strong coherent driving, E1 in the steady state approaches to its maximum 0.
We calculate E1(ρ1

s ) by solving equation (4) numerically for the resonance ω = ω0 in figure 2. The
analytical solutions in equation (5) agree well with numerical ones. It is observed that a larger driving
amplitude A results in better charging of the QB even in presence of dissipation in figures 2(b) and (d). As
expected, higher temperature T with a larger n(T) induces faster relaxation dynamics to reach the steady
thermal state in figures 2(c) and (d). All curves present a damped oscillatory behaviors, and the amplitude
is modulated by the exponential decay dictated by the decoherent relaxation given in equation (5). As the
driving amplitude is very large compared to the dissipation rate, A/γ = 50, the system can relaxed to the
optimal steady state with the maximum internal energy E1(t →∞)/ω0 → 0. It indicates that strong driving
can transfer energy to the QB system to suppress the dissipation, resulting in maximizing the internal
energy.

The useful energy stored of N atoms in the parallel charging mode by N copies of such single-atom QB
is N times the free energy stored in the single-atom QB. In contrast to the parallel-charging mode, we are
interested in the coherent charging of the atom ensemble, for which the stored energy is expected to scale
nonlinearly with N.

3.2. An optimal elementary unit for collective charging
We now investigate the maximum stored energy when the N atoms are coupled to the common thermal
bath in figure 1(b), so-called collective charging mode. In a realistic dissipation system of an ensemble of
atoms, Liouvillian master equation is generally described by a sum over local channels for each atom,

dρs(t)N

dt
= −i[H, ρN

s (t)] + γ[n(T) + 1]L[σ−]ρN
s + γn(T)L[σ+]ρN

s , (8)

where decoherence acts locally on each atom with the same rate γ via the Lindbladian
L[σ±]ρN

s =
∑N

n=1σ
n
±ρ

N
s (σn

±)† − (σn
±)†σn

±ρ
N
s /2 − ρN

s (σn
±)†σn

±/2. The dimension of the Hilbert space is 2N,
which is intractable as N increases. For a collective process of an ensemble of atoms [19, 32, 33], there is
identical coupling between all the atoms in the ensemble and the common bath. A decoherence model does
respect the particle symmetry and preserves symmetric collective states, which are invariant under the
permutation of particle labels. It thus is reasonable to consider the atom ensemble collective couplings to
the environment in symmetric atomic dynamics. It has become common practice to study decoherence in
spin ensemble by approximating the above equation by its associated collective process L[J±]ρN

s = J±ρN
s J†±

− J†±J±ρN
s /2 − ρN

s J†±J±/2. For the collective decoherence process, the open system of the QB dynamics is

4
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governed by the master equation,

dρs(t)N

dt
= −i[H, ρN

s (t)] + γ[n(T) + 1]L[J−]ρN
s + γn(T)L[J+]ρN

s . (9)

If all operators are collective, then the symmetric collective states span an invariant subspace, which cannot
create coherence between different J sectors. Since we focus on symmetric Dicke state |J, m〉 and prepare the
initial Gibbs thermal state in the angular momentum sector J = N/2. The system preserves the
N + 1-dimensional Hilbert space under such collective dissipation dynamics.

The initial energy is obtained as E(0) = ω0Tr [Jzρ
N
s (0)] = ω0

∑N/2
m=−N/2 me−mβω0/Z, which decreases to

the lowest energy −ω0/2 as N increases.
It is interesting to analyze the useful stored energy in the steady state dependent on N. We use the

Hosltein–Primakoff transformation in terms of auxiliary bosonic operators b† and b: Jz = b†b − N/2,
J+ = b†

√
N − b†b and J− =

√
N − b†bb. Equations of motion for mean values of the observables can be

expressed as d〈O〉
dt = Tr(O dρN

s
dt ), which gives explicitly as

d〈b〉
dt

= −iω0〈b〉 − iA
√

N − 1

2
γN〈b〉, (10)

d〈b†b〉
dt

= −iA
√

N(〈b†〉 − 〈b〉) − γN〈b†b〉+ γNn(T). (11)

