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Abstract
The Majorana representation (MR), which represents a quantum state and its
evolution with the Majorana stars (MSs) on the Bloch sphere, provides us an
intuitive way to study symmetric multiqubit pure states physical system with
SU(2) symmetry. In this work, we propose a method to extend the MR for
generic two-qubit pure states. By adding an additional reference star (RS),
which represents the symmetry of the qubits, on the symmetric two qubit
state with two base stars, we give a more general MR for both symmetric,
anti-symmetric and generic two-qubit states. Using this method, we study the
entanglement, Berry phase and their relation by this Majorana decomposition.
Furthermore, the symmetries for different type of two-qubit states are also
discussed via the RSs and correlation between the two MSs.

Keywords: Majorana representation, two-qubit state, Berry phase, concurrence

(Some figures may appear in colour only in the online journal)

1. Introduction

Multipartite states and high-dimensional states are important resources for many fields of
quantum science, such as quantum information processing and ultracold atomic physics. How-
ever, due to the large dimension of projective Hilbert space, it is hard to study these states
intuitively. Recently, the Majorana representation (MR) [1] has been reintroduced to visu-
alize high-dimensional spin states. Majorana’s insight was that we can describe a spin-J
state (which is equivalent to an n-body two-mode boson state or a symmetric n-qubit state
with n = 2J) by 2J points on the two-dimensional Bloch sphere rather than one point on a
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high-dimensional geometric structure. These 2J points are called Majorana stars (MSs) of
the state. Consequently, this representation becomes an efficient method to study the geomet-
ric related properties of multipartite or high-dimensional state such as entanglement [2–11],
Berry phase [12–18], as well as their dynamics, geometric structures and response to geo-
metric transformations (e.g. rotations and inversions) [19–29]. By using MR, entanglement,
and Berry phase for symmetric multi-qubit states can be related to each other and intuitively
represented by the trajectories and distributions of the stars on the Bloch sphere [16, 18, 30].

However, the MR can only be used to study the entanglement for a symmetric n-qubit state
with SU(2) symmetry, although we can similarly parameterization a generic n-dimensional
state by n − 1 stars to study its geometric phase [16] without considering carried features of
symmetry. The entanglement of this multi-qubit state cannot be well defined due to the arbitrary
of base vector. Recently, with the increasing attention of MR, the MR has been extended to the
states with symmetries other than SU(2) [31] and mixed states [32, 33]. However, there is still
a lack of decomposition methods similar with MR in which the entanglement and geometric
phase of a generic multi-qubit state can be studied intuitively. The symmetric base vectors for
MR and only provide part of the bases for the whole Hilbert space of the multi-qubit states.
There are still anti-symmetric, partly symmetric, asymmetric base vectors which are related to
the symmetries and classification of the states. Therefore, it is a natural question to ask how
can we establish a decomposition or representation including all this type of states? How can
we use it to study the geometric properties (such as entanglement, geometric phase) of the
multi-qubit states? To shed light on these questions, we study the two-qubit pure states in this
work which can be generalized into more qubits in the future. For two-qubit states, the base
vectors are either symmetric or anti-symmetric. Therefore, we can use the form of two MSs in
the MR and add an extra reference star (RS) to represent the symmetry of the qubits. In this
Majorana decomposition, the Berry phase are related to the trajectories of the two MSs and
the RS. While the entanglement is determined by the distance between the two MSs and the
position of the RS.

This paper is organized as follows. In section 2, we introduce the MR and how the proprieties
of the states (such as Berry phase, Berry curvature, concurrence) are represented by the MSs.
In section 3, we show how to establish a Majorana decomposition with two MSs and a RS for
a generic two-qubit states. The star equation for these three stars are also derived. Then, the
Berry phase, the Berry curvature, and the concurrence for a two-qubit state are represented by
these three stars. Their relation with the RSs and the distance and distribution of the MSs are
studied. We also discuss some simple cases to show how the RS is related to the symmetry. A
brief conclusion and discussion about the passible decomposition for three qubits are given in
section 4.

