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The interplay of interactions, symmetries, and gauge fields usually leads to intriguing quantum many-
body phases. To explore the nature of emerging phases, we study a quantum Rabi triangle system as an
elementary building block for synthesizing an artificial magnetic field. We develop an analytical approach
to study the rich phase diagram and the associated quantum criticality. Of particular interest is the
emergence of a chiral-coherent phase, which breaks both the Z2 and the chiral symmetry. In this chiral
phase, photons flow unidirectionally and the chirality can be tuned by the artificial gauge field, exhibiting a
signature of broken time-reversal symmetry. The finite-frequency scaling analysis further confirms the
associated phase transition to be in the universality class of the Dicke model. This model can simulate a
broad range of physical phenomena of light-matter coupling systems, and may have an application in future
developments of various quantum information technologies.

DOI: 10.1103/PhysRevLett.127.063602

Introduction.—The coupling between light and matter
has brought forth a novel class of quantum many-body
systems [1–5], which is useful in probing a broad range of
physical phenomena. The possibility of quantum phase
transition (QPT) of photons has stimulated a lot of
discussions in the Jaynes-Cummings (JC) Hubbard lattice
[6–8] and the Rabi lattice models [9–11]. The basic
building block of such systems contains a two-level system
and a bosonic field mode, which is the simplest and the
most fundamental model describing quantum light-matter
interactions [12,13]. Usually, the QPTs are discussed in the
thermodynamical limit [14]. However, the quantum Rabi
model [15–18], two-site JC lattice [19], and few-body
systems with nonlinearity [20] in proper limits also exhibit
the similar scaling behavior of QPTs. Such QPTs in a few-
body system open a window for investigating related
integrability, exotic phases, and critical behaviors [15–
17,21,22].
The intriguing many-body phases generally arise from

the interplay of strong interactions, symmetries, and exter-
nal fields. In recent years artificial gauge fields have been
created for quantum platforms with bosonic excitations,
such as neutral atomic Bose-Einstein condensate (BEC)
or cold quantum gases [23–25], and photonic systems
[26–30]. For example, manifestations of artificial magnet-
ism in quantum gases in terms of vortex nucleation have
been found [24], the intriguing phenomenon of fractional
quantum Hall (FQHE) physics has been predicted to occur
in the JC Hubbard system by applying an artificial

magnetic field [31–33]. A few-body system of light-
atom interactions subjected to an artificial magnetic field
provides an ideal platform to investigate new quantum
phases, which can be controlled conveniently by the
artificial gauge fields.
In this Letter, we study the quantum Rabi triangle (QRT),

as a fundamental unit for synthesizing a magnetic field to
manipulate photons in optical cavities, to explore the
possibility of phase transitions in a few-body system.
Mean-field approximations are usually adopted in many-
body systems and often yield quantitatively accurate
results. This, however, is in general no longer true in
dealing with few-body systems. As such, analytic results
can rarely be found in few-body systems. Remarkably, we
show that exact analytic results can be found in the QRT in
the infinite frequency limit (analogous to the thermody-
namic limit). Using this analytic approach, we construct the
phase diagram of the QRTand explore the associated phase
transitions. The QRT contains three phases. An incoherent
phase (iCP), analogous to the normal phase in the Dicke
model, dominates the weak coupling regime. In the strong
coupling regime, there exist two coherent phases: the
normal coherent phase (nCP) is analogous to the super-
radiance phase in the Dicke model and breaks the Z2

symmetry; the chiral coherent phase (cCP) breaks both the
Z2 and the chiral symmetry and is unique to the QRT
without analogy in the Dicke model. The transition
between nCP and cCP is of first order and can be induced
by adjusting the artificial gauge field. The transition
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between iCP and the two coherent phases is of second-
order and, through a finite-frequency scaling, can be shown
to belong to the same universality class of the superradiance
phase transition in the Dicke model.
Model.—The QRT is a model of itinerant photons

hopping between neighboring cavities and interacting
on-site with a two-level atom. Three cavities are
placed on a ring, see Fig. 1(a), where each cavity contains
a two-level atom and is described by the quantum
Rabi model. The full Hamiltonian for the QRT system
reads

