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By describing the evolution of a quantum state with the trajectories of the Majorana stars on a Bloch sphere, Ma-
jorana’s stellar representation provides an intuitive geometric perspective to comprehend the quantum system with high-
dimensional Hilbert space. However, the representation of a two-spin coupling system on a Bloch sphere has not been
solved satisfactorily yet. Here, a practical method is presented to resolve the problem for the mixed-spin (s,1/2) system
and describe the entanglement of the system. The system can be decomposed into two spins: spin-(s+ 1/2) and spin-
(s− 1/2) at the coupling bases, which can be regarded as independent spins. Besides, any pure state may be written as a
superposition of two orthonormal states with one spin-(s+ 1/2) state and the other spin-(s− 1/2) state. Thus, the whole
initial state can be regarded as a state of a pseudo spin-1/2. In this way, the mixed spin decomposes into three spins.
Therefore, the state can be represented by (2s+ 1)+ (2s− 1)+ 1 = 4s+ 1 sets of stars on a Bloch sphere. Finally, some
examples are given to show symmetric patterns on the Bloch sphere and unveil the properties of the high-spin system by
analyzing the trajectories of the Majorana stars on the Bloch sphere.

Keywords: Majorana’s stellar representation, Bloch sphere, high-dimensional projective Hilbert space, mixed-
spin
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1. Introduction

It is acknowledged that the evolution of an arbitrary two-
level state can be exactly represented by the trajectory of a
point on the Bloch sphere.[1–3] Applied to a quantum state in a
high-dimensional Hilbert space, this geometric interpretation
seems difficult to imagine. Although we can map the quan-
tum pure state to a higher-dimensional geometric structure,
this process is no more an intuitive and legible way to com-
prehend it. Fortunately, the Majorana’s stellar representation
(MSR) builds a wide bridge between the high dimensional pro-
jective Hilbert space and the two-dimensional Bloch sphere.[4]

Employing the MSR, which represents a quantum pure state of
spin-J systems in terms of a symmetrized state of 2J spin-1/2
systems, one can generalize this geometric approach to large
spin systems or multilevel systems. Majorana’s perspective is
that the evolution of a spin-J state can be intuitively described
by trajectories of 2J points on the two-dimensional (2D) Bloch
sphere, with these 2J points generally coined as Majorana stars
(MSs), rather than one point on an intricate high-dimensional
geometric structure. Therefore, this representation sponta-
neously provides an intuitive way to study high spin systems
from geometrical perspectives, which has made the MSR a
useful tool in many different fields, e.g., classification of en-
tanglement in symmetric quantum states,[5–12] analyzing the

spectrum of the Lipkin–Meshkov–Glick model,[13,14] study-
ing Bose condensate with high spins,[15–22] and calculating
geometrical phases of large-spin systems.[23–25] In addition,
the MSR can be employed in quantum metrology[26,27] and in
describing polarization states of N photons.[28]

Moreover, the MSR provides many useful insights into
high dimensional quantum states. The Berry phase, which is
a unique character of a quantum state[29] and has become a
central unifying concept for the quantum state,[30,31] unveils
the gauge structure associated with cyclic evolution in Hilbert
space.[32] When it comes to an arbitrary two-level state, the
Berry phase is simply proportional to the solid angle sub-
tended by the close trajectory of a point on the Bloch sphere,
while every star in the MSR will trace out its own trajectory
on the Bloch sphere for a cyclic evolution of a large spin state.
For example, the Majorana stars can be driven moving pe-
riodically on the Bloch sphere and making up the so-called
“Majorana spin helix”[21] by the spin–orbit coupling in high-
spin condensates. Consequently, by asking what the explicit
relation between the Berry phase and the Majorana stars’ he-
lixes or loops is, it has turned into a significant topic in recent
years.[23,24,33–35]

Except for the Berry phase, entanglement is another
important unique character of a many-particle quantum
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state. Although the classification and measure are quite
complex[10,36–39] for the multiqubit states, the MSR natu-
rally provides an intuitive way to consider the multiqubit
entanglement,[40] since a spin-J state is equivalent to a sym-
metric 2J-qubit state. The distribution of the Majorana
stars not only discloses the relationship between the sym-
metry of the state and the multiparticle entanglement mea-
sures, including geometric measures[9,41–43] and Barycentric
measures,[7] but also can be employed to investigate entan-
glement classes,[44,45] entanglement invariants,[46] and so on.
Hence, it is another challenging task to connect the quantum
entanglement of the qubits to the distribution of the Majorana
stars on the Bloch sphere.

