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Many knots in Chern-Simons field theory
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In this paper, using the)(1) gauge potential decomposition and thenapping topological current theory,
the many knotlike vortex lines in Chern-Simons field theory are studied. It has been pointed out that the
Chern-Simons action is a topological invariant for the family of knots; i.e., it is just the total sum of all the
self-linking and all the linking numbers of the knot family. Furthermore, it is also shown that this Chern-
Simons knot topological number is preserved in the branch procésgktsing, merging, and intersectipn
during the evolution of these knotlike vortex lines.
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[. INTRODUCTION complex line bundle onM is the associate bundl®
Xy(1)C, and the basic fielg/(x) [the wave function irJ(1)
Knotlike configurations as string structures of finite en-quantum mechanig¢ss a section of this complex line bundle,
ergy appear in a variety of physical, chemical, and biologicai.e., a section of the two-dimensional real vector bundle on
scenarios, including the structure of elementary particled:
[1,2], early universe cosmologl3—5], Bose-Einstein con- .
densation[6], polymer folding[7], and DNA replication, ()= 1 (X) +ip*(X). 2
transcription, and recombinatig8].
In itself, a knotvy is in fact an embedding map in geom-

etry, D, y=3d,4—iA,, (©)
y:S'-RE, 1)

The covariant derivative ofs is defined as

where ©=0,1,2,3 denotes the four-dimensional space-time,

and two or more such knots together are called a link, i.e., &dA, is theU(1) gauge potential. Th&(1) gauge field
family of knots. It is known that for a knot family there are tensor is given by
important characteristic numbers to describe its topology,

such as the self-linking and the linking numbers. So in re-

search into knotlike _configurations in physics, one Shou“_jThe Chern-Simons action in three-dimensional space is de-
also pay much attention to these knot characteristics. In thlﬁned as[11,17)

paper we will just use the topological viewpoint to study the '

many knots inherent in Chern-Simons field theory, and re- 1 -

veal the inner relationship between the Chern-Simons action l=—| AAF= 8—f €1*AF a3, )

and the topological characteristic numbers of the knot family M TIm

[9’%_?3.' . q foll ns " ina th wherei,j,k=1,2,3 denote the three-dimensional space.
IS paper Is arranged as 10llows. 1n Sec. 11, USINg e, i section we will show that in Chern-Simons field

U(Il) _galuge potte?r':lal deio_mposm(l)n dat?]d tt?:nappmgktojd_k theory there exist vortex line structures. Defining a two-
pological current theory, it is revealed that there are knotlikey, |\ " <ional unit vector

vortex lines in the Chern-Simons field. In Sec. Ill, we point

Fu=0,A,—d,A,. (4)

out that the Chern-Simons action is a topological invariant ??
for the family of knots, i.e., it is just the total sum of all the ma=m(a= 1,2 plI>= ¢2p?= y* ), (6)
self-linking and all the linking numbers of the knot family. In

Sec. 1V, it is shown that this Chern-Simons knot topologicali; c5n pe proved13] thatA,, can be decomposed in terms of
number is preserved in the branch procegspktting, merg- m:A, = €abma(9ﬂmb—8#0,uwhere0 is a phase factor. Since

ing, and intersectionduring the evolution of the knotlike 4 (9,,6) term does not contribute to the field tengqr, of
vortex lines. Eqg. (4), A, can be expressed as

Il. CHERN-SIMONS KNOTS A, = €apmP3,m", (7)

Let M be the four-dimensional Euclidean space, and,,qg
P(M,U(1),7) be the principald(1) bundle on bas#1. The

uv 1S
F .= 2€apd,m?9,mP. (8)

* Author to whom correspondence should be addressed. Electroniéccording to Ref[14], the two-dimensional topological ten-
address: liuxin@Ilzu.edu.cn sor current is defined as
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v 1 2
Kir= o ed N, 9)

Then using d,¢%|¢|=0,¢% o[+ ¢, ¢| and the
Green’s function relation inp space,d,d,In|¢l|=275(d)
X (d,=0ald¢?), one can prove thdtl5]

KHr= 52(55)[)#»(%), (10)

where D*($/X) = 3 " eqpd, ¢2d,4°. Defining the spa-
tial components oK*” as

Vi 0i 1 ijk F
| =K :ge ij (|111k211213)1 (11)
we have

j‘=62<<£>D‘(¢), (12)

X
whereD'(¢/x) = 3 €% e,p0; 29" is the Jacobian vector.
The expressioril2) provides an important conclusion:

(=0 if andonlyif ¢+0,
i’ (13

#0 if andonlyif ¢=0,

so it is necessary to study the zero point&Zofo determine
the nonzero solutions of'. The implicit function theory
shows[16] that under the regular condition