HQRT ¼
X3
n¼1

HR;n þ
X3
n;n0

Jðeiθa†nan0 þ e−iθana
†
n0 Þ; ð1Þ

where a†n (an) is the photonic creation (annihilation)
operator of the nth cavity with frequency ω, Je�iθ is the
hopping amplitude between cavities n and n0, and HR;n

denotes the quantum Rabi model of the nth cavity

HR;n ¼ ωa†nan þ gða†n þ anÞσxn þ
Δ
2
σzn; ð2Þ

with σ⃗n ¼ fσxn; σyn; σzng the Pauli matrix describes the two-
level atom with energy gap Δ and g denotes the strength of
cavity-atom coupling. The nonzero static phase θ in the
photon hopping amplitude arises from an artificial gauge
field An;n0 as θ ¼ R rn0

rn AðrÞdr [31,32]. The gauge-invariant
effective magnetic flux in the ring is ϕ ¼ 3θ. This artificial
gauge field can be realized by a periodic modulation of the
photon hopping strength between cavities, the details of
which can be found in the Supplemental Material [34]. We
will focus on the infinite-frequency limit, in which Δ is
much larger than any other frequency scales in the system.
This is the limit where the single-cavity Rabi model also

exhibits the superradiance phase transition [15–17,35] as in
the Dicke model.
Similar to the Rabi model, the parity operator can be

defined as P̂ ¼ Q
n expðiπN̂nÞ, where N̂n ¼ a†nan þ σþn σ−n

is the number of excitation quanta of the nth cavity.
Because ½HQRT; P̂� ¼ 0, the parity operator P̂ is conserved
and equal to �1, depending on whether the total number of
excitation quanta is even or odd. Besides such Z2 sym-
metry, the time-reversal symmetry (TRS) of hopping
processes among three cavities is artificially broken when
θ ≠ mπðm ∈ ZÞ. However, it can be recovered by imple-
menting the chiral transformation Cr which exchange the
even and odd permutation (123 ↔ 321). Considering that
the gauge field plays a critical role in the search for exotic
quantum phases of matter, it can be anticipated that it will
give rise to interesting properties in the QRT system. In
Fig. 1(b), we plot the phase diagram in the parameter space
spanned by g1 and θ, where g1 ¼ g=

ffiffiffiffiffiffiffi
Δω

p
is the scaled

dimensionless coupling strength, and θ is restricted
between −π and π. We will now discuss the three phases
in detail.
Incoherent phase.—In the weak coupling regime (i.e.,

small g1), the number of excitations tends to zero and no
photon propagates in the cavities, and we have the so-called
incoherent phase (iCP). To obtain its energy spectrum, we
first implement the Schrieffer-Wolff transformation with
the unitary operator Sn ¼ exp½−ig1

ffiffiffiffiffiffiffiffiffiffi
ω=Δ

p
σynða†n þ anÞ� on

each cavity. After neglecting higher-order terms in the limit
Δ=ω → ∞, Hamiltonian (1) becomes

HiCP ¼
X3
n¼1

ωa†nan þ
Δ
2
σzn þ ωg21ðan þ a†nÞ2σzn

þ Jðeiθa†nanþ1 þ H:c:Þ þO

�
g41

ω2

Δ2

�
: ð3Þ

Because the transverse operator σxn is eliminated, the two
atomic levels are decoupled. Thus, the low-energy effective
Hamiltonian can be obtained by projecting to the subspace
of the lower atomic level j↓in, i.e., H↓

iCP ¼ h↓jHiCPj↓i.
After taking a discrete Fourier transform a†n ¼
ð1= ffiffiffiffi

N
p ÞPq e

inqa†q with the quasimomentum q taking
values 0 and �2π=3, we have

H↓
iCP ¼ E0 þ

X
q

ωqa
†
qaq − ωg21ðaqa−q þ a†qa

†
−qÞ; ð4Þ

where E0 ¼ −3Δ=2 − 3ωg21 þ 3ðωþ JÞg21ω=Δ is a
constant, and ωq ¼ ω − 2ωg21 þ 2J cosðθ − qÞ (see
Supplemental Material [34]). Hamiltonian (4) is quadratic
in photon operators and hence can be diagonalized using
the Bogoliubov transformation [34]. The diagonalized
Hamiltonian takes the form H↓