Furthermore, it is interesting to apply this approach to
study the multiband topological systems. For a two-band sys-
tem, e.g., the Su–Schrieffer–Heeger (SSH) model,[47–49] the
geometrical meaning of topologically different phases can be
revealed by their distinct trajectories,[50,51] with mapping the
Bloch state into a 2D Bloch sphere. As a paragon topological
model,[52] the SSH model supports either topologically triv-
ial or nontrivial phase, characterized by the quantized Berry
phase 0 or π ,[29,53,54] which is verified in the recent cold atom
experiment.[55]

From Refs. [4,56,57], an arbitrary pure state for spin J
can be represented by

|ψ〉 j =
2 j

∑
n=0

C(n)
j |n〉 j, (1)

where j is the angular quantum number, |n〉 j ≡ |− j+ n〉 j is
the basis state and C(n)

j is the corresponding coefficient. The
star equation is given by[4]

2 j

∑
n=0

(−1)n
(

2 j
n

) 1
2

C(n)
j zn = 0, (2)

where z denotes the characteristic variable and we also have
the normalization condition ∑

2 j
n=0 |C

( j)
n |2 = 1. The root z can

be mapped to the stars on the Bloch sphere via relation

z = tan
θ

2
e iφ , θ ∈ [0,π], φ ∈ [0,2π], (3)

where θ and φ are the spherical coordinates.
The work of Brody and Hughston[58,59] gives an intu-

itive formalism around higher-dimensional geometries of pure
states. They formulated the principles of classical statistical
inference in a natural geometric setting and gave a number of
examples of features in the state spaces for higher-dimensional
systems. The two-spin coupling system (a large spin coupling
with a small spin) is significant in many physical fields, such as
quantum criticality[60] and quantum dynamics.[61] However,
the representation of a two-spin coupling system has been

studied fragmentarily,[62–65] which did not generalize to an ar-
bitrary spin-s and was not visible enough. In this work, we
choose mixed-spin (s,1/2) systems as paragons to take ad-
vantage of the fact that it can be decomposed into two spins:
spin-(s+ 1/2) and spin-(s− 1/2). Benefiting from the MSR,
we represent an arbitrary pure state on a Bloch sphere. Be-
sides, we propose a practical method to decompose the arbi-
trary pure state that can be regarded as a state of a pseudo
spin-1/2. For the arbitrary pure state of mixed spin, the sys-
tem can be decomposed into two spins: spin-(s + 1/2) and
spin-(s− 1/2). Consequently, the arbitrary pure state of the
mixed spin can be regarded as a state of a pseudo spin-1/2.
In this way, the mixed spin decomposes into three spins,
and our task is resolving these star equations and obtaining
(2s+1)+(2s−1)+1 = 4s+1 sets of stars.

Our study provides an intuitive perspective of a two-spin
(s and 1/2) system and unveils the intrinsic property of the
two-spin system on a Bloch sphere, which shall deepen our
comprehension of the spin-(s,1/2) system. The paper is or-
ganized as follows. In Section 2, we study the fundamental
theory of the MSR to describe an arbitrary pure state of spin-
(s,1/2), through coupling bases. In Section 3, we give a con-
cise example of the MSR of the mixed-spin (1/2,1/2) sys-
tems. In Section 4, we show more applications of our method
in the mixed-spin (s,1/2) systems. A brief discussion and
summary are given in Section 5.