In the long time limit, according to stationary condition d〈b〉/dt = 0, one obtains the stable value
〈b(t →∞)〉 = A

√
N/(−ω0 + iγN/2). In the limit N →∞, the internal energy per atom

E/(Nω0) = 〈b†b〉/N − 1
2 in the steady state is given analytically as

E(t →∞)

Nω0
= −1

2
+

A2

ω2
0 + γ2N2/4

+
n(T)

N
. (12)

It is noted that the driving amplitude is strengthened proportional to A
√

N, which competes to the
dissipative rate γN. In the limit N →∞, the dissipation rate γN is dominated, and E/(Nω0) in
equation (12) decreases rapidly to the lowest energy −1/2. From the analytical solutions, the internal
energy per atom is expected to decreases from 0 to −1/2 as N increases.

For the QB system with finite atoms, we calculate the internal energy by solving equation (9)
numerically in figure 3(a). As N increases up to 13, the internal energy per atom decreases slightly and
almost tends to the maximal value E(t →∞)/(Nω0) → 0 in the steady state. It is called the optimal steady
state with almost the maximum internal energy. The reason is that the effective driving strength is larger
than the dissipation rate for small values of N, A

√
N � γN, and can transfer energy to suppress the

internal energy flow to the bath. In the optimal steady state, populations for N = 10 and 13 are shared
almost equally between arbitrary two symmetric Dicke states |J, m〉 and |J,−m〉 in figure 3(b), respectively.
However, for N = 40, the dissipation is dominated, and the average internal energy per atom decays to
−1/2. Consequence, the average internal energy per atom in the steady state E/(Nω0) decreases dependent
on the system size N in figure 3(c). However, E/(Nω0) decreases very weakly for small values of N. It
indicates that the QB system with small number atoms can achieve the optimal steady state with the small
reduction of the internal energy in the end of charging process.

Besides the internal energy, a heat flow to the thermal environment induced by the entropy cannot be
neglected in the free energy. In the absence of dissipation, von Neumann entropy entropy of the QB system
is preserved and unchanged. In the open system, the entropy is not preserved in the evolution in figure 4(a),
which induces the heat dissipated to the bath. It is observed that the entropy of each atom decreases as N
increases due to the increasing of dissipation. It demonstrates that the heat flow to the bath induced by the
entropy is lower than that for the parallel charging mode with N = 1.

Since the internal energy and entropy per atom decreases in the steady state as N increases. Thus the free
energy increases firstly for small values of N, then decreases for large values of N = 40 in figure 4(b). In the
ending of the charging process, the useful energy stored in the QB is quantified by the free energy variation
in the steady state ΔF/(Nω0), which is defined as

∫
Δt[F(ρ(t →∞)) − F(ρ(0))]dt/(Nω0Δt). It yields

non-monotonic relations between the free energy variation and N in figure 4(c). A peak with the maximal
value of ΔF/(Nω0) is observed at an optimal number of atoms Nop. It is interesting to find that the system
with Nop atoms can approximately relax to the optimal steady state with E/(Nω0) → 0 in figure 3(c). As the
ratio of A/γ increases, the optimal number Nop shifts to a larger value. In the absence of the dissipation, the
stored energy increases linearly with N [11]. Here, we propose an efficient elementary unit of the QB for the
maximum stored energy, which consists of Nop atoms in a common thermal bath in figure 1(b). In such

5
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Figure 3. (a) Internal energy per atom E/(Nω0) as a function of the charging time γt for different N = 1, 10, 13 and 40 for
γ = 0.03ω0, (b) probability of each Dicke state |J, m〉 with m = −N/2, . . . , N/2 in the optimal steady state for N = 10 and 13,
(c) average value of the internal energy per atom E/(Nω0) in the steady state as a function of N for different dissipation rate
γ = 0.02ω0, 0.03ω0 and 0.05ω0 with A = 0.5ω and n(T) = 0.2.

