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Manipulating the global PT symmetry of a non-Hermitian composite system is a rather significative and
challenging task. Here, we investigate Floquet control of global PT symmetry in quadrimer waveguide arrays
with transverse periodic structure along the x axis and longitudinal periodic modulation along the z axis. For the
unmodulated case with inhomogeneous inter- and intraquadrimer coupling strength κ1 �= κ , in addition to the
conventional global PT symmetric phase and the PT symmetry breaking phase, we find that there is an exotic
phase in which global PT symmetry is broken under open boundary condition, whereas it still is unbroken
under periodical boundary condition. Especially, the domain of the exotic phase induced by boundary effect
can shrink and even disappear by tuning modulation parameter. More interestingly, whether or not the array has
initial global PT symmetry, periodic modulation can not only restore the broken global PT symmetry, but also
control it by tuning modulation amplitude. Therefore, the global property of transverse periodic structure of such
an array can be manipulated by only tuning modulation amplitude of longitudinal periodic modulation.

DOI: 10.1103/PhysRevA.102.053510

I. INTRODUCTION

Global parity-time (PT ) symmetry plays a key role in
determining the real energy spectrum, topological character,
and transport property of non-Hermitian composite systems
[1–8]. There are many interesting physical phenomena re-
lated to global PT symmetry, including topological bound
state [9], edge-mode lasing [10], anomalous edge states [11],
and anisotropic transmission resonances [12]. A characteristic
property of global PT symmetric system is the existence of a
phase transition (spontaneous global PT symmetry breaking)
from the unbroken to broken PT symmetric phase whenever
the gain or loss parameter exceeds a certain threshold. This
has been experimentally demonstrated in synthetic photonic
lattices [9,13] and cavity laser arrays [14]. Therefore, an im-
portant issue in a global PT symmetric system is the ability
to control and tune this phase transition.

Optical structures constructed by arrays of coupled dimers
[15–23], trimer [24], or quadrimers [25–27] provide a fertile
ground to observe and utilize notions of global PT symmetry.
Global PT symmetry of such system will require precise
relation between various on-site energies and coupling sym-
metry in the building blocks, and hence becomes extremely
fragile in the presence of disorder, impurities, and bound-
aries which can support localized modes [28–33]. One of
the most significant features of such optical structures is the
boundary condition dependence, where systems under peri-
odic boundary condition (PBC) and open boundary condition
(OBC) have dramatically different energy spectra, and the
zero-energy edge states (topologically nontrivial phase) re-
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lated to spontaneous global PT symmetry breaking transition
can appear under open boundary condition. These have re-
ceived great research interests in a class of photonic arrays
of PT symmetric dimers described by the non-Hermitian
Su-Schrieffer-Heeger (SSH) model [34–39]. It was shown
that there is no universal correlation between spontaneously
global PT symmetry breaking and the topologically nontriv-
ial phase, and only the symmetry of the individual edge states
can decide whether their presence has an influence on the
global PT symmetry [35]. Boundary effects on PT sym-
metry breaking and stability have been recently presented in
Refs. [40] and [41] using a tight-binding dimer lattice model
with only a pair of PT symmetric waveguides or periodically
placed gain and loss element. In such works, it was suggested
that PT symmetry breaking thresholds are different for planar
and circular arrays [40]. However, such previous studies have
been limited to consider static (i.e., unmodulated) arrays, and
the way to manipulate the effect of the boundary influencing
PT symmetry is still unclear.

Recently, based on the high-frequency Floquet method to
rescale the coupling strength, periodic modulations have been
proposed to control PT symmetry of single optical dimer
[42–49]. It has been found that manipulation of the PT -phase
transition can be achieved by adjusting modulation parameter.
The Floquet PT symmetric system also has been realized
for two coupled LC resonators with balanced gain and loss
[50]. However, these previous works mainly consider that
out-of-phase periodic modulations were introduced on com-
plex on-site energies or intradimer coupling strength. This is
a rather challenging task in optical experiment, as the bal-
anced gain and loss and periodic modulation in the complex
refractive index must be tuned simultaneously. Therefore, the
protocol that the additional modulated dimer is introduced to
constitute a periodically modulated PT symmetric quadrimer

2469-9926/2020/102(5)/053510(10) 053510-1 ©2020 American Physical Society

https://orcid.org/0000-0002-0822-5234
https://orcid.org/0000-0002-6423-3351
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.053510&domain=pdf&date_stamp=2020-11-11
https://doi.org/10.1103/PhysRevA.102.053510


ZHU, ZHONG, JIA, YE, AND FU PHYSICAL REVIEW A 102, 053510 (2020)

may be more easily operated in experiment. Especially, the
study on Floquet control of global PT symmetry in such a
composite array is still lacking.