2. Theory of Majorana representation for
mixed-spin (s, 1/2) systems
In this section, we will study the fundamental theory of

the MSR for the mixed-spin (s,1/2) systems. Firstly, we il-
lustrate with the mixed spin-(1/2,1/2) system to give a legi-
ble view of our main logic. Besides, we introduce the coupling
bases to present an arbitrarily mixed spin-(s,1/2) state as two
independent spins. Finally, benefiting from the new form, a
two-level system can be constructed to describe the arbitrary
pure state.

For two spin-1/2 particles, an arbitrary pure state can be
represented by

|ψ〉 1
2 ,

1
2
= a |↑↑〉+b |↓↑〉+ c |↑↓〉+d |↓↓〉 . (4)

We can rewrite Eq. (4)

|ψ〉 1
2 ,

1
2
=

√
2−|b− c|2

2
|⇑〉+ −b+ c√

2
|⇓〉 , (5)

where |⇑〉 = [a |↑↑〉+d |↓↓〉+(b+ c)(|↑↓〉+ |↓↑〉)/2]√
(2−|b− c|2)/2

, |⇓〉 =

(|↑↓〉− |↓↑〉)/
√

2. Then we notice that the terms of the
bracket are the analogous triplet |ψ〉 j=1 and the last term is
the analogous singlet |ψ〉 j=0.
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For a more general case, we can treat the system as a two-
level energy system, which can be represented as two sets of
stars on a Bloch sphere if it is a pure state. To normalize the
states, we rewrite Eq. (5) as

|ψ〉=Cs+1/2|ψ〉s+1/2 +Cs−1/2|ψ〉s−1/2, (6)

where |ψ〉s+1/2 and |ψ〉s−1/2 represent the normalized analo-
gous triplet and the normalized analogous singlet. We write
the whole initial state as a superposition of two orthogonal
states |ψ〉s+1/2 and |ψ〉s−1/2. We also have the normalization
condition |Cs+1/2|2 + |Cs−1/2|2 = 1, so we only have one inde-
pendent variable to describe the relation between them, which
means that it needs one set of stars on the Bloch sphere to be
represented. Based on Eqs. (2) and (6), we can treat the state
as a pseudo spin-1/2 and have the star (root) of the pseudo
spin

zs,1/2 =
Cs−1/2

Cs+1/2
, (7)

which reveals the relation between the analogous triplet and
the analogous singlet. Because the orthogonality of |ψ〉s+1/2

and |ψ〉s−1/2 do not constrain the phase difference between
them, we choose zero phase difference and keep the star of
the pseudo spin on the prime meridian in MSR. Noticing the
completeness condition, if one obviates the state only has com-
ponents in some parts of the whole sectors, one finds that the
mapping is injective. Therefore, we need (2s+1) sets of stars
to represent the analogous triplet, (2s−1) sets of stars to rep-
resent the analogous singlet, and one set of stars to combine
the two parts on a Bloch sphere.

From Eqs. (1) and (2), we can get all stars

z(±)1 =
(b+ c)±

√
(b+ c)2−4ad
2a

, (8)

z(1)1/2 =
b− c√

2−|b− c|2
, (9)

where z(±)1 and z(1)1/2 are respective roots of the analogous triplet
and the analogous state of the pseudo spin. Therefore, we need
two sets of stars to represent the analogous triplet, no stars to
represent the analogous singlet, and one set of stars to combine
the two parts on a Bloch sphere.

Now, we show a general method to gain the construct of
the pseudo spin-1/2. For the mixed-spin (s,1/2) systems, we
have the total angular momentum 𝐽 = 𝑆+𝜎/2 (we choose
h̄ = 1), and 𝑆, 𝜎/2 are the angular momentums of the large
spin-s and small spin-1/2, respectively. Therefore, we have

𝐽2 = 𝑆2 +
1
4
𝜎2 +𝑆zσz +(𝑆+σ−+𝑆−σ+), (10)

𝑆+|n〉s =
√
(n+1)(2s−n)|n+1〉s, (11)

𝑆−|n〉s =
√

n(2s−n+1)|n−1〉s, (12)

𝑆z|n〉s = (−s+n)|n〉s, (13)

where the angular momentum 𝑆 = 𝑆x +𝑆y +𝑆z, the rais-
ing (lowering) operator 𝑆+ = 𝑆x± i𝑆y and |n〉s ≡ |− s+ n〉s
is the basis state. Besides, we write the uncoupling basis
state as |n〉s⊗|1〉1/2 ≡ |n〉1|1〉2, |n〉s⊗|0〉1/2 ≡ |n〉1|0〉2, and
n = 0,1, . . . ,2s.