iCP ¼
P

q εqa
†
qaq þ Eg,

FIG. 1. (a) The schematic diagram of quantum Rabi triangle
system with artificial gauge field. (b) The analytic phase diagram
in the g1-θ parameter space. The second order critical lines (red
dash) from the iCP to nCP and cCP join with the first order line
(black sold) between nCP and cCP at the triple points (TPs)
(black dot). The black dashed line separates the cCP according to
its chirality. In all our calculations, we set ω ¼ 1 as the units for
frequency, and Δ ¼ 50, J ¼ 0.05.
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where Eg ¼
P

qðεq − ωqÞ=2þ E0 is the ground-state
energy, and the photon dispersion is given by

εq ¼
1

2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωq þ ω−qÞ2 − 16ω2g14

q
þ ωq − ω−q�: ð5Þ

The excitation spectra εq with the momentum q ¼ 0,
�2π=3 decreases to zero as the coupling strength increases
to a critical value (see Fig. 1 in the Supplemental
Material [34]).
Figure 2(a) shows the analytical ground-state energy and

the first few excited-state energies for the iCP phase, which
agree well with numerical results obtained from exact
diagonalization (ED) of the original Hamiltonian (1). It
is observed that the iCP is a gapped phase with non-
degenerate ground state and there exist energy-level cross-
ings in excited states. It should be noted that the ground
state has even parity. This can be understood from the fact
that at g1 ¼ 0, there are no photons and all the atoms are in
the lower level j↓i in the ground state, which clearly has an
even excitation number 0.
Coherent phases.—In the strong coupling regime, there

exist two coherent phases, in which the cavity field is
macroscopically populated [15]. To obtain the effective
Hamiltonian, we first shift the cavity operator as an →
an þ αn with the complex displacement αn. With the
displaced operator, the QRT Hamiltonian takes the form

HCP ¼
X
n

ωa†nan þ
Δ0

n

2
τzn þ g0nða†n þ anÞτxn

þ Ja†nðeiθanþ1 þ e−iθan−1Þ þ Voff þ E0; ð6Þ

where Δ0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 16g2A2

n

p
is the renormalized energy

gap, and g0n ¼ gΔ=Δ0
n the effective coupling strength. Here,

τzn ¼ Δ=Δ0
nσ

z
n þ 4gAn=Δ0

nσ
x
n is the transformed Pauli

matrix. The off-diagonal term Voff and the energy constant

E0 are given in the Supplemental Material [34]. A proper
choice of the displacement αn leads to the vanish of Voff
and, as a result, Hamiltonian (6) has the same structure as
Hamiltonian (1) with the rescaled frequency Δ0

n and
coupling strength g0n. Therefore, by employing the same
procedure used to derive HiCP, we obtain the effective
Hamiltonian in the coherent phases by projecting to the
spin subspace j↓i

H↓
CP ¼

X3
n¼1

ωa†nan −
g02n
Δ0

n
ða†n þ anÞ2 −

Δ0
n

2

þ Ja†nðeiθanþ1 þ e−iθan−1Þ þ E0: ð7Þ

Diagonalizing the above quadratic Hamiltonian, we
obtain two coherent phases [see Fig. 1(b)]: (i) normal-
coherent phase (nCP): The nCP occurs for jθj > θc, where
θc is a critical value for the phase of the photon hopping
amplitude (see below). In the nCP, the ground state features
q ¼ 0, which indicates that photons have zero quasimo-
mentum, and αn can be taken to be real with the explicit
expression [34] αn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½g2=ðωþ 2J cos θÞ2� − ðΔ=4gÞ2