In this work, we address above these important questions
by investigating global PT symmetry and its Floquet control
in quadrimer waveguide arrays with transverse periodic struc-
ture along the x axis and longitudinal periodic modulation
along the z axis, whose single quadrimer is coupled by a PT
symmetric dimer and a periodically modulated dimer. We find
that there exists an exotic phase where global PT symmetry
is broken under OBC, whereas it still is unbroken under PBC,
which may lead to the appearance of a triple point, and dif-
ferent broken ways of global PT symmetry. By comparing
on the energy spectra and dynamics in the different phases, it
is revealed that there exists a pair of zero-energy edge states
with purely imaginary energy eigenvalues localized at the
left boundary in such an exotic phase, whereas other eigen-
values are real. Especially, the domain of the exotic phase
induced by boundary effect can be manipulated to be narrow
and even disappears by tuning modulation parameter A/ω.
More interestingly, regardless of the initial global PT sym-
metry, periodic modulation can not only restore the broken
global PT symmetry, but also control it by tuning modulation
amplitude. Therefore, the global property of such transverse
periodic structure can be manipulated by only tuning modu-
lation amplitude of longitudinal periodic modulation, which
provides a promising approach for designing and manipu-
lating optical material and may have specific technological
importance.

The rest of the paper is organized as follows. In Sec. II,
we give a physical description of the model. In Sec. III, we
discuss the effect of the boundary on the global PT symmetry.
In this section, we show the phase diagram for the system in
the different boundary conditions and parameters in the first
subsection and then discuss the energy spectra and dynamics
in the different phases in the second subsection. In Sec. IV, we
discuss the effect of the periodic modulation on the global PT
symmetry and boundary effect in the high-frequency limit. At
last, we give a conclusion in Sec. V.

II. MODEL

We consider an array comprised by N quadrimer waveg-
uides, whose single quadrimer is coupled by a PT -metric
dimer and a periodically modulated dimer; see Fig. 1. Within
a tight-binding model with nearest-neighbor couplings, light
dynamics in the optical structure along the propagation axis z
are described by the following coupled-mode equation:

i
∂ψ (z)

∂z
= HN (z)ψ (z), (1)

with the Hamiltonian

HN (z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 σ+ 0 · · · 0 0 0
σ− h2 σ+ 0 · · · 0 0
0 σ− h3 σ+ 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 σ− hN−2 σ+ 0
0 0 · · · 0 σ− hN−1 σ+
0 0 0 · · · 0 σ− hN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2)

FIG. 1. Schematic diagram of a waveguide array comprised by
periodically modulated PT symmetric quadrimers. The periodic
change of color along the z axis denotes the periodic modulation
A sin(ωz). The intradimer coupling strength ν is tuned by adjusting
the center-to-center waveguide spacing along the y axis, �y; the
intraquadrimer coupling strength κ and the interquadrimer coupling
strength κ1 are tuned by intermittently adjusting the center-to-center
waveguide spacing along the x axis, �x.

where

hn =

⎛⎜⎝iγ ν 0 κ

ν −iγ κ 0
0 κ −A sin(ωz) ν

κ 0 ν A sin(ωz)

⎞⎟⎠, (3)

σ− =

⎛⎜⎝0 0 0 κ1

0 0 κ1 0
0 0 0 0
0 0 0 0

⎞⎟⎠, σ+ =

⎛⎜⎝ 0 0 0 0
0 0 0 0
0 κ1 0 0
κ1 0 0 0

⎞⎟⎠.