2. Majorana representation for symmetric two-qubit pure state

For a generic symmetric two-qubit pure state, it can be factorized in MR as

|Ψ〉(2)
sym = C1 |↑〉 |↑〉+ C0

(
|↑〉 |↓〉+ |↓〉 |↑〉

)
+ C−1 |↓〉 |↓〉

=
1

N2 (U)

(
|u1〉|u2〉+ |u2〉|u1〉

)
, (1)

where

N2(U) =
√

(3 + u1 · u2) (2)

2
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is the normalization constant, |↑〉 and |↓〉 are σz eigenstates for a single spin-1/2, Cm are the
probability amplitudes (m = 1, 0,−1), and |u j〉 = cos θ j

2 |↑〉+ sin θ j
2 eiφ j |↓〉 ( j = 1, 2) are the

qubit states of star u j = (θ j,φ j) which can be determined by the roots x j ≡ tan θ j
2 eiφ j of star

equation [1, 16, 18]

2J∑
k=0

(−1)kCJ−k

(2J − k)!k!
x2J−k = 0 (3)

with J = 1. These stars u1 and u2 yield many useful insights for the characters of the quantum
state |Ψ〉(2)

sym. For example, the Berry connection of |Ψ〉(2)
sym is [16, 18, 21]

Asym
μ = −

2∑
j=1

(1 − cos θ j)∂μφ j

2
+

1
2

u1 × u2 · ∂μ(u2 − u1)
3 + u1 · u2

. (4)

Therefore, the Berry phase accumulated in an adiabatic cyclic evolution of the state |Ψ〉(2)
sym

takes the form

γsym = −Ω1

2
− Ω2

2
+

1
2

∮
u1 × u2 · (du2 − du1)

3 + u1 · u2
, (5)

which not only contains the solid angles Ωu j =
∮

dΩu j ≡
∮

(1 − cos θ j)dφ j subtended by the
closed evolution paths of the MSs on the Bloch sphere like the Berry phase for a spin-1/2 state
but is also associated with the correlation between the stars. The corresponding Berry curvature
can also be represented by the vector operation of stars as [21]

Fsym
μν = − 1

(3 + u1 · u2)2

[
2∂μu1 × ∂νu1 · u1 + 2∂μu2 × ∂νu2 · u2

+ (∂μu2 × ∂νu1 + ∂μu1 × ∂νu2) · (u1 + u2)
]
. (6)

The Berry phase can thus be written alternatively as γsym =
∫

S

∑
μ,ν

1
2 Fμνdμ ∧ dν.

Besides, the entanglement between the two qubits, as another unique character of quantum
state, can be intuitively measured by the concurrence [34]

Csym = 2|C2
0 − C1C−1| =

d12

N2
2 (U)

, (7)

where d12 = 1 − u1 · u2 characterize the distance between the two stars u1 and u2. If the state
|Ψ〉(2)

sym is separable, the two stars must overlap at one point (u1 = u2 = u) with |Ψ〉(2)sym =
|u〉|u〉. While the two qubits will be maximal entangled (C = 1), iff the two stars are
symmetrical about the center of the Bloch sphere. The state |Ψ〉(2)

sym becomes

1√
2

(|u〉 |−u〉+ |−u〉 |u〉), (8)

where the two-qubit states are orthogonal, i.e. 〈u| − u〉 = 0. Thus, the trajectories and distribu-
tions of MSs provide an intuitive way to study the symmetric related properties of a symmetric
two-qubit pure state. Next, we discuss how to extend this representation to a generic two qubit
pure state.

3



J. Phys. A: Math. Theor. 54 (2021) 295302 C Yang et al

3. Majorana decomposition for two-qubit pure state

For a generic two-qubit pure state

|ψ〉 = C1 |↑〉 |↑〉+ C2 |↑〉 |↓〉+ C3 |↓〉 |↑〉+ C4 |↓〉 |↓〉 , (9)

(suppose C1 > 0 and |C1|2 + |C2|2 + |C3|2 + |C4|2 = 1), it can be represented by the symmet-
ric basis (|↑〉 |↑〉, 1/

√
2
(
|↑〉 |↓〉+ |↓〉 |↑〉

)
, |↓〉 |↓〉) and the antisymmetric basis

|Ψ〉(2)
asym =

1√
2

(
|↑〉 |↓〉 − |↓〉 |↑〉

)
. (10)