D#¥( IX)# 0 (14)
the general solutions of
oLt x1x2,x3) =0, ¢%(t,x1,x%,x3) =0 (15
can be expressed as
X =X (s,1), X2=XE(s,1), X3=X3(S,1), (16)

which represent the world surfacesinoving isolated sin-
gular stringsL, with string parametes (k=1,2, ... N).
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corresponding region iR spaceg; times. Meanwhile the
direction vector ofL is given by[15]
_D'(¢1x)
~ D(¢lu)
Xk

dx

ds (18

Xk
Then from Egs(17) and(18) we obtain the inner structure of
i

o " dx . .
=20 )=, wi ] G Gsiconas
- k
19

where W, = B, 7, is the winding number on aroundL,
with 7= sgnD(¢/u)xj = *1 being the Brouwer degree gf
mapping. Hence the topological charge of the vortex lipe
is

Qk:f j'doi=W,. (20)
Sy

Using Egs.(11) and(19), the Chern-Simons actiof®) is
expressed as

N
|=f Ajid3x=> wkf Adx. (21)
M k=1 Ly

It can be seen that when theNeChern-Simons vortex lines
are N closed curves, i.e., a family oN knots y,(k
=1,...N), Eq.(2]) leads to

N
1= ijg Adx. (22)
k=1 Yk

This is a very important expression. Consider tH¢1)
gauge transformation o&; [18]:

Ai, = Ai + (9i a, (23)

wherea € R is a phase factor denoting thi 1) transforma-
tion. It is seen that the#«a) term in Eg.(23) contributes
nothing to the integral; hence the expressid@2) is invari-
ant under the gauge transformation. Meanwhile we know

These singular string solutions are just the Chern-Simonghat| is independent of the metrig,,, (see Sec. Y. There-

vortex lines.
In S-function theory[17], one can prove that in three-
dimensional space

N

* e
#h=3, b T
k=1 L

o[

where D(#/u)s, =[ 7€ enn(dp™ oul) (9" au*)], and X

is thekth planar element transverse ltQ with local coordi-
nates (11,u?). The positive integeB, is the Hopf index ofp
mapping, which means that whercovers the neighborhood
of the zero poinix,(s) once, the vector fieldh covers the

ds, (17)

k

g

fore one can conclude thhis a topological invariant for the
knotlike vortex lines in Chern-Simons field theory.

At the end of this section, it should be addressed that in
the above the regular conditidh4) has been used; when this
condition fails, branch processes in the evolution of vortex
lines will occur. This will be detailed in Sec. IV.

lll. THE CHERN-SIMONS KNOT TOPOLOGICAL
NUMBER

In this section, we will research the relationship between
the Chern-Simons actiof22) and the self-linking and link-
ing numbers of the knot family.

For this purpose we should first expré§sin terms of the
vector field which carries the geometric information of the
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knot family, namely, we need to decompo&gin terms of
another two-dimensional unit vecta which is different

from the two-dimensional vectom in Sec. Il. Define the
Gauss mapping
n:Six st <2, (24)
n is a unit vector
. Y—X
n(x,y)=—=—=-, (25
ly—x|

wherex and)7 are two points, respectively, on the knotg
andy (in particular, wherx andy are the same point on the
same knoty, n is just the unit tangent vectdr of y at x).
Therefore, whenx and )7 respectively, cover the closed

curves y, and v, once,n becomes the section of sphere

bundleS?. So, on thisS? we can define the two-dimensional
unit vectore=e(x,y) as

e?e?=1 (a=1,2;eLn). (26)
Then, according to Ref13] A; can be decomposed in terms
of this two-dimensional vectore®: A;=e,,e29,e®— d; ¢,
where ¢ is a phase factor. Since one can see from (28)
that the @;¢) term does not contribute to the integialA;
can in fact be expressed as

Ai = eabea&i eb. (27)
Substituting Eq(27) into Eqg. (22), we have
1= 2 W, ﬁg €ape(XY)e(x,y)dx.  (28)
k=1 Yk

Noticing the symmetry between the poin?sand;? in Eq.
(25), Eq. (28) should be reexpressed as

N

1= > WW,
k=1

fﬁ fﬁeabaiea(i,ﬁ)ajeb(i,y*)dx‘/\dw.
Yk Y
(29

One should notice that in E429) there are three cased)
v and y, are two different knots K#1) andx andy are
therefore two different pOihtS)Z(# )7); (2) v« and vy, are the
same knot k=1) but x andy are two different points X
#v): (3) v« andy, are the same knoké 1) andx andy are

the same point=y). So Eq.(29) can be written as three
terms:
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N

>

k=1(k=1,x#Y)