Here ψ (z)=[ψ1(z), ψ2(z), ψ3(z), . . . , ψN (z)]T with ψn(z) =
[c(1)

n (z), c(2)
n (z), c(3)

n (z), c(4)
n (z)]T , and c( j)

n (z) is the complex
field amplitude in the jth waveguide of nth quadrimer for
j = 1, 2, 3, 4 and n = 1, 2, 3, . . . , N . The diagonal blocks hn

describe the Hamiltonian of nth isolated quadrimer, and the
off-diagonal block matrix σ± describes the coupling between
two nearest quadrimers, where γ is the gain or loss parameter,
A is the modulation amplitude, and ω is the modulation fre-
quency. The intradimer coupling strength is ν, which can be
tuned by adjusting the distance between the waveguides along
the y axis, �y. The intraquadrimer coupling strength κ and the
interquadrimer coupling strength κ1 can be tuned by intermit-
tently adjusting the distance between the waveguides along
the x axis, �x [51]. Our system has the transverse periodic
structure along the x axis with respect to N . When N is finite
[ψ0(z) = 0 and ψN+1(z) = 0], the system is analyzed un-
der open boundary condition. When N → ∞ [ψ0(z) = ψN (z)
and ψN+1(z) = ψ1(z)], the system is analyzed under periodic
boundary condition. Without loss of generality, we choose
ν = 1 to set the energy scale and set all the parameters in units
of ν throughout this paper.

Under PBC, by implementing a Fourier transform

c(1)
n = 1√

N

∑
q

eiq(4n−3)c1,q,

c(2)
n = 1√

N

∑
q

eiq(4n−2)c2,q,
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c(3)
n = 1√

N

∑
q

eiq(4n−1)c3,q,

c(4)
n = 1√

N

∑
q

eiq(4n)c4,q,

one can obtain the Hamiltonian in momentum space

H (q, z) =

⎡⎢⎢⎣
iγ ν eiq 0 κa

ν e−iq −iγ κ∗
b 0

0 κb −A sin(ωz) ν eiq

κ∗
a 0 ν e−iq A sin(ωz)

⎤⎥⎥⎦,

(4)

where κa = κ ei3q + κ1e−iq, κb = κ e−iq + κ1ei3q, and q de-
notes quasimomentum. Obviously, our system has two types
of periodic characters, the transverse periodic structure along
the x axis and the longitudinal periodic modulation along
the z axis [52]. Meanwhile, its Hamiltonian is character-
ized by two types of PT symmetries, the local and global
ones. We say that the system is locally PT symmetric if
the isolated quadrimer is PT symmetric in the limit κ1 = 0.
Obviously, the Hamiltonian H1(z) is PT symmetric due to
[H1(z),PT ] = 0, where P is a space-reversal linear operator

P =

⎛⎜⎝0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎠,

and time operator T reverses the propagation direction: T :
i → −i, z → −z. On the other hand, we say that the system is
globally PT symmetric if the infinite array (1) with the matrix
H (q, z) in (4) is PT symmetric for κ1 �= 0 [8,26]. The array
in Fig. 1 consists of quadrimers which have unbroken local
PT symmetry, at least for small γ .

III. BOUNDARY INDUCED GLOBAL
PT SYMMETRY BREAKING

In this section, we show how the boundary, system size,
and interquadrimer coupling affect the global PT symmetry
of the system. In subsection A, we show how to obtain the
phase diagram via analyzing the eigenvalues of the system
under PBC and OBC. In subsection B, we show the en-
ergy spectra and dynamics in the three typical phases: robust
global PT symmetry (R-PT ), boundary influencing global
PT symmetry (BI-PT ), and broken global PT symmetry
(B-PT ) phases.

A. Phase diagram

We use the usual unmodulated system as a reference sys-
tem. For A = 0, the four eigenvalues of Eq. (4) are given by

E = ±
√

D + ν2 − γ 2

2
± 1

2

√
4D(4ν2 − γ 2) + γ 4, (5)

with D = κ2 + κ2
1 + 2κκ1 cos(4q) and q ∈ [−π

4 , π
4 ]. For a

fixed q, the PT symmetry breaking transition point is deter-

FIG. 2. (Top) Selection of the conditions γ
(1)

pbc and γ
(2)

pbc in the
parameter plane (κ , κ1). (a)–(d) Phase diagram for the system in the
parameter plane (γ , κ1) for (a) κ = κ1, (b) κ = 0.5, (c) κ = 1, and
(d) κ = 2. Light blue and yellow lines are analytical results obtained
by the formula (6) under PBC and red lines are numerical results
obtained from the Hamiltonian (2) under OBC. The other parameters
are chosen as N = 20, A = 0, and ν = 1.