Since the MR can represent all the symmetric states, a generic two-qubit pure state can be
consequently decomposed by

|ψ〉 = cos
α

2
|Ψ〉(2)

sym + sin
α

2
eiβ |Ψ〉(2)

asym (11)

with two MSs u1 = (θ1,φ1) and u2 = (θ2,φ2) for |Ψ〉(2)
sym on the Bloch sphere SM which can be

determined by the roots x j ≡ tan θ j
2 eiφ j of star equation (see appendix A for details)

C1x2 − (C2 + C3)x + C4 = 0, (12)

and an extra star ū = (α, β) on another sphere Sū which represents the superposition of the
symmetric part and the antisymmetric part. Its coordinates can be derived by (see appendix A
for details)

x̄ ≡ tan
α

2
eiβ =

C2 − C3√
2 − |C2 − C3|2

. (13)

As shown in figure 1, we can use two stars u1 and u2 to represent the symmetric part |Ψ〉(2)
sym

on the Bloch sphere SM with north pole |↑〉 and south pole |↓〉. Together with this representation,
the state |ψ〉 is represented by point ū on the sphere Sū with the north pole |Ψ〉(2)

sym and the south
pole |Ψ〉(2)

asym. Thus, a generic two-qubit pure state can be perfectly represented by these three
stars on two Bloch spheres.

Besides, the adiabatic evolution |ψ〉 can also be described by the adiabatic evolution and
trajectories of the stars u1, u2 and ū. The Berry phase accumulated in this adiabatic evolution
can be written as (see appendix A for details)

γ = −Ωū

2
+

∮
1 + ūz

2

∑
μ

Asym
μ dμ (14)

with ūz = cos α and a solid angle Ωū subtended by the closed evolution paths of ū. The inte-
gration of the symmetric Berry connection is weighted by the symmetric proportion 1+ūz

2 . The
Berry curvature now takes the form

Fμν = −1
2
∂μū × ∂ν ū · ū +

1 + ūz

2
Fsym
μν +

1
2

(∂μūzA
sym
ν − ∂ν ūzA

sym
μ ), (15)

which contains not only the symmetric Berry curvature weighted by the symmetric proportion
1+ūz

2 but also the correlation between the MSs u1, u2 and the point ū.

4
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Figure 1. Schematic illustration of the Majorana decomposition of a generic two-qubit
state.

Furthermore, the distribution of the MSs u1, u2 and star ū can also represent the concurrence
between the two stars

C =
∣∣∣cos2 α

2
Csymeiδ − sin2 α

2
e2iβ
∣∣∣ (16)

with δ = π + φ1 + φ2 + 2 arctan(sin θ1+θ2
2 tan φ1−φ2

2 / sin θ1−θ2
2 ). Note that, the expressions

of Berry phase and concurrence in decomposition (11) seem rather complex and cannot
be mapping intuitively to the evolution and distribution of stars. Therefore, we separate
the decomposition (11) into two type of states to find a more intuitive form of Majorana
decomposition.

3.1. States with two overlapped Majorana stars u1 = u2 = u

The simplest case of the MSs is the two stars are coincident on the sphere SM. The correspond-
ing state becomes

|ψ〉O = cos
α

2
|u〉 |u〉+ sin

α

2
eiβ 1√

2

(
|↑〉 |↓〉 − |↓〉 |↑〉

)
(17)

with α ∈ [0, π) (to remove the repetition of the two different types, we suppose that ū cannot
reach the south poles).

As shown in figure 2, the north pole |u〉 |u〉 of the sphere Sū can now be represented by one
star on the sphere SM. Therefore, the dynamic evolution of the state |ψ〉O can be represented by
the trajectories of ū about a rotating axis u. When the MS u is fixed, the dynamics of |ψ〉O is
just the same with that of a spin-1/2 state represented by star u. As the state adiabatic evolves,
the Berry phase

γO = −1
2
Ωū −

1
2

∮
(1 + ūz)dΩu, (18)

5
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Figure 2. Schematic illustration of the Majorana decomposition for a two-qubit state
with u1 = u2 = u.

simply reduces to the weighted sums of the solid angle dΩu ≡ (1 − cos θ)dφ of MSs u and
Ωū ≡

∮
(1 − cos α)dβ of point ū. If one of the two stars u and ū is fixed, the Berry phase is

only determined (weighted) by the solid angle subtended by the trajectory of the other star.
Furthermore, the entanglement between the two qubits can be directly decided by the latitude
of the star ū as

CO =
1
2

(1 − cos α), (19)

the lower ū’s latitude (π/2 − α) is, the more the two qubit entangles. Note that the two-qubit
state in this case can reach the separable state but not the maximal entangled state with the
limitation of α ∈ [0, π).