p
independent of n. The photon dispersion is given by

εq ¼
1

2
ðω0

q − ω0
−qÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0

q þ ω0
−qÞ2 − 16g04n =Δ02

n

q
; ð8Þ

where ω0
q ¼ ω − 2g02n =Δ0

n þ 2J cosðθ − qÞ. Furthermore,
the ground state is twofold degenerate as a result of the
Z2 symmetry breaking. This twofold degeneracy can be
seen from the ED numerical results presented in Fig. 2(b),
where the left and right parts of the curve represent the nCP.
In Fig. 3(a) we show how the order parameters hani vary as
a function of the coupling strength g1. In increasing g1, the
system enters from the iCP (where hani ¼ 0) to the nCP,
and the order parameter grows from zero, indicating a
second-order phase transition. In nCP, hani are the same for
all three cavities. Figure 3(a) only shows one of the two
degenerate ground-state solutions for nCP. The order
parameter takes a minus sign in the other solution.
(ii) chiral-coherent phase (cCP): The cCP, which occurs
when jθj < θc, features finite photon quasimomentum
q ¼ �2π=3. Here the displacement αn is in general com-
plex and n dependent. The middle part of Fig. 2(b) between
the two cusps, denoting the position of �θc, represents the
ground-state energy of cCP. The ED results also clearly
show that the ground state has sixfold degeneracy. This is
because, in addition to the Z2 symmetry, the cCP also
breaks the chiral symmetry resulting in a unidirectional
photon current. Figure 3(b) shows how the magnitude of
the order parameter vs g1 when the system enters from iCP
to cCP. One can again see a second-order phase transition.
However, different from nCP, the order parameters in cCP
are n dependent and are, in general, complex. For the
example shown in the figure, the phase angles for ha1;2;3i

(a)

(b)

FIG. 2. (a) Energy spectrum in the iCP phase with g1 ¼ 0.1.
Curves represent the analytic result. Symbols correspond to the
lowest 4 eigenenergies numerically obtained from ED. (b) Energy
spectrum in the nCP and cCP phases with g1 ¼ 0.7. The black
curve corresponds to analytic ground-state energy. Symbols
correspond to the lowest 6 eigenenergies numerically obtained
from ED. Other parameters are the same as in Fig. 1. The two
peaks are located at �θc ¼ �0.516π.
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are π, −0.11126 and 0.11126, respectively, and are nearly
insensitive to the value of g1. Here we only show one of the
six degenerate ground-state solutions. In the other solu-
tions, the order parameters take cyclic permutations and/or
take a minus sign. To better characterize the photon current
and the chirality, we define the photon current operator as
Iph ¼ i½ða†1a2 þ a†2a3 þ a†3a1Þ − H:c:�, analogous to the
continuity equation in classical systems. Moreover, in
analogy with the spin chiral operator via Pauli matrix C ¼
1
2

P
<ijk> σ⃗i · ðσ⃗j × σ⃗kÞ [36], the photon chiral operator can

be defined as Cph ¼ −2i
P

<ijk> εijkaia
†
jðnk − 1=2Þ (εijk is

Levi-Civita tensor) with help of the linearized spin-wave
transformation σ−i ¼ ai, σþi ¼ a†i and σzi ¼ 2a†i ai − 1
[9,37]. Similar to the spin system, the photon chiral

operator is odd under either the chiral transformation
C−1
r CphCr ¼ −Cph, or the TRS transformation. Mean-

while, the photon current operator has the same properties
of the symmetries. In Figs. 3(c) and 3(d), we show Iph
and Cph, respectively, as functions of θ. One can see that
these two quantities are zero for nCP and finite for cCP,
except at θ ¼ 0, where TRS is recovered in the
Hamiltonian.
Quantum criticality and phase boundaries.—As men-

tioned above, the transition from the iCP to either coherent
phases is of second order and is induced by varying the
coupling strength g1. The critical coupling strength g1c can
be obtained from the excitation spectra εq in Eq. (5)—εq
must vanish at g1c, yielding

g1cðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4J=ωÞ cos θ cos qþ ð4J2=ω2Þ cosðθ þ qÞ cosðθ − qÞ

4½1þ ð2J=ωÞ cos θ cos q�

s
: ð9Þ

The transition between the two coherent phases, by con-
trast, is of first order, features discontinuous jump in the
order parameter, and is induced by varying the effective
magnetic flux θ. Using the analytic expressions of the
ground-state energy for nCP and cCP, we obtain the critical
value θc as [34]