Then we have the Hamiltonian

H = 𝐽2, (14)

and its vector space W . We find that the space Vn is the
two-dimensional invariant subspace of the vector space W =

⊕2s
n=1Vn⊕V0⊕V2s+1, where V0 and V2s+1 are one-dimensional

subspaces. The bases of the subspace Vn (1 6 n 6 2s) are
|n〉1|0〉2 and |n−1〉1 |1〉2. The bases of the subspace V0 and
V2s+1 are |0〉1|0〉2 and |2s〉1|1〉2, respectively.

From Eqs. (10)–(14), we can rewrite the Hamiltonian as

H =⊕2s+1
n=0 An, (15)

where the two-dimensional matrix

An =
(

s2 + s+
1
4

)
I +
(

s−n+
1
2

)
σz

+
√

n(2s−n+1)σx (16)

for n= 1, . . . ,2s, A0 = A2s+1 = (s2+2s+3/4). From Eq. (16),
we diagonalize An and then get the eigenvalue j±( j± + 1)
( j± = s±1/2) of the An, and the relationship between the cou-
pling and the uncoupling representations

|n〉s+ 1
2
=

√
2s−n+1

2s+1
|n〉1|0〉2+

√
n

2s+1
|n−1〉1|1〉2, (17)

|n〉s− 1
2
=

√
n

2s+1
|n〉1|0〉2−

√
2s−n+1

2s+1
|n−1〉1|1〉2, (18)

where n = 1, . . . ,2s, |n〉s+1/2 and |n〉s−1/2 denote the coupling
basis states.

From Eqs. (17) and (18), we can get the uncoupling basis
states

|n〉1|0〉2 =
√

2s−n+1
2s+1

|n〉s+1
2
+

√
n

2s+1
|n〉s− 1

2
, (19)

|n−1〉1|1〉2 =
√

n
2s+1

|n〉s+1
2
−
√

2s−n+1
2s+1

|n〉s− 1
2
, (20)

where n = 1, . . . ,2s.
For a mixed spin-(s,1/2) system, using Eqs. (19) and

(20), we can rewrite the arbitrary state

|ψ〉 =
2s

∑
m=0

Dm,1|m〉1|1〉2 +
2s

∑
n=0

Dn,0|n〉1|0〉2

= D0,0|0〉1|0〉2 +D2s,1|2s〉1|1〉2

+
2s

∑
n=1

(Dn−1,1|n−1〉1|1〉2 +Dn,0|n〉1|0〉2)

= D0,0|0〉1|0〉2 +D2s,1|2s〉1|1〉2
030303-3
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+
2s

∑
n=1

(
En,s+ 1

2
|n〉s+ 1

2
+Fn,s− 1

2
|n〉s− 1

2

)
=

2s+1

∑
n=0

En,s+ 1
2
|n〉s+ 1

2
+

2s

∑
n=1

Fn,s− 1
2
|n〉s− 1

2
, (21)

where

En,s+ 1
2

=
Dn−1,1

√
n+Dn,0

√
2s−n+1√

2s+1
, (22)

Fn,s− 1
2
=
−Dn−1,1

√
2s−n+1+Dn,0

√
n√

2s+1
, (23)

and n = m + 1, Dm,1 = Dn−1,1, Dn,0 are the coefficients of
the eigenstates, respectively. We notice that the terms of the
bracket are the analogous multiplet and the last term is the
analogous singlet.

3. Application in mixed-spin (1/2, 1/2) systems
with a real phase parameter ϕ and time evo-
lution
In this section, we will show a concise example for the

mixed-spin (s,1/2) systems with a real phase parameter ϕ .
From Eqs. (3), (8) and (9), we use two sets of stars to rep-

resent the analogous triplet, no star to represent the analogous
singlet and one set of stars to combine the two parts on a Bloch
sphere.