3.2. States with two separated Majorana stars u1 �= u2

If the two stars u1 and u2 do not coincide, the Berry phase and the entanglement of the state |ψ〉2

is rather complex under the decomposition (11) as we discussed. Notice that, the antisymmetric

6



J. Phys. A: Math. Theor. 54 (2021) 295302 C Yang et al

basis can also be represented by (see appendix B for details)

|Ψ〉(2)
asym ∼ 1√

1 − u1 · u2
(|u1〉|u2〉 − |u2〉|u1〉), (20)

with the two MSs for the symmetric states |Ψ〉(2)
sym (this representation is clearly not valid for

u1 = u2). We can alternatively define the Majorana decomposition as (see appendix B for
details)

|ψ〉S =
1

NS

(
cos

θ3

2
|u1〉|u2〉+ sin

θ3

2
eiφ3 |u2〉|u1〉

)
. (21)

The normalization coefficient becomes NS = [1 + (1 + u1 · u2)u3x/2]1/2 which is related to the
distance between the same MSs u1 = (θ1,φ1) and u2 = (θ2,φ2) on the sphere SM determined
by the roots x j ≡ tan θ j

2 eiφ j of equation (12) and the x coordinate u3x = sin θ3 cosφ3 of a
RS u3 = (θ3,φ3) on sphere SR. The coordinates of u3 can be derived by (see appendix B for
details)

x3 = tan
θ3

2
eiφ3 = −C3 − C2 −

√
(C2 + C3)2 − 4C1C4

C3 − C2 +
√

(C2 + C3)2 − 4C1C4

. (22)

Similar with ū, the RS u3 measures the symmetry of the state |ψ〉S (see figure 3(a)). For
u3 = (π/2, 0) and (π/2, π), the two-qubit state become the symmetric state |Ψ〉sym and the
antisymmetric state |Ψ〉asym respectively (as shown in figures 3(b) and (c)). While the separa-
ble states |u1〉|u2〉 and |u2〉|u1〉 can be represented by u3 = (0, 0), and (0,π) respectively (as
shown in figures 3(d) and (e)). The Berry phase

γS = −
3∑

i=1

Ωui

2
+

1
2

2∑
i, j=1

∮
ui × u j · du j

2N2
S

u3x +

∮
1 + u1 · u2

4N2
S

(u3 × du3)x (23)

can also be interpreted as the solid angles of the two MSs and their correlation (modulated by
the x coordinate of the RS) like that for the symmetric state [16, 18]. Besides, it now contains
the contribution of the solid angles of the RS and its correlation with the pair of the MSs.
Similarly, the Berry curvature

FS
αβ = − 1 + u3x

2[2 + (1 + u1 · u2)u3x]2
{2∂αu1 × ∂βu1 · u1 + 2∂αu2 × ∂βu2 · u2

+ u3x(∂αu2 × ∂βu1 + ∂αu1 × ∂βu2) · (u1 + u2)}

+
1

2[2 + (1 + u1 · u2)u3x]2

× {2∂α(u1 · u2)(u3 × ∂βu3)x + 2∂β(u1 · u2)(u3 × ∂αu3)x

− (1 − u1 · u2)(3 + u1 · u2)∂αu3 × ∂βu3 · u3

+ 2u2 × u1 ·
[
∂β(u1 − u2)∂αu3x − ∂α(u1 − u2)∂βu3x

]}
(24)

can be decomposed into two parts. One part is the correlation between the two MSs modulated
by the RS, the other part is caused by the adiabatic evolution of the RS. To illustrate the mod-
ulation of RS onto the two MSs, we discuss some specific situations for |ψ〉2 with different
symmetry.

7
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Figure 3. Schematic illustration of the Majorana decomposition with u1 �= u2 for (a) a
two-qubit state |ψ〉2, (b) the symmetric state |Ψ〉(2)

sym, (c) the antisymmetric state |Ψ〉(2)
asym,

the separable state (d) |u1〉|u2〉 and (e) |u2〉|u1〉.