θc ¼ cos−1
�
−

2Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8J2 þ ω2

p
þ ω

�
; ð10Þ

and the phase boundary between nCP and cCP occurs at
�θc. Note that θc is independent of g1.
These results allow us to construct the phase diagram

presented in Fig. 1(b). There are two triple points (TPs) in
the phase diagram, at which all three phases coexist. The
TPs are located at ðgtc;�θcÞ where the value of gtc can be
obtain from g1cðq ¼ 0Þ ¼ g1cðq ¼ �2π=3Þ, which yields

gtc ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8J2 þ ω2

p

2ω

s
: ð11Þ

Universal scaling.—The QRT Hamiltonian can exhibit a
scaling relation for finite values of Δ=ω as a consequence
of continuous QPTs in the thermodynamic limit. The
universal scaling of the QPTs can be characterized by
the critical exponents for finite values of η ¼ Δ=ω. Figure 4
illustrates the finite-η scaling of the ground-state energy
and the average photon number obtained by numerical
diagonalization in the critical regime. In the limit η → ∞,
the scaled ground-state energy Eg=η obtained analytically
at the critical point approaches c0 ¼ −3ω=2. To show the
leading finite-η corrections, we calculate Eg=η − c0 versus
η at the critical value g1c on a log-log scale in Fig. 4(a)

when the system undergoes the iCP-cCP QPT with
θ ¼ 1.2θc and the iCP-nCP QPT with θ ¼ 0.96θc, respec-
tively. The corresponding slope of the curves in the large-η
regime gives a universal exponent −1 for both QPTs.
Meanwhile, a power-law behavior of the photon number
Np ¼ P

nha†nani exists at large η as shown in Fig. 4(b). The
corresponding finite-η exponent extracted from the curves
converges to −0.667 as shown in the inset. To conclude, we
find that the scaling exponents for the ground-state energy
and the average photons number are universal, giving two

(a) (b)

(c) (d)

FIG. 3. (a) The order parameter hani as a function of the scaled
coupling strength g1 for the iCP-nCP transition with
θ ¼ 2π=3 > θc. (b) jhanij as a function of g1 for the iCP-cCP
transition with θ ¼ π=3 < θc. (c) Photon current Iph and (d) the
expected value of the chirality operator Cph in the ground state as
a function of the hopping phase θ for the nCP-cCP transition with
g1 ¼ 0.7 > g1c. Other parameters are the same as in Fig. 1.
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power law expressions as Eg=η − c0 ∝ η−1 and Np=η ∝
η−2=3 for both the iCP-nCP and the iCP-cCP transitions,
belonging to the same universality class of the Dicke model
[38,39] and the single-site Rabi model in the infinite-
frequency limit [15,16].
Conclusion–We present an exact analytic solution to the

quantum Rabi triangle system as a basic building block for
exploring strongly correlated physical phenomena. We
identify the quantum phases and the transitions among
them. In particular, there is an exotic chiral coherent phase
that has no analog in the single-cavity Dicke or Rabi
models. The cCP breaks both the Z2 and the chiral
symmetry, featuring a persistent unidirectional photon
current in its ground state. The current and the chirality
can be tuned by the phase of the intercavity photon hopping
amplitude, which plays the role of an artificial mag-
netic flux.
Our study advances the field of strongly correlated

photons in a light-atom coupled system. Studying the
quantum phases in this few-body system under the
introduction of an artificial magnetic field would open
intriguing avenues for exploring their connection to
strongly correlated photons in two-dimensional lattice
systems [9–11]. Moreover, an implementation of the
system considered in this Letter is an exciting prospect
for the future and may be applicable in future developments
of various quantum information technologies. One has
proposed an application of the Mott state in the JC Hubbard
lattice for implementing quantum information processing
[33]. One could hope to implement cluster state quantum
computing related to extension of the quantum Rabi
triangle system coupled to many resonators for strong
atom-resonator coupling. Our studies also shed new light
on quantum simulation of artificial magnetic fields in
ultracold bosonic atoms [24].
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and I. B. Spielman, Nature (London) 462, 628 (2009).

(a) (b)

FIG. 4. Scaling of the ground-state energy (a) and photon
number (b) as a function of η at the critical point for the different
gauge field phases θ ¼ θc, 1.2θc, and 0.96θc for continuous
QPTs of the iCP-nCp and iCP-cCP transitions. The insets show
the corresponding slope versus 1=η.