To illustrate the idea above, we give a simple spin-
(1/2,1/2) system with time evolution:

|ψ〉 1
2 ,

1
2
= e−iH1t (cosϕ |↑〉+ sinϕ |↓〉)

⊗(sinϕ |↑〉+ cosϕ |↓〉) , (24)

where the Hamiltonian H1 = σ1xσ2x +σ1yσ2y + δσ1zσ2z, δ ∈
[0,1] and the real phase parameter ϕ ∈ (0,π/2)∪ (π/2,π)∪
(π,3π/2)∪ (3π/2,2π), considering the completeness condi-
tion.

Therefore, we gain triplet stars

0 = z2
1 e−iδ t sin(2ϕ)−2z1 ei(δ−2)t + e−iδ sin(2ϕ), (25)

π = θ++θ−, (26)

0 = φ++φ−, (27)

θ± = 2arctan

∣∣∣∣∣
(

e−2it(δ−1)±
√

2
2

λ

)
csc(2ϕ)

∣∣∣∣∣ , (28)

φ±=arctan


Im

[(
e−2it(δ−1)±

√
2

2
λ

)
csc(2ϕ)

]

Re

[(
e−2it(δ−1)±

√
2

2
λ

)
csc(2ϕ)

]
 , (29)

where λ =
√

cos(4ϕ)+2e−4it(δ−1)−1, θ± and φ± are the
zenith angle and azimuth angle of the triplet stars. Obviously,
we can find that the two sets of the stars are 180◦ rotational

symmetric around the x-axis (the intersecting line of the prime
meridian plane and the equatorial plane).

However, the singlet state has no star. The stars (roots) of
the pseudo spin

z 1
2 ,

1
2
=

√
cos2(2ϕ)

sin2(2ϕ)+1
, (30)

θ = 2arctan

(√
cos2(2ϕ)

sin2(2ϕ)+1

)
∈
[
0,

π

2

]
, (31)

φ = 0. (32)

Hence, we know that the stars of the pseudo spin are al-
ways mapped to the north of the prime meridian and they are
independent of time evolution. To show the idea above, we
give a brief example of the two spin-1/2 particles with the real
phase parameter ϕ , time evolution and δ = 0.

Figure 1 shows the stars of the two spin-1/2 particles rep-
resented in the Bloch sphere with real phase parameter ϕ , time
evolution and δ = 0. Without time evolution, because the roots
(z1) in our example are always real, with the variety of the real
phase parameter ϕ , each set of the triplet stars is mapped to
the north or south prime meridian. Intuitively, the stars of the
pseudo spin only cover the north prime meridian. Since star
equation of the analogous singlet does not have root in two
spin-1/2 case, we do not have singlet state star (Fig. 1(a)). Our
method applies two, zero and one sets of stars to present the
spin-(1/2+ 1/2), the spin-(1/2− 1/2) and the pseudo spin-
1/2, respectively. Obviously, the position of the star of pseudo
spin unveils the relationship of corresponding coefficients be-
tween |ψ〉s+1/2 and |ψ〉s−1/2. For example, if the latitude of
the star of pseudo spin rises and the stars of pseudo spin are
sparse, it means that the proportion of |ψ〉s−1/2 increases and
the speed of the change is high. Fixed the time at a special
value, we can distinctly find that one set of the triplet stars and
the others are 180◦ rotational symmetric around the x-axis (the
intersecting line of the prime meridian plane and the equato-
rial plane) (Fig. 1(b)). As seen in Fig. 1(c), the triplet stars
are mapped to the prime meridian at t = 2kπ/4, the 90◦W(E)
meridian at t = (2k + 1)π/4 (k is integer). Fixed the phase
parameter ϕ at a special value, since stars of the pseudo spin
are independent of time evolution, they are fixed at particular
positions (Fig. 1(d)). Meanwhile, each set of the triplet stars
is plane symmetry around the equatorial plane and the prime
meridian plane at a whole period T = π , and each set still
keeps the rotational symmetry at every single time and phase
parameter value.