(a) The RS u3 = (θ3,φ3) is fixed on the Bloch sphere. As u3 is time independent, the Berry
phase and curvature become

γS = −
2∑

i=1

Ωui

2
+

1
2

2∑
i, j=1

∮
ui × u j · du j

2N2
2

u3x, (25)

and

FS
αβ = − 1 + u3x

2[2 + (1 + u1 · u2)u3x]2

[
2∂αu1 × ∂βu1 · u1 + 2∂αu2 × ∂βu2 · u2

+ u3x(∂αu2 × ∂βu1 + ∂αu1 × ∂βu2) · (u1 + u2)
]
. (26)

For u3 = (π/2, 0), the results become the one for symmetric states (5) and (6). On the
contrary, the antisymmetric state (10) (with u3 = (π/2, π)) has zero curvature

FS
αβ = 0, (27)

since the states |ψ〉S now differs only a total phase e−i arg(x2−x1) from the antisymmetric
state (10) with all the three stars fixed on the Bloch sphere (see appendix B for details).

For separable state |ψ〉 = |u1〉|u2〉 with u3 = (0, 0) or (0, π), it corresponds to two stars
on the Bloch sphere with no correlation, the Berry phase

γSM = −
2∑

i=1

Ωui

2
(28)

8
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becomes the sum of the two solid angles of the two stars, and the Berry curvature becomes

FS
αβ = −1

2
∂αu1 × ∂βu1 · u1 −

1
2
∂αu2 × ∂βu2 · u2. (29)

(b) The two stars are symmetrical about the center of SM (u1 = −u2 = u). The state |ψ〉S

becomes

|ψ〉S = cos
θ3

2
|u〉 |−u〉+ sin

θ3

2
eiφ3 |−u〉 |u〉. (30)

In this case, the phases accumulated by the adiabatic evolutions of the two MSs cancel each
other. The Berry phase only contains the solid angle of the RS, and the Berry curvature
takes the form

FSu
αβ = −1

2
∂αu3 × ∂βu3 · u3. (31)

Therefore, this case is just the opposite of case (a) in which the Berry phase is determined
by the adiabatic evolution of the two MSs only. These two different cases reveal different
symmetries as interpreted by the Berry curvatures (6), (27), (29) and (31).

Not only the symmetry of the adiabatic evolution of |ψ〉S can be measured by the RS u3, the
entanglement of the two qubits in |ψ〉S can also be classified by it. The concurrence for |ψ〉S

can be written as

C =
(1 − u1 · u2) sin θ3

2 + (1 + u1 · u2) sin θ3 cos φ3
, (32)

where the entanglement of the two qubits is determined by the distance between the two MSs
and the RSs u3 together. For fixed RS, the entanglement in |ψ〉S is determined by the distance
d12 = 1 − u1 · u2 or the angle θ = arccos(u1 · u2) between the two MSs like the symmetric
state |Ψ〉sym. On the contrary, the entanglement is decided by the location of u3 on the Bloch
sphere when the distance between u1 and u2 is fixed.

As shown in figure 4, the distribution of concurrence is always symmetric about the x-
axis. No matter how far the distance between the two stars u1 and u2 (u1 �= u2), the maxi-
mal entangled states |Ψ〉asym, separable states |u1〉|u2〉, and |u2〉|u1〉 are always correspond to
u3 = (π/2, π) locating at the negative x-axis, u3 = (0, 0) locating at the north pole, and
u3 = (π, 0) locating at the south pole, respectively. For the other area, the closer u3 to the
equator on the Bloch sphere, the larger the two qubits entangled. The entanglement between
the two qubits becomes larger as the distance between u1 and u2 increases. Especially, when
distance between the two stars u1 and u2 is maximal (i.e. u1 = −u2 = u), the concurrence
becomes C = sin θ3. In this case, the entanglement between the two qubits is only determined
by the latitude of u3. All the maximal entangled states are located on the equator (including
|Ψ〉asym) and can be represented by

|ψ〉max =
1√
2

(|u〉 |−u〉+ e−iφ3 |−u〉 |u〉) (33)

as the MSs locates symmetrically about the center of SM (see appendix C for details). Unlike
the maximal entangled state |ψ〉Sch = 1√