PHYSICAL REVIEW LETTERS 127, 063602 (2021)

063602-5

https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3906
https://doi.org/10.1103/PhysRevA.80.033612
https://doi.org/10.1103/PhysRevA.80.033612
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1038/nphys462
https://doi.org/10.1038/nphys462
https://doi.org/10.1038/nphys466
https://doi.org/10.1088/1367-2630/15/11/115002
https://doi.org/10.1088/1367-2630/15/11/115002
https://doi.org/10.1103/PhysRevA.84.043819
https://doi.org/10.1103/PhysRevA.84.043819
https://doi.org/10.1103/PhysRevLett.109.053601
https://doi.org/10.1103/PhysRevLett.109.053601
https://doi.org/10.1140/epjd/e2016-70492-x
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.119.220601
https://doi.org/10.1103/PhysRevA.101.033827
https://doi.org/10.1103/PhysRevA.101.033827
https://doi.org/10.1103/PhysRevApplied.9.064006
https://doi.org/10.1103/PhysRevApplied.9.064006
https://doi.org/10.1103/PhysRevLett.117.123602
https://doi.org/10.1103/PhysRevLett.117.123602
https://doi.org/10.1103/PhysRevLett.124.040404
https://doi.org/10.1103/PhysRevLett.124.040404
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevA.86.023822
https://doi.org/10.1103/PhysRevA.86.023822
https://doi.org/10.1038/nature08609


[24] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev.
Mod. Phys. 83, 1523 (2011).

[25] H. Cao, Q. Wang, and L. B. Fu, Phys. Rev. A 89, 013610
(2014).

[26] R. O. Umucalilar and I. Carusotto, Phys. Rev. Lett. 108,
206809 (2012).

[27] D.W. Wang, H. Cai, R. B. Liu, and M. O. Scully, Phys. Rev.
Lett. 116, 220502 (2016).

[28] H. Cai and D.W. Wang, Natl. Sci. Rev. 8, 196 (2021).
[29] P. Roushan et al., Nat. Phys. 13, 146 (2017).
[30] I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267

(2012).
[31] A. L. C. Hayward, A. M. Martin, and A. D. Greentree, Phys.

Rev. Lett. 108, 223602 (2012).
[32] A. L. C. Hayward and A. M. Martin, Phys. Rev. A 93,

023828 (2016).

[33] C. Noh and D. G. Angelakis, Rep. Prog. Phys. 80, 016401
(2017).

[34] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.127.063602 for more
details about the calculation.

[35] M.-L. Cai, Z.-D. Liu, W.-D. Zhao, Y.-K. Wu, Q.-X. Mei, Y.
Jiang, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan, Nat.
Commun. 12, 1126 (2021).

[36] X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413
(1989).

[37] D. C. Mattis, The Theory of Magnetism (Springer, Berlin,
1988).

[38] N. Lambert, C. Emary, and T. Brandes, Phys. Rev. Lett. 92,
073602 (2004).

[39] Q. H. Chen, Y. Y. Zhang, T. Liu, and K. L. Wang, Phys. Rev.
A 78, 051801(R) (2008).

PHYSICAL REVIEW LETTERS 127, 063602 (2021)

063602-6

https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/PhysRevA.89.013610
https://doi.org/10.1103/PhysRevA.89.013610
https://doi.org/10.1103/PhysRevLett.108.206809
https://doi.org/10.1103/PhysRevLett.108.206809
https://doi.org/10.1103/PhysRevLett.116.220502
https://doi.org/10.1103/PhysRevLett.116.220502
https://doi.org/10.1093/nsr/nwaa196
https://doi.org/10.1038/nphys3930
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1103/PhysRevLett.108.223602
https://doi.org/10.1103/PhysRevLett.108.223602
https://doi.org/10.1103/PhysRevA.93.023828
https://doi.org/10.1103/PhysRevA.93.023828
https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1088/0034-4885/80/1/016401
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.063602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.063602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.063602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.063602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.063602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.063602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.063602
https://doi.org/10.1038/s41467-021-21425-8
https://doi.org/10.1038/s41467-021-21425-8
https://doi.org/10.1103/PhysRevB.39.11413
https://doi.org/10.1103/PhysRevB.39.11413
https://doi.org/10.1103/PhysRevLett.92.073602
https://doi.org/10.1103/PhysRevLett.92.073602
https://doi.org/10.1103/PhysRevA.78.051801
https://doi.org/10.1103/PhysRevA.78.051801

