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Many knots in Chern-Simons field theory
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In this paper, using theU(1) gauge potential decomposition and thef-mapping topological current theory,
the many knotlike vortex lines in Chern-Simons field theory are studied. It has been pointed out that the
Chern-Simons action is a topological invariant for the family of knots; i.e., it is just the total sum of all the
self-linking and all the linking numbers of the knot family. Furthermore, it is also shown that this Chern-
Simons knot topological number is preserved in the branch processes~splitting, merging, and intersection!
during the evolution of these knotlike vortex lines.
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I. INTRODUCTION

Knotlike configurations as string structures of finite e
ergy appear in a variety of physical, chemical, and biologi
scenarios, including the structure of elementary partic
@1,2#, early universe cosmology@3–5#, Bose-Einstein con-
densation@6#, polymer folding @7#, and DNA replication,
transcription, and recombination@8#.

In itself, a knotg is in fact an embedding map in geom
etry,

g:S1→R3, ~1!

and two or more such knots together are called a link, i.e
family of knots. It is known that for a knot family there ar
important characteristic numbers to describe its topolo
such as the self-linking and the linking numbers. So in
search into knotlike configurations in physics, one sho
also pay much attention to these knot characteristics. In
paper we will just use the topological viewpoint to study t
many knots inherent in Chern-Simons field theory, and
veal the inner relationship between the Chern-Simons ac
and the topological characteristic numbers of the knot fam
@9,10#.

This paper is arranged as follows. In Sec. II, using
U(1) gauge potential decomposition and thef-mapping to-
pological current theory, it is revealed that there are knotl
vortex lines in the Chern-Simons field. In Sec. III, we po
out that the Chern-Simons action is a topological invari
for the family of knots, i.e., it is just the total sum of all th
self-linking and all the linking numbers of the knot family. I
Sec. IV, it is shown that this Chern-Simons knot topologi
number is preserved in the branch processes~splitting, merg-
ing, and intersection! during the evolution of the knotlike
vortex lines.

II. CHERN-SIMONS KNOTS

Let M be the four-dimensional Euclidean space, a
P„M ,U(1),p… be the principalU(1) bundle on baseM. The
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complex line bundle onM is the associate bundleP
3U(1)C, and the basic fieldc(x) @the wave function inU(1)
quantum mechanics# is a section of this complex line bundle
i.e., a section of the two-dimensional real vector bundle
M:

c~x!5f1~x!1 if2~x!. ~2!

The covariant derivative ofc is defined as

Dmc5]mc2 iAmc, ~3!

wherem50,1,2,3 denotes the four-dimensional space-tim
and Am is the U(1) gauge potential. TheU(1) gauge field
tensor is given by

Fmn5]mAn2]nAm . ~4!

The Chern-Simons action in three-dimensional space is
fined as@11,12#

I 5
1

4pEM
A`F5

1

8pEM
e i jkAiF jkd3x, ~5!

wherei , j ,k51,2,3 denote the three-dimensional space.
In this section we will show that in Chern-Simons fie

theory there exist vortex line structures. Defining a tw
dimensional unit vector

ma5
fa

ifi ~a51,2;ifi25fafa5c* c!, ~6!

it can be proved@13# thatAm can be decomposed in terms
ma:Am5eabm

a]mmb2]mu, whereu is a phase factor. Since
the (]mu) term does not contribute to the field tensorFmn of
Eq. ~4!, Am can be expressed as

Am5eabm
a]mmb, ~7!

andFmn is

Fmn52eab]mma]nmb. ~8!

According to Ref.@14#, the two-dimensional topological ten
sor current is defined as
ic
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on

-

d

f

ow

t in
is
tex

en

he

DUAN, LIU, AND FU PHYSICAL REVIEW D 67, 085022 ~2003!
Kmn5
1

8p
emnlrFlr . ~9!

Then using ]mfa/ifi5]mfa/ifi1fa]m1/ifi and the
Green’s function relation inf space,]a]alnifi52pd2(fW )
3(]a5]/]fa), one can prove that@15#

Kmn5d2~fW !DmnS f

x D , ~10!

where Dmn(f/x)5 1
2 emnlreab]lfa]rfb. Defining the spa-

tial components ofKmn as

j i5K0i5
1

8p
e i jkF jk ~ i , j ,k51,2,3!, ~11!

we have

j i5d2~fW !Di S f

x D , ~12!

whereDi(f/x)5 1
2 e i jkeab] jf

a]kf
b is the Jacobian vector.