2
(|u1〉|u2〉+ e−iφ3 |−u1〉 |−u2〉) in the representation

of Schmidt decomposition, |ψ〉max in the Majorana decomposition only need three parameters
{u = (θ1,φ1);φ3} to represent all the maximal entangled states (the discussion of minimal
real-coefficient number for a generic maximal entangled two qubit pure states can be found in

9
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Figure 4. Top-viewed spherical distribution of the concurrence for |ψ〉S on the reference
sphere SR with different angles between u1 and u2.

appendix C). Furthermore, in Majorana decomposition, it is easy to find that the topology of the
maximal entangled states |ψ〉max and the separable state |u1〉|u2〉 are quit different with other
entangled state represented by equations (17) and (21). The former corresponds to an SU(3)
rotation D1/2(u,φ) on SM, while the latter is two independent vectors on SM [SU(2) × SU(2)].

4. Conclusion and discussion

The MR provides us an intuitive way to study the symmetric multi-qubit states with SU(2)
symmetry and their evolution. In this work, we show that we can use the form of two MSs in
the MR and add an extra RS which represents the symmetry of the qubits to generalize MR
into the generic two-qubit pure states. In this Majorana decomposition, the Berry phase, Berry
curvature, and entanglement are found to be related to the trajectories and distances of the two
MSs and the position of the RS. Furthermore, we show that the RS is related to the symmetry
by discussing different type of states. For the states with more qubits, there are more types of
symmetries which relate to the classification of entanglement and geometric phase [35]. For
example, according to types of entanglement, a generic three-qubit state contains three types
of states: GHZ type, W type, biseparable type, separable type [36]. There is no antisymmetric

10
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state for three qubits, while the three-qubit symmetric state takes the form

|Ψ〉(3)
sym =

1√
6

(
|u1〉 |u2〉 |u3〉+ |u1〉 |u3〉 |u2〉+ |u2〉 |u1〉 |u3〉

+ |u2〉 |u3〉 |u1〉+ |u3〉 |u1〉 |u2〉+ |u3〉 |u2〉 |u1〉
)

(34)

with three stars u1, u2, and u3 which only represents part of GHZ type, W type, and separable
type [16, 18]. However, we need (23 − 1 =)7 stars to describe all the three-qubit pure states.
One possible way to construct the three-qubit pure states from the decomposition for two-qubit
pure states is that

1 qubit: |ui〉 ,

2 qubit: |ϕα
12〉 = cos

θα
2

|u1〉 |u2〉+ sin
θα
2

eiφα |u2〉 |u1〉 ,

3 qubit: |ψ〉 = cos
θγ
2

cos
θδ
2

∣∣∣φα,β
12,3

〉
+ sin

θγ
2

sin
θδ
2

ei(φγ+φδ )
∣∣∣φα,β

23,1

〉

+

(
cos

θγ
2

sin
θδ
2

eiφδ + cos
θδ
2

sin
θγ
2

eiθγ

) ∣∣∣φα,β
13,2

〉
, (35)

with ∣∣∣φα,β
i j,k

〉
= cos

θβ
2

∣∣ϕα
i j

〉
|uk〉+ sin

θβ
2

eiφβ |uk〉
∣∣ϕα

i j

〉
, (36)

and four extra stars xα = tan θα
2 eiφα , xβ = tan

θβ
2 eiφβ , xγ = tan θγ

2 eiφγ , and xδ = tan θδ
2 eiφδ .

We will discuss this method and its generalizations to the pure states with more qubits in future
works.
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Appendix A. Derivation of the star equations and Berry phase for a two-qubit
pure states

The Majorana decomposition (11) can be described by the complex numbers x j = tan θ j
2 eiφ j

for the stars as

|ψ〉(2) = cos
α

2
|Ψ〉(2)

sym + sin
α

2
eiβ |Ψ〉(2)

asym

= cos
α

2
cos

θ1

2
cos

θ2

2

{
1√

3 + u1 · u2

[
(|↑〉+ x1 |↓〉)(|↑〉+ x2 |↓〉)