N
+3 W §
k=1
N
+ 2 WkW| % % eab&iea&jebdxi/\dyj.
k,I=1(k#l) Y Y

|= Wﬁﬂg é €andi€?d;e°dx' N\ dy!
Yk Y Yk

Eabeaaiebd Xi
Yk

(30

just

Using the relatiore,pd;ed;e b=1n. (g nx d; n) Eq.(30) is
N

3W2§ § n*(ds)
k
k=1(x#Y) 2 Y Y %

N

+3 W §

k=1
N

+ > —WKW.jg jgﬁ*msx

kI=T(k=1) 2 w I

where n* (dS)=n-(4;nx d; n)dx'/\dyl(xaﬁy) denotes the
pullback of theS? surface eIement

Let us discuss these three terms in detail. First, the first
term of Eq.(32) is just related to the writhing numb&y(y,)
of v [19,20Q:

Eabeaaiebd Xi
Yk

(31)

1 N
Win= 2= gﬁn fﬁyk” ds. (32

For the second term of E31), since this is thex=Yy term,
one can prove that it is related to the twisting num®bgy,)

Of ’yk:

1

1 .o
a9 by — . =
o ﬁﬂykeabe diedx'=o— Yk(TXV) dV="T(yy),

(33

where T is the unit tangent vector of knog, at X (ﬁ=f
when x=y), and V is defined as e?=¢2"VP(a,b
=121 'F,ézfX\?). From the White formul419,20]

(34)

S(vd) =Wy +T(v)

[whereS(yy) is the self-linking number ofy,], we see that
the first and second terms of E@1) just compose the self-

linking numbers of theN knots.
Second, for the third term, one can prove that

i 397 (dS)=-— €k idx fﬁyd i

=Ly ) (k#1)

(xX*—y¥)
Ix—yl*
(35
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whereL(yy,y,) is the Gauss linking number betwegpand dxt  DY(a/x) dx®  D(/x)
v [9,21]. So the third term is just related to the linking FTE T G L TR TN (42
numbers between thd knots. t DO%¢/x) t DAY 55
Therefore, third, from Eqs.32), (33), (34), and(35), we
arrive at the important result is not unique in the neighborhood of*(x*). This very
N point (t*,x*) is called the bifurcation point. Without loss of

generality, we discuss only the branch of the velocity com-
ponent @x/dt) at (t*,x*). It is known [12,15 that the
(36)  Taylor expansion of the solution of E€L5) in the neighbor-

. . N : . hood of ¢*,x*) can generally be expressed #gx'
This precise expression just reveals the relationship betweeﬂxl*)2+28(x1—x1*)(t—t*)+C(t—t*)2+ ...—0, where

the Chern-Simons action and the self-linking and IinkingA B, ‘and C are three constantgin this paper we do not

numperg of the\-knot family [9’.101' $|nce the self-.lm.kmg consider the intersection of three knots, so we asséme
and linking numbers are both invariant characteristic NUM-, 4 21nd the one-split-into-three or the three-merae-into-one
bers of the knotlike closed curves in topolodglys an impor- P 9

tant invariant required to describe the knotlike vortex lines inbranCh cases are not considefd).) Then the above Taylor
. X expansion leads to
Chern-Simons field theory.

N
=27 > WiS(y)+ > WkW|£(‘)’k,)’|)}-
=1 kI =Tlk=1)

12 dxd
+ZBW+C=O (A#0). (43

IV. THE CONSERVATION OF THE CHERN-SIMONS A dt

KNOT TOPOLOGICAL NUMBER

In Sec. II, we have used the regular conditirffV(J)) The solut|or}s of Eq(43) give dlﬁe.rent mot|on_d|rect|_ons of_
the zero point on the cross section at the bifurcation point.

#0; when this condition fails, branch processes will occur._l_h ¢ ibl dhe illustrati be found
In this section, we discuss the conservation of the Chern- ere are two possibie casgle Hliustrations can be toun

Simons knot topological number in branch procedspdit- in [12]).

— 2__ —
ting, merging, and intersectipnduring the evolution of Case 1 ForA—é}(B . AC)=0, from Eq.(43) we get
Chern-Simons knots. only one motion direction of the zero point on the cross

Generally speaking, the evolution of a Chern-Simons Vor§ection at the pifurcation pointd«lldt)|1]2= —BJA, which

tex line L can be discussed from E6LO). Here we fix the includes three sub-case&) one vortex line split into two
x3=7 coordinate for simplicity and take th¢OY plane as vortex lines;(b) two vortex lines merge into one vortex line;

the cross section. so the intersection line betweenLtse (c) two vortex lines tangentially intersect at the bifurcation

evolution surface and the cross section is just the motiof©!Nt

— 2__
curve ofL [12,27. In this case the two-dimensional topo- 0 Cg:fe 2 Iior At'_4513 tAC)>?t,hfrom Eq.§4§) Wﬁ] get
logical current is defined as wo different motion directions of the zero point on the cross

section: @x%/dt)|,,=(—B=* yBZ—AC)/A. This is the in-
37) tersection of two vortex lines, which means that the two
vortex lines meet and then depart at the bifurcation point.
In both cases 1 and 2, from the continuity equatig8f)
we know that the sum of the topological charges of final
vortex lings) must be equal to that of the initial vortex
line(s) at the bifurcation point for fixedk:

J°=K%=8($)D(1%)
and
Ki=K'3=82($)D'(p/x) (i=1,2), (39

which satisfy the continuity equatidr22]
i E,W ——E Wi (44)
a3+ K =0. (39 po e T

The velocity of the intersection point betweénand the namely,(a) for the case that one lirle split into two linesL ;
cross section is given by andL,, we haveWL=WLl+WL2, (b) for the case that two

linesL,; andL, merge into one lind, W +W =W, and
(c) for the case that two linds; andL, meet and then depart
as two other lined 5 andL,, W +W =W +W,,.

In the following we will discuss the conservation of the
where DO(¢/X) = €,4,0,$23,¢°, D PIX) = €4p02,>Io ", Chern-Simons topological numbéB6) in the branch pro-

,_dX _D'(/x) .
o=~ o] (-2 (40)

X

and D?(/X) = €499 21 P°. cesses of knots.
From Eqg.(40) it is obvious that when (i) The splitting caseWe consider one knoy split into
two knotsy; andy, which are of the same self-linking num-
DO%¢/x)=0 (41)  ber asy[S(y)=5(y1)=S(7y,)), and then we will compare
the two numbers,, and| Y+ 7 (wherel , is the contribution
at the very point {* ,x*), the velocity of y to | before splitting, and,, ., is the total contribution
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of v, and y, to | after splitting. First, from the above text
we haveW, =W, +W,_in the splitting process. Second, on

the one hand, we note that in the neighborhood of the bifur-

cation point &* ,t*), ¥, andy, are infinitesimally displaced
from each other; on the other hand, for a knoits self-
linking numberS(y) is defined as

S(y)=L(y,v)

wherey,, is another knot obtained by infinitesimally displac-
ing v in the normal directionV [9]. Therefore

S(y)=8(y1)=8(v2)=L(y1,72)=L(¥2,7Y1),

(45

(46)
and
(47)

[where y, denotes another arbitrary knot in the family,(
# 7%, %% v1,9]- Then, third, we can compaig, and|
as follows: before splitting, we have

Ly, 70 =Ly1,70) = L(v2, %)

Y1t 72

N

>

W2S(y) +
k=1(y#7)

2W7W’Y{<‘C(‘y’ )|, (48
where L(y,vy) = L(yx,7y); after splitting,

| 2

71t 72:

W2 S(y1) + W5 S(y2) +2W, W, L(y1,72)

N

+ E 2W71W‘y|2£( Y1, ’)/IL)
k=1(y7# 71,2
N
2 2W, Wy Ly, 70 |- (49
k=1(7,# 712
Comparing Egs(48) and (49), we just have
=l (50)

Y Y1ty

This means that in the splitting process of a knot the Chern-

Simons knot topological number is conserved.
(ii) The merging caseéWe consider two knoty, andy,,

PHYSICAL REVIEW D67, 085022 (2003

. (51)

|71+72: y

(iif) The intersection caserThis case is related to the col-
lision of two knots[10,4]. We consider two knoty; andys,
which are of the same self-linking number, meet, and then
depart as other two knotg; and y,, which are of the same
self-linking number agy; andy,. This process can be iden-
tified as two subprocesseg; andy, merge into one knoy,

and theny splits into y; and y,. Thus from the above two
caseqii) and(i) we have

I

| (52

71*72: Y3t vg
Therefore we obtain the result that, in branch processes

during the evolution of knotlike vortex lingsplitting, merg-

ing, and intersection the Chern-Simons knot topological

numberl is preserved.

V. CONCLUSION

In this paper, using th&)(1) gauge potential decomposi-
tion and theg-mapping topological current theory, the topol-
ogy of a family of N knots in Chern-Simons field theory is
studied. In Sec. I, it is revealed that there are knotlike vortex
lines existing in Chern-Simons field theory. In Sec. Ill, we
point out in Eq.(36) that the Chern-Simons actidris just a
topological invariant for the knot family, i.e., it is the total
sum of all the self-linking and all the linking numbers of the
knot family. Furthermore, in Sec. IV it is shown that this
Chern-Simons knot topological numbleis preserved in the
branch processesplitting, mergence and intersectjodur-
ing the evolution of these knotlike vortex lines.

Finally, it should be pointed out that in the present paper
the Chern-Simons action is given on the flat Euclidean space
M; however, in fact on a curved base manifold the Chern-
Simons action is also defined, and is independent of the
choice of metricg,,, of the manifold[9]. The topology of
knotlike strings in curved space-time, such as the Riemann-
Cartan space-time, will be discussed in further papers.
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