The method we proposed can visualize the mixed-spin (s,
1/2) system and describe the entanglement of the system. For
the mixed-spin (1/2, 1/2) system, the distributions of specific
states’ stars in Majorana’s stellar representation are given in
Table 1.

030303-4
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(a) (b)

(c) (d)

Fig. 1. Bloch representation of the two spin-1/2 particles with the real phase parameter ϕ , time evolution and δ = 0. (a)–(c) The stars are
mapped to the Bloch sphere with the variety of ϕ , meanwhile, without time evolution. (a) All stars with t = 0. (b) All stars with t = π/6
and ϕ = π/3. (c) The triplet stars with t = π/4. (d) All stars are mapped to the Bloch sphere with the period of time evolution T = π and
ϕ = 2π/3. The red circles and red dots represent the stars of the triplet; purple crosses represent the stars of the pseudo spin.

Table 1. Specific states’ stars of mixed-spin (1/2, 1/2) systems in Majorana’s stellar representation.

State Sector Star Property

| ↑↑〉 +a 2 Sb
+

Non-entangled | ↓↓〉 + 0 None

| ↓↑〉/| ↑↓〉 + and − 2 S+ and Ec

1√
2
(| ↓↑〉± | ↑↓〉) +(−) 1 (0) S+ (None)

Entangled
1√
2
(| ↑↑〉± | ↓↓〉) + 2 equatorial symmetry

Others – – Complexd

a +(−) means the star is in the spin-(s+1/2) (spin-(s−1/2)) sector; b S+ means the star is on the south pole in the spin-(s+1/2) sector.
c E means the star of the pseudo spin is on the equator; d Complex means the stars’ distribution is complex.

From Table 1, | ↑↑〉 (| ↓↓〉) only belongs to the spin-
(s + 1/2) sector. Although the stars of | ↓↑〉 (| ↑↓〉) be-
long to both sectors and cannot be separated into one sec-
tor, they are respective on the south pole and the equator in
MSR. The Bell states |Ψ±〉 = (|↑↓〉± |↓↑〉)/

√
2 and |Φ±〉 =

(|↑↑〉± |↓↓〉)/
√

2 only belong to one sector. However, the
stars’ distributions of other entangled states are very complex.
Therefore, it is easy to find that all the non-entangled states’
stars are on the south pole and the equator in MSR, so are the
Bell states. But the distributions of general entangled states
are complex.

4. Application in mixed-spin (s, 1/2) systems
with a real phase parameter ϕ and time evo-
lution
In this section, we will give brief examples with a real

phase parameter ϕ , time fixed case, and with time evolution,
fixed real phase parameter ϕ case for the mixed- spin (s,1/2)
systems, respectively. To illustrate the idea above, let us con-

sider the example spin-1 and spin-1/2 case as

|ψ〉1, 1
2
= e−iH2t

(
cosϕ√

2
|1〉+ 1√

2
|0〉+ sinϕ√

2
|−1〉

)
⊗(cosϕ |↑〉+ sinϕ |↓〉) , (33)

where the Hamiltonian H2 = S1xS2x+S1yS2y+δS1zS2z, S1i (re-
spectively, S2i, i = x,y,z) are the three direction components of
the larger spin (respectively, spin-1/2), |1〉, |0〉, |− 1〉 are the
eigenstates of the spin-1 particle, and | ↑〉, | ↓〉 are the eigen-
states of the spin-1/2 particle. So we have unitary transforma-
tion operator U = exp(−iH2t).