11
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+ (|↑〉+ x2 |↓〉)(|↑〉+ x1 |↓〉)
]
+

x̄√
2

(|↑〉 |↓〉 − |↓〉 |↑〉)
}

=
2 cos α

2 cos θ1
2 cos θ2

2√
3 + u1 · u2

[
|↑〉 |↑〉+ x1x2 |↓〉 |↓〉

+

(
x1 + x2

2
+

x̄
√

3 + u1 · u2

2
√

2 cos θ1
2 cos θ2

2

)
|↑〉 |↓〉

+

(
x1 + x2

2
− x̄

√
3 + u1 · u2

2
√

2 cos θ1
2 cos θ2

2

)
|↓〉 |↑〉

]
. (A.1)

Compare with equation (9), we find that

x1 + x2 =
C2 + C3

C1
, x1x2 =

C4

C1
, x̄ =

(C2 − C3)
√

2 cos θ1
2 cos θ2

2

C1
√

3 + u1 · u2
. (A.2)

Therefore, we can derive the two stars u1 and u2 by the star equation

C1x2 − (C2 + C3)x + C4 = 0, (A.3)

i.e.

x1,2 =
C2 + C3 ±

√
(C2 + C3)2 − 4C1C4

2C1
. (A.4)

Furthermore, the two stars u1 and u2 corresponds to the symmetric state

|ψ〉(2)
sym =

1
A

(C1 |↑↑〉+
C2 + C3

2
(|↑↓〉+ |↓↑〉) + C4 |↓↓〉), (A.5)

with A =

√
|C1|2 + |C4|2 + |C2+C3|2

2 =

√
1 − |C2−C3|2

2 . By equation (7), the concurrence of
this symmetric state can be written as

Csym = 2

∣∣∣∣∣
(

C2 + C3

2

)2

− C1C4

∣∣∣∣∣ /A2 =
|C1|2|x1 − x2|2

2A2
=

1 − u1 · u2

3 + u1 · u2
. (A.6)

Together with

cos
θ1

2
cos

θ2

2
=

√
1 − u1 · u2

2|x1 − x2|2
, (A.7)

and equation (A.2), we have

x̄ =
(C2 − C3)

√
2 cos θ1

2 cos θ2
2

C1
√

3 + u1 · u2
=

C2 − C3

C1

√
1 − u1 · u2

(3 + u1 · u2)|x1 − x2|2

=
C2 − C3

C1

C1√
2A

=
C2 − C3√

2 − |C2 − C3|2
. (A.8)

12
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With this Majorana decomposition (11), and equation (4), the Berry phase accumulated by an
adiabatic evolution process of |ψ〉 can be derived by

γ =

∮
i 〈ψ|ψ〉

=

∮
cos

α

2
d
(

cos
α

2

)
+ sin

α

2
eiβd

(
sin

α

2
eiβ
)
+

∮
cos2 α

2
i
〈
Ψ(2)

sym|dΨ(2)
sym

〉
= −Ωū

2
+

∮
1 + ūz

2

∑
μ

Asym
μ dμ (A.9)

with Ωū =
∮

(1 − cos α)dβ, ūz = cos α and
∑

μAsym
μ dμ ≡ i

〈
Ψ(2)

sym|dΨ(2)
sym

〉
.

Appendix B. Derivation of the star equations for states with two separated
Majorana stars u1 �= u2

In equation (11), we know that a generic two-qubit state can be decomposed by a symmetric
part and an antisymmetric part. Similar with the MR for the symmetric state, we can also define
an antisymmetric state by the stars u1 and u2 as

1
M

(|u1〉|u2〉 − |u2〉|u1〉)

=
cos θ1

2 cos θ2
2

M
[(|↑〉+ x1 |↓〉)(|↑〉+ x2 |↓〉) − (|↑〉+ x2 |↓〉)(|↑〉+ x1 |↓〉)]

=
cos θ1

2 cos θ2
2

M
(x2 − x1)(|↑〉 |↓〉 − |↓〉 |↑〉)

=

√
1 − u1 · u2 eiφ21

√
2M

(|↑〉 |↓〉 − |↓〉 |↑〉), (B.1)

where the normalization coefficient M ≡
√

1 − u1 · u2 and φ21 ≡ arg(x2 − x1) are derived by
equation (A.7). Therefore, the antisymmetric state |Ψ〉(2)

asym can be equivalently represented by

|Ψ〉(2)
asym =

e−iφ21

√
1 − u1 · u2

(|u1〉|u2〉 − |u2〉|u1〉). (B.2)