The expression~12! provides an important conclusion:

j iH 50 if and only if fW Þ0,

Þ0 if and only if fW 50,
~13!

so it is necessary to study the zero points offW to determine
the nonzero solutions ofj i . The implicit function theory
shows@16# that under the regular condition

Dmn~f/x!Þ0 ~14!

the general solutions of

f1~ t,x1,x2,x3!50, f2~ t,x1,x2,x3!50 ~15!

can be expressed as

x15xk
1~s,t !, x25xk

2~s,t !, x35xk
3~s,t !, ~16!

which represent the world surfaces ofN moving isolated sin-
gular stringsLk with string parameters (k51,2, . . . ,N).
These singular string solutions are just the Chern-Sim
vortex lines.

In d-function theory@17#, one can prove that in three
dimensional space

d2~fW !5 (
k51

N

bkE
Lk

d3~xW2xW k~s!!

UDS f

u D U
Sk

ds, ~17!

where D(f/u)Sk
5@ 1

2 e jkemn(]fm/]uj )(]fn/]uk)#, and Sk

is thekth planar element transverse toLk with local coordi-
nates (u1,u2). The positive integerbk is the Hopf index off
mapping, which means that whenxW covers the neighborhoo
of the zero pointxW k(s) once, the vector fieldfW covers the
08502
s

corresponding region inf spaceb j times. Meanwhile the
direction vector ofLk is given by@15#

dxi

ds U
xk

5
Di~f/x!

D~f/u!
U

xk

. ~18!

Then from Eqs.~17! and~18! we obtain the inner structure o
j i :

j i5d2~fW !Di S f

x D5 (
k51

N

WkE
Lk

dxi

ds
d3
„xW2xW k~s!…ds,

~19!

where Wk5bkhk is the winding number offW aroundLk ,
with hk5sgnD(f/u)xW j

561 being the Brouwer degree off

mapping. Hence the topological charge of the vortex lineLk
is

Qk5E
Sk

j ids i5Wk . ~20!

Using Eqs.~11! and ~19!, the Chern-Simons action~5! is
expressed as

I 5E
M

Ai j
id3x5 (

k51

N

WkE
Lk

Aidxi . ~21!

It can be seen that when theseN Chern-Simons vortex lines
are N closed curves, i.e., a family ofN knots gk(k
51, . . . ,N), Eq. ~21! leads to

I 5 (
k51

N

Wk R
gk

Aidxi . ~22!

This is a very important expression. Consider theU(1)
gauge transformation ofAi @18#:

Ai85Ai1] ia, ~23!

whereaPR is a phase factor denoting theU(1) transforma-
tion. It is seen that the (] ia) term in Eq. ~23! contributes
nothing to the integralI; hence the expression~22! is invari-
ant under the gauge transformation. Meanwhile we kn
that I is independent of the metricgmn ~see Sec. V!. There-
fore one can conclude thatI is a topological invariant for the
knotlike vortex lines in Chern-Simons field theory.

At the end of this section, it should be addressed tha
the above the regular condition~14! has been used; when th
condition fails, branch processes in the evolution of vor
lines will occur. This will be detailed in Sec. IV.

III. THE CHERN-SIMONS KNOT TOPOLOGICAL
NUMBER

In this section, we will research the relationship betwe
the Chern-Simons action~22! and the self-linking and link-
ing numbers of the knot family.

For this purpose we should first expressAi in terms of the
vector field which carries the geometric information of t
2-2
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knot family, namely, we need to decomposeAi in terms of
another two-dimensional unit vectoreW which is different
from the two-dimensional vectormW in Sec. II. Define the
Gauss mappingnW

nW :S13S1→S2, ~24!

nW is a unit vector

nW ~xW ,yW !5
yW2xW

iyW2xW i
, ~25!

wherexW andyW are two points, respectively, on the knotsgk

andg l ~in particular, whenxW andyW are the same point on th
same knotg, nW is just the unit tangent vectorTW of g at xW ).
Therefore, whenxW and yW , respectively, cover the close
curves gk and g l once, nW becomes the section of sphe
bundleS2. So, on thisS2 we can define the two-dimension
unit vectoreW5eW (xW ,yW ) as

eaea51 ~a51,2;eW'nW !. ~26!