Utilizing Eqs. (1) and (21), we have

|ψ〉1, 1
2
=

(
C
( 3

2 )
0

∣∣∣∣32 ,−3
2

〉
+C

( 3
2 )

1

∣∣∣∣32 ,−1
2

〉
+C

( 3
2 )

2

∣∣∣∣32 , 1
2

〉
+C

( 3
2 )

3

∣∣∣∣32 , 3
2

〉)
+

(
C
( 1

2 )
0

∣∣∣∣12 ,−1
2

〉
+C

( 1
2 )

1

∣∣∣∣12 , 1
2

〉)
, (34)

where C
( 3

2 )
n and C

( 1
2 )

n denote the coefficients of the j = 3/2 and
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j = 1/2 case, respectively.
From Eq. (2), we obtain

0 = C
( 3

2 )
0 z0

3
2
−
√

3C
( 3

2 )
1 z1

3
2
+
√

3C
( 3

2 )
2 z2

3
2
−C

( 3
2 )

3 z3
3
2
, (35)

0 = C
( 1

2 )
0 z0

1
2
−C

( 1
2 )

1 z1
1
2
, (36)

z1, 1
2
=

C1− 1
2

C1+ 1
2

=

√
|C( 1

2 )
0 |2 + |C

( 1
2 )

1 |2√
|C( 3

2 )
0 |2 + |C

( 3
2 )

1 |2 + |C
( 3

2 )
2 |2 + |C

( 3
2 )

3 |2
, (37)

where z j, z1,1/2 denote the characteristic variables of the spin- j
case and the pseudo spin case, respectively, and we also have
the normalization condition |C1+1/2|2 + |C1−1/2|2 = 1.

Solving Eqs. (35) and (36), we can easily gain the whole
bloch representation of the spin-s and spin-1/2 particles sys-
tem with Eq. (3). To illustrate the idea above, we show the
bloch representation of the spin-s and spin-1/2 particles sys-
tem with time evolution, the real phase parameter ϕ and δ = 0.

Figure 2 shows the stars of the spin-s and spin-1/2 parti-
cles system with time evolution, fixed real phase parameter ϕ

and δ = 0. If the coefficients of the cubic equation are com-
plex numbers, which means with time evolution, the roots are
generally complex numbers. As shown in Fig. 2(a), we can
use three (one and one) sets of stars to represent the analogous
multiplet (the analogous singlet and the pseudo spin, respec-
tively). Moreover, focusing on one period of time, all stars of
the multiplet will jointly form a pattern that is plane symmetry
around the prime meridian plane (Fig. 2(b)). However, unlike
other sets of stars, the stars of the pseudo spin are mapped

to the prime meridian and have the northernmost (near the
north pole) and southernmost position at ϕ = π/4+2kπ with
t = n

√
2π and ϕ = 5π/4+ 2kπ with t = (2n+ 1)π/

√
2 (k,n

are integers), respectively (Figs. 2(c) and 2(d)). It means that
the proportion of |ψ〉s−1/2 has a lower bound and can asymp-
totically approach 100% at specific time and phase parameters.

Figure 3 shows the stars of the spin-s and spin-1/2 par-
ticles system with the real phase parameter ϕ , fixed time and
δ = 0. As shown in Fig. 3(a), we can use three (one and one)
sets of stars to represent the analogous multiplet (the analo-
gous singlet and the pseudo spin, respectively). Without time
evolution, two sets of the analogous multiplet stars are mapped
to the quarter of the prime meridian (Fig. 3(b)). Meanwhile,
the other set of the analogous multiplet stars is mapped to
the half prime meridian (Fig. 3(c)). However, the stars of the
pseudo spin can not form the half prime meridian completely
(Fig. 3(d)). Besides, the result is exactly the same as the result
with δ = 1 and t = 0 case; in other words, it is independent
of time evolution when δ = 1 because of the symmetry of the
three spin directions. As shown in Figs. 3(d) and 3(e), the stars
of the pseudo spin have the northernmost (the north pole) and
southernmost position at ϕ = π/4+ 2kπ with t = n

√
2π and

ϕ = 5π/4+ 2kπ with t = (2n+ 1)π/
√

2 (k,n are integers),
respectively. It means that the proportion of |ψ〉s−1/2 has a
lower bound and can asymptotically approach 100% at spe-
cific time and phase parameters. Furthermore, we find that all
stars of the analogous multiplet jointly form closed curves that
are 180◦ rotational symmetric around the x-axis (the intersect-
ing line of the prime meridian plane and the equatorial plane)
(Fig. 3(f)).