It is worth to notice that this representation for antisymmetric state is only valid for the case
that the two stars u1 and u2 are separated. If u1 = u2, this representation cannot derive the
state 1√

2
(|↑〉 |↓〉 − |↓〉 |↑〉). By equations (A.6),(A.8) and (B.2), the Majorana decomposition

(11) can now take the form

|ψ〉 = cos
α

2
|Ψ〉(2)

sym + sin
α

2
eiβ |Ψ〉(2)

asym

=
cos α

2√
3 + u1 · u2

(|u1〉|u2〉+ |u2〉|u1〉) +
sin α

2 ei(β−φ21)

√
1 − u1 · u2

(|u1〉|u2〉 − |u2〉|u1〉)

=

[
cos α

2√
3 + u1 · u2

+
sin α

2 ei(β−φ21)

√
1 − u1 · u2

]
|u1〉|u2〉+

[
cos α

2√
3 + u1 · u2

− sin α
2 ei(β−φ21)

√
1 − u1 · u2

]
|u2〉|u1〉

13
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=

[
cos α

2√
3 + u1 · u2

+
sin α

2 ei(β−φ21)

√
1 − u1 · u2

]⎛⎝|u1〉|u2〉+
1 − x̄ e−iφ21

√
3+u1·u2
1−u1·u2

1 + x̄ e−iφ21

√
3+u1·u2
1−u1·u2

|u2〉|u1〉

⎞
⎠

=

[
cos α

2√
3 + u1 · u2

+
sin α

2 ei(β−φ21)

√
1 − u1 · u2

](
|u1〉|u2〉+

1 − C2−C3
C1(x2−x1)

1 + C2−C3
C1(x2−x1)

|u2〉|u1〉
)

=

[
cos α

2√
3 + u1 · u2

+
sin α

2 ei(β−φ21)

√
1 − u1 · u2

] (
|u1〉|u2〉+ x3|u2〉|u1〉

)
, (B.3)

where

x3 ≡ C1(x2 − x1) − (C2 − C3)
C1(x2 − x1) + (C2 − C3)

= −C3 − C2 −
√

(C2 + C3)2 − 4C1C4

C3 − C2 +
√

(C2 + C3)2 − 4C1C4

=

√
2Ax̄

C1(x2 − x1)
. (B.4)

Therefore, we can alternatively define the Majorana decomposition as

|ψ〉S =
1

N2

(
cos

θ3

2
|u1〉|u2〉+ sin

θ3

2
eiφ3 |u2〉|u1〉

)
. (B.5)

with N2 = [1 + (1 + u1 · u2)u3x/2]1/2 and x3 ≡ tan θ3
2 eiφ3 when u1 �= u2. It is worth noticing

that, even we set u1 = u2, we still cannot describe the type of states |ψ〉O = cos α
2 |u〉 |u〉+

sin α
2 eiβ 1√

2

(
|↑〉 |↓〉 − |↓〉 |↑〉

)
except for |u〉|u〉.

Appendix C. The minimal number of real coefficients to represent a generic
maximal entangled two qubit pure states

For a generic two qubit pure state

|ψ〉 = C1 |↑↑〉+ C2 |↑↓〉+ C3 |↓↑〉+ C4 |↓↓〉 , (C.1)

the maximal entangled state satisfies the relation C = 2|C1C4 − C2C3| = 1, i.e. |C1C4 −
C2C3|2 = 1/4. Note that

|C1C4 − C2C3|2 � (|C1C4|+ |C2C3|)2, |C1C4| � 1
2

(|C1|2 + |C4|2)

|C2C3| � 1
2

(|C2|2 + |C3|2). (C.2)

The equal sign holds for arg(C1C4) = π + arg(C2C3), |C1| = |C4|, |C2| = |C3|, respectively.
When all of the three equal sign hold, we have the maximal entangled relation 2|C1C4 −
C2C3| = 1. Therefore, combine with the normalization condition and the total phase, a generic
maximal entangled two-qubit pure state can be presented by three real coefficients.
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