Then, according to Ref.@13# Ai can be decomposed in term
of this two-dimensional vectorea: Ai5eabe

a] ie
b2] iw,

wherew is a phase factor. Since one can see from Eq.~22!
that the (] iw) term does not contribute to the integralI, Ai
can in fact be expressed as

Ai5eabe
a] ie

b. ~27!

Substituting Eq.~27! into Eq. ~22!, we have

I 5 (
k51

N

Wk R
gk

eabe
a~xW ,yW !] ie

b~xW ,yW !dxi . ~28!

Noticing the symmetry between the pointsxW and yW in Eq.
~25!, Eq. ~28! should be reexpressed as

I 5 (
k,l 51

N

WkWl R
gk

R
g l

eab] ie
a~xW ,yW !] je

b~xW ,yW !dxi`dyj .

~29!

One should notice that in Eq.~29! there are three cases:~1!

gk and g l are two different knots (kÞ l ) and xW and yW are
therefore two different points (xWÞyW ); ~2! gk andg l are the
same knot (k5 l ) but xW and yW are two different points (xW

ÞyW ); ~3! gk andg l are the same knot (k5 l ) andxW andyW are
the same point (xW5yW ). So Eq.~29! can be written as three
terms:
08502
I 5 (
k51(k5 l ,xWÞyW )

N

Wk
2 R

gk

R
gk

eab] ie
a] je

bdxi`dyj

1 (
k51

N

Wk
2 R

gk

eabe
a] ie

bdxi

1 (
k,l 51(kÞ l )

N

WkWl R
gk

R
g l

eab] ie
a] je

bdxi`dyj .

~30!

Using the relationeab] ie
a] je

b5 1
2 nW •(] inW 3] jnW ), Eq. ~30! is

just

I 5 (
k51(xWÞyW )

N
1

2
Wk

2 R
gk

R
gk

nW * ~dS!

1 (
k51

N

Wk
2 R

gk

eabe
a] ie

bdxi

1 (
k,l 51(kÞ l )

N
1

2
WkWl R

gk

R
g l

nW * ~dS!, ~31!

where nW * (dS)5nW •(] inW 3] jnW )dxi`dyj (xWÞyW ) denotes the
pullback of theS2 surface element.

Let us discuss these three terms in detail. First, the
term of Eq.~31! is just related to the writhing numberW(gk)
of gk @19,20#:

W ~gk!5
1

4p R
gk

R
gk

nW * ~dS!. ~32!

For the second term of Eq.~31!, since this is thexW5yW term,
one can prove that it is related to the twisting numberT(gk)
of gk :

1

2p R
gk

eabe
a] ie

bdxi5
1

2p R
gk

~TW 3VW !•dVW 5T~gk!,

~33!

where TW is the unit tangent vector of knotgk at xW (nW 5TW

when xW5yW ), and VW is defined as ea5eabVb(a,b
51,2;VW'TW ,eW5TW 3VW ). From the White formula@19,20#

S~gk!5W~gk!1T~gk! ~34!

@whereS(gk) is the self-linking number ofgk], we see that
the first and second terms of Eq.~31! just compose the self
linking numbers of theN knots.

Second, for the third term, one can prove that

1

4p R
gk

R
g l

mW * ~dS!5
1

4p
e i jk R

gk

dxi R
g l

dyj
~xk2yk!

ixW2yW i3

5L~gk ,g l !~kÞ l ! ~35!
2-3
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whereL(gk ,g l) is the Gauss linking number betweengk and
g l @9,21#. So the third term is just related to the linkin
numbers between theN knots.

Therefore, third, from Eqs.~32!, ~33!, ~34!, and~35!, we
arrive at the important result

I 52pF (
k51

N

Wk
2S~gk!1 (

k,l 51(kÞ l )

N

WkWlL~gk ,g l !G .