OE

OE OE

OW

OWOW

O OOE OWO O

O O

NN

NN

(a) (b)

(c) (d)

Fig. 2. Bloch representation of the spin-1 and spin-1/2 particles system with time evolution t ∈ [0,4π], fixed real phase parameter ϕ and δ = 0. (a)
All stars with ϕ = π/6 when time fixed at t = 1π/4. (b) The analogous multiplet stars with the phase parameter fixed at ϕ = π/6. (c) and (d) The
stars of the pseudo spin at ϕ = π/4 and ϕ = 5π/4. The red dots, green dots and orange dots represent the stars of the analogous multiplet, blue
circles represent the stars of the analogous singlet, and purple plusses represent the stars of the pseudo spin.
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O O OOE

OW OE

OE O OOE

O OOE O O OOE

N N N

N N N

OW

(a) (b) (c)

(d) (e) (f)

Fig. 3. Bloch representation of the spin-1 and spin-1/2 particles system with the real phase parameter ϕ variety, fixed time and δ = 0. (a) All
stars with ϕ = 3π/4 and t = π/2. (b)–(d) Two sets of the analogous multiplet stars, another set of the analogous multiplet stars and the stars of
the pseudo spin are mapped to the Bloch sphere with the variety of ϕ and time fixed at t = 0, respectively. (e) The stars of the pseudo spin with
t = π/

√
2. (f) The analogous multiplet stars with t = π/3. The red dots, green dots and orange dots represent the stars of the analogous multiplet,

blue circles represent the stars of the analogous singlet, and purple plusses represent the stars of the pseudo spin.

The method we proposed can visualize the mixed-spin (s,
1/2) system and describe the entanglement of the system. For
the mixed-spin (1, 1/2) system, |2〉1|1〉2 (|0〉1|0〉2) only be-
longs to the spin-(s+1/2) sector. Although |1〉1|0〉2 (|0〉1|1〉2,
|1〉1|1〉2, |2〉1|0〉2) exists on both sectors and it cannot be sep-
arated into one sector, its stars are respective on the south
pole and the equator in MSR. The special entangled states
(|1〉1|0〉2 ± |0〉1|1〉2)/

√
2 and (|2〉1|0〉2 ± |1〉1|1〉2)/

√
2 only

belong to one sector and their stars on the south pole or the
equator in MSR. However, the stars’ distributions of other en-
tangled states are very complex. Therefore, it is easy to find
that all the non-entangled states’ stars are on the south pole
and the equator in MSR, so are special entangled states. But
the distributions of general entangled states’ are complex.

5. Conclusion
Recently, the Majorana’s stellar representation and rele-

vant applications have demonstrated that the distributions and
motions of the Majorana stars on the Bloch sphere have be-
come a new and effective tool to study the symmetry-related
questions in the high-dimensional or many-body system. Our
study here shows that, utilizing the MSR, an arbitrary pure
state can always be represented on a Bloch sphere with 4s+1
stars in a two-spin (s and 1/2) system. We take the system
described by coupling bases as a state of a pseudo spin-1/2.
Furthermore, we propose a practical method to decompose the
arbitrary pure state that can be regarded as a state of a pseudo

spin-1/2.
As we know, a star on a Bloch sphere can represent a

pure state, and a set of stars on a Bloch sphere can represent
high-dimensional pure states. However, this method cannot
be applied in arbitrary high-dimensional mixed states. Our re-
sult is not easy to be generalized to arbitrary high-dimensional
mixed-spin systems, such as a mixed-spin (s,1) system. We
cannot directly use an effective pseudo spin 1 to describe it.

Taking advantage of the MSR, which provides an intu-
itive way to study high spin system from a geometrical per-
spective, we can have a novel and holonomic view to inves-
tigate the intricate system. Considering spin-(1/2,1/2) and
spin-(1,1/2) systems, we find that one can easily distinguish
between non-entangled states and entangled states by the dis-
tribution of stars in MSR. Since we have presented a general
method to visualize the mixed-spin (s,1/2) systems, one can
further apply the method in many situations, such as quantum
transitions and quantum tunneling in quantum spin baths and
quantum dots.
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