mined by the minimum value of |γ ′(q)|, where γ ′(q) satisfy

γ ′(q) =
{ ±(D − ν2)/ν

±
√

2D − 2
√

D2 − 4Dν2
. (6)

Because all eigenvalues in Eq. (5) must be real for
all quasimomentum q in global PT symmetric region,
the critical value γpbc of global PT symmetry breaking
transition is determined by the minimum value of the
set {|γ ′(−π

4 )|, . . . , |γ ′( π
4 )|}. For simplicity, we only con-

sider γ > 0, and label γ
(1)

pbc = min [|(D − ν2)/ν|] and γ
(2)

pbc =
min [|

√
2D − 2

√
D2 − 4Dν2|]. Then, the global PT symme-

try is unbroken when γ satisfy

0 < γ � γpbc, (7)

where γpbc = min[γ (1)
pbc, γ

(2)
pbc]. By comparing the magnitude of

γ
(1)

pbc and γ
(2)

pbc, the selection of the conditions γ
(1)

pbc and γ
(2)

pbc in
the parameter plane (κ , κ1) is given in Fig. 2 (top). Then, by
changing the parameters (κ, κ1) along the four black dashed
lines (a)–(d) in Fig. 2 (top), we show the phase diagram
of global PT symmetry in the parameter plane (γ , κ1) in
Figs. 2(a)–2(d), respectively. Obviously, depending on val-
ues of κ1 and γ , the whole parameter space is divided into
four phases: (i) robust global PT symmetry (R-PT ) phase,
where global PT symmetries are unbroken both under PBC
and OBC; (ii) boundary influencing global PT symmetry
(BI-PT ) phase, where global PT symmetry is broken under
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OBC, whereas it still is unbroken under PBC; (iii) system size
affecting global PT symmetry (S-PT ) phase, where global
PT symmetry is unbroken under OBC, whereas it is broken
under PBC; (iv) broken global PT symmetry (B-PT ) phase,
where global PT symmetries are broken both under PBC and
OBC. For the homogeneous coupling case of κ1 = κ , because
there is no boundary effect, there does not exist BI-PT phase.
In addition, because the limited values of γ

(1)
pbc and γ

(2)
pbc always

approach zero with the increase of κ1 for κ = κ1, the global
PT symmetry always is destroyed by increasing κ1, as shown
in Fig. 2(a). For the inhomogeneous coupling case of κ �= κ1,
the phase space (γ , κ1) can be divided into multiple domains
consisting of R-PT , BI-PT , S-PT , and B-PT , as shown in
Figs. 2(b)–2(d). An important feature of the phase diagram
is the existence of the triple point that corresponds to values
where three phases of R-PT , BI-PT , and B-PT touch. Thus,
depending on how parameters γ and κ1 change in vicinity
of the triple point, breaking of global PT symmetry can
occur in two different ways: R-PT → B-PT or R-PT →
BI-PT → B-PT .

As shown in Ref. [29], our unmodulated system under
OBC can support a pair of degenerate eigenstates that are
the symmetric and antisymmetric superpositions of two well-
localized states centered symmetrically near the left boundary
of the system, and these pairs form effective dimer, exactly as
the single PT symmetric dimer. Therefore, the maximal crit-
ical value of global PT symmetry breaking transition under
OBC is γ̃obc = ν = 1. Then, the critical value of global PT
symmetry breaking transition under OBC only can be restored
to γobc = γ̃obc = 1 by increasing κ1. When γ̃obc < γ < γpbc,
this implies that global PT symmetry of the system under
OBC is broken, whereas it still is unbroken under PBC for cer-
tain parameter κ1, and hence the boundary can induce global
PT symmetry breaking. The phenomenon that boundaries
can induce different PT symmetry breaking thresholds for
planar and circular arrays composing a pair of PT symmetric
waveguides also has been presented [40]. Here, we mainly
focus on the explanation of the physical origin of the occurring
BI-PT phase and how to manipulate it.