~36!

This precise expression just reveals the relationship betw
the Chern-Simons action and the self-linking and linki
numbers of theN-knot family @9,10#. Since the self-linking
and linking numbers are both invariant characteristic nu
bers of the knotlike closed curves in topology,I is an impor-
tant invariant required to describe the knotlike vortex lines
Chern-Simons field theory.

IV. THE CONSERVATION OF THE CHERN-SIMONS
KNOT TOPOLOGICAL NUMBER

In Sec. II, we have used the regular conditionDmn(fW )
Þ0; when this condition fails, branch processes will occ
In this section, we discuss the conservation of the Che
Simons knot topological number in branch processes~split-
ting, merging, and intersection! during the evolution of
Chern-Simons knots.

Generally speaking, the evolution of a Chern-Simons v
tex line L can be discussed from Eq.~10!. Here we fix the
x35z coordinate for simplicity and take theXOY plane as
the cross section, so the intersection line between theL ’s
evolution surface and the cross section is just the mo
curve of L @12,22#. In this case the two-dimensional topo
logical current is defined as

j 35K035d2~fW !D0~f/x! ~37!

and

Ki5Ki35d2~fW !Di~f/x! ~ i 51,2!, ~38!

which satisfy the continuity equation@22#

] t j
31] iK

i50. ~39!

The velocity of the intersection point betweenL and the
cross section is given by

v i5
dxi

dt
5

Di~f/x!

D0~f/x!
U

xW

~ i 51,2!, ~40!

where D0(f/x)5eab]1fa]2fb, D1(f/x)5eab]2fa]0fb,
andD2(f/x)5eab]0fa]1fb.

From Eq.~40! it is obvious that when

D0~f/x!50 ~41!

at the very point (t* ,xW* ), the velocity
08502
en

-

.
n-

r-

n

dx1

dt
5

D1~f/x!

D0~f/x!
U (t* ,xW* ) ,

dx2

dt
5

D2~f/x!

D0~f/x!
U

(t* ,xW* )

~42!

is not unique in the neighborhood of (t* ,xW* ). This very
point (t* ,xW* ) is called the bifurcation point. Without loss o
generality, we discuss only the branch of the velocity co
ponent (dx1/dt) at (t* ,xW* ). It is known @12,15# that the
Taylor expansion of the solution of Eq.~15! in the neighbor-
hood of (t* ,xW* ) can generally be expressed asA(x1

2x1* )212B(x12x1* )(t2t* )1C(t2t* )21•••50, where
A, B, and C are three constants.~In this paper we do not
consider the intersection of three knots, so we assumA
Þ0 and the one-split-into-three or the three-merge-into-o
branch cases are not considered@12#.! Then the above Taylor
expansion leads to

AS dx1

dt D 2

12B
dx1

dt
1C50 ~AÞ0!. ~43!

The solutions of Eq.~43! give different motion directions of
the zero point on the cross section at the bifurcation po
There are two possible cases~the illustrations can be found
in @12#!.

Case 1. For D54(B22AC)50, from Eq. ~43! we get
only one motion direction of the zero point on the cro
section at the bifurcation point: (dx1/dt)u1,252B/A, which
includes three sub-cases:~a! one vortex line split into two
vortex lines;~b! two vortex lines merge into one vortex line
~c! two vortex lines tangentially intersect at the bifurcatio
point.

Case 2. For D54(B22AC).0, from Eq. ~43! we get
two different motion directions of the zero point on the cro
section: (dx1/dt)u1,25(2B6AB22AC)/A. This is the in-
tersection of two vortex lines, which means that the tw
vortex lines meet and then depart at the bifurcation poin

In both cases 1 and 2, from the continuity equation~39!
we know that the sum of the topological charges of fin
vortex line~s! must be equal to that of the initial vorte
line~s! at the bifurcation point for fixedk:

(
f

Wk f5(
i

Wki ; ~44!

namely,~a! for the case that one lineL split into two linesL1
andL2 , we haveWL5WL1

1WL2
, ~b! for the case that two

linesL1 andL2 merge into one lineL, WL1
1WL2

5WL , and

~c! for the case that two linesL1 andL2 meet and then depar
as two other linesL3 andL4 , WL1

1WL2
5WL3

1WL4
.