Figure 4. (a) von Neumann entropy per atom S/(Nω0) and (b) free energy per atom F/(Nω0) as a function of the charging time
γt for different N = 1, 10, and 40 for A = 0.5ω0 and γ = 0.03ω0. (c) Free energy variation per atom ΔF/(Nω0) in the steady
state as a function of N for different dissipation rate γ = 0.02ω0, 0.03ω0 and 0.05ω0.

optimal QB elementary, the system can relax to the optimal steady state with the small damping of the
internal energy and with lower heat dissipated to the bath by comparing to the parallel charging mode.

4. Conclusion

We have considered the multipartite battery comprising of an ensemble of two-level atoms in a thermal
environment, which is charged by an external harmonic driving. For each atom charging in parallel, the
system can relax to the optimal steady state with the maximal value of the internal energy by the analytical
solution. Meanwhile, it produces heat dissipated to the bath induced by the non-preserved entropy. In the
collective charging process, the internal energy and entropy per atom decreases as N increases, and it leads
to non-monotonic relations between the free energy variation per atom and N. Consequence, we find an
elementary unit of the QB with the optimal number of atoms to reach the maximum free energy variation
in the ending of the charging process. The optimal QB elementary can relax to the optimal steady state with
the small damping in the internal energy due to competition of coherent driving and decoherent
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dissipation. Moreover, the heat induced by the entropy in the optimal QB elementary is lower than that for
the parallel charging mode. In comparison to classical thermodynamics, our driven-dissipative charging
protocol sheds new light on physically realizable charging schemes in open system.
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Appendix A. Analytical solutions for single-atom battery

The master equation of the single-atom battery system is given by

dρs/dt = −i
ω0

2
[σz , ρs] − i

A

4
(eiωt + e−iωt)[σx, ρs] + γ[n(T) + 1](2σ−ρsσ+ − {σ+σ−, ρs})

+ γn(T)(2σ+ρsσ− − {σ−σ+, ρs}). (A1)

We perform a rotating-frame transformation using U = exp(iωtσz/2) to give

dρ′s/dt = −i
ω0 − ω

2
[σz, ρ′s] − i

A

4
(eiωt + e−iωt)[eiωtσ+ + e−iωtσ−, ρ′s]

+ γ[n(T) + 1](2σ−ρ
′
sσ+ − {σ+σ−, ρ′s})

+ γn(T)(2σ+ρ
′
sσ− − {σ−σ+, ρ′s}), (A2)

where ρ′s = UρsU
†. When the driving strength A is much smaller than the two-level energy ω0 on resonance

with the QB system ω0 = ω, it is reasonable to making a rotating-wave approximation by ignoring fast
oscillating terms. The Bloch equations are derived as

˙〈σz〉τ = i
A

2
(〈σ−〉τ − 〈σ+〉τ ) − 2γ[〈σz〉τ (2n(T) + 1) + 1], (A3)

˙〈σ+〉τ = i
A

4
〈σz〉τ − γ〈σ−〉τ (2n(T) + 1), (A4)

˙〈σ−〉τ = −i
A

4
〈σz〉τ − γ〈σ+〉τ (2n(T) + 1). (A5)

For the initial Gibbs state with α = Tr[σzρ(0)], one can solve the above equations analytically

〈σz〉τ = − 2γ2χ

2γ2χ2 + A2

{
1 − e−3τγχ/2 1

2χγ2

{
[
(
2χγ2(1 + αχ) + αA2] cos(Ωτ)

− γ[2γ2χ2(1 + αχ) + A2(4 + αχ)]

2Ω
sin(Ωτ)

}}
, (A6)

where the oscillation Rabi frequency is Ω =
√

A2 − γ2χ2

4 with χ = [1 + 2n(T)].
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