In the following we will discuss the conservation of th
Chern-Simons topological number~36! in the branch pro-
cesses of knots.

(i) The splitting case. We consider one knotg split into
two knotsg1 andg2 which are of the same self-linking num
ber asg@S(g)5S(g1)5S(g2)), and then we will compare
the two numbersI g and I g11g2

~whereI g is the contribution

of g to I before splitting, andI g11g2
is the total contribution
2-4
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of g1 andg2 to I after splitting!. First, from the above tex
we haveWg5Wg1

1Wg2
in the splitting process. Second, o

the one hand, we note that in the neighborhood of the bi
cation point (xW* ,t* ), g1 andg2 are infinitesimally displaced
from each other; on the other hand, for a knotg its self-
linking numberS(g) is defined as

S~g!5L~g,gV! ~45!

wheregV is another knot obtained by infinitesimally displa
ing g in the normal directionVW @9#. Therefore

S~g!5S~g1!5S~g2!5L~g1 ,g2!5L~g2 ,g1!, ~46!

and

L~g,gk8!5L~g1 ,gk8!5L~g2 ,gk8! ~47!

@wheregk8 denotes another arbitrary knot in the family (gk8
Þg,gk8Þg1,2)]. Then, third, we can compareI g and I g11g2

as follows: before splitting, we have

I g52pFWg
2S~g!1 (

k51(gk8Þg)

N

2WgWg
k8
L~g,gk8!G , ~48!

whereL(g,gk8)5L(gk8 ,g); after splitting,

I g11g2
52pFWg1

2 S~g1!1Wg2

2 S~g2!12Wg1
Wg2

L~g1 ,g2!

1 (
k51(gk8Þg1,2)

N

2Wg1
Wg

k8
L~g1 ,gk8!

1 (
k51(gk8Þg1,2)

N

2Wg2
Wg

k8
L~g2 ,gk8!G . ~49!

Comparing Eqs.~48! and ~49!, we just have

I g5I g11g2
. ~50!

This means that in the splitting process of a knot the Che
Simons knot topological number is conserved.

(ii) The merging case. We consider two knotsg1 andg2,
which are of the same self-linking number, merging into o
knot g which is of the same self-linking number asg1 and
g2. This is obviously the inverse process of the above sp
ting case; therefore we have
,

08502
r-
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I g11g2
5I g . ~51!

(iii) The intersection case. This case is related to the co
lision of two knots@10,4#. We consider two knotsg1 andg2 ,
which are of the same self-linking number, meet, and th
depart as other two knotsg3 andg4, which are of the same
self-linking number asg1 andg2. This process can be iden
tified as two subprocesses:g1 andg2 merge into one knotg,
and theng splits intog3 andg4 . Thus from the above two
cases~ii ! and ~i! we have

I g11g2
5I g31g4

. ~52!

Therefore we obtain the result that, in branch proces
during the evolution of knotlike vortex lines~splitting, merg-
ing, and intersection!, the Chern-Simons knot topologica
numberI is preserved.

V. CONCLUSION

In this paper, using theU(1) gauge potential decompos
tion and thef-mapping topological current theory, the topo
ogy of a family ofN knots in Chern-Simons field theory i
studied. In Sec. II, it is revealed that there are knotlike vor
lines existing in Chern-Simons field theory. In Sec. III, w
point out in Eq.~36! that the Chern-Simons actionI is just a
topological invariant for the knot family, i.e., it is the tota
sum of all the self-linking and all the linking numbers of th
knot family. Furthermore, in Sec. IV it is shown that th
Chern-Simons knot topological numberI is preserved in the
branch processes~splitting, mergence and intersection! dur-
ing the evolution of these knotlike vortex lines.

Finally, it should be pointed out that in the present pap
the Chern-Simons action is given on the flat Euclidean sp
M; however, in fact on a curved base manifold the Che
Simons action is also defined, and is independent of
choice of metricgmn of the manifold@9#. The topology of
knotlike strings in curved space-time, such as the Riema
Cartan space-time, will be discussed in further papers.
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