B. Energy spectra and dynamics in the different phases

To get deeper physical insights into the properties and the
mechanism underlying the formation of BI-PT phase, we will
show the spectra change in different phases with the increase
of γ for the system under PBC and OBC. A typical example is
displayed in Fig. 3 by choosing κ = 0.5, κ1 = 2.5, and ν = 1,
which can undergo two phase transitions from R-PT phase
to BI-PT phase and from BI-PT phase to B-PT phase as
γ continuously increase. It is clear that in the R-PT phase
the system has a purely real spectrum when γ < 1 both un-
der PBC and OBC. However, a careful comparison of the
eigenvalues reveals that a pair of isolated edge states with
real spectrum begin to emerge in the middle of the energy gap
under OBC. After undergoing a phase transition from R-PT
phase to BI-PT phase at γ = 1, the real parts of the eigen-
values of this pair of edge states become twofold degenerate
zero-energy levels; meanwhile, their imaginary parts split into
one pair of nonzero conjugated imaginary values. Therefore,
in the BI-PT phase, there exists a pair of isolated zero-energy

FIG. 3. (a), (b) Real and imaginary parts of the eigenvalues as
a function of γ for system under PBC (top) and OBC (bottom).
(c) Representative eigenstates of zero energy at γ = 1.5 [blue dot
in (b)]. The other parameters are A = 0, κ1 = 2.5, κ = 0.5, N = 20,
and ν = 1.

edge states with purely imaginary energy eigenvalues local-
ized at the left boundary, whereas other 4N − 2 eigenvalues
of bulk states are real; see Fig. 3(b). Therefore, the essence of
the first phase transition from R-PT phase to BI-PT phase
is the transition of a pair of edge states of the system from
real eigenvalues to complex eigenvalues, and the critical value
is γ = γ̃obc = 1. This is why the boundary can break global
PT symmetry in our system. Of course, a pair of isolated
edge states with purely real eigenvalues localized at the right
boundary also can occur with the increase of κ1, but they
are not zero energy. After undergoing second phase transition
from BI-PT phase to B-PT phase at γ = γ

(2)
pbc, the real parts

of 4N − 2 (4N under PBC) eigenvalues of bulk states begin
to be degenerate; meanwhile, their imaginary parts begin to
split into many pairs of nonzero conjugated imaginary values.
Therefore, the essence of the second phase transition from
BI-PT phase to B-PT phase is the transition of bulk states
of the system from real eigenvalues to complex eigenvalues.

Through numerical integration, we analyze the light prop-
agations of the coupled-mode system (1) in three different
phases with N = 20. The light propagation sensitively de-
pends upon the eigenvalues. Stationary light propagations of
bounded intensity oscillations appear if all eigenvalues are
real. Local light propagations of unbounded intensity oscilla-
tions appear if at least one of the eigenvalues is complex. To do
this, we first define the light intensities in top row waveguides
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FIG. 4. (Upper) Eigenvalue distribution in the complex-energy
plane. The wave-packet evolution in top [(b) panels] and bottom
[(c) panels] row waveguides, respectively. In the left column we
choose parameters in R-PT phase, such as κ = 0.5, κ1 = 2.5, and
γ = 0.5. In the middle column we choose parameters in BI-PT
phase, such as κ = 0.5, κ1 = 2.5, and γ = 1.5. In the right column
we choose parameters in B-PT phase, such as κ = 0.5, κ1 = 0.5,
and γ = 1.5. The other parameters are chosen as N = 20 and ν = 1.

Ia
2n−s( j) = |c j

n(z)|2 for n = 1, 2, 3, . . . , N and j = 1, and 4,
where s(1) = 1 and s(4) = 0. Similarly, the light intensities
in bottom row waveguides are defined as Ib

2n−s( j) = |c j
n(z)|2 for

j = 2, and 3, where s(2) = 1 and s(3) = 0. In Fig. 4, we give
the relative intensity distribution using single-site excitation
away from the edge waveguide. If we choose parameters in
R-PT phase, the light always diffracts irrespective of its input
cell; see the left column in Fig. 4. If we choose parameters in
BI-PT phase, local light propagating along the edge route ap-
pears at the left edge of the system; see the middle column in
Fig. 4. The local light propagating along the left edge route is a
direct signature of the BI-PT phase. This implies that our sys-
tem can be used to realize single edge-mode lasing or robust
one-way edge mode transport [10]. If we choose parameters
in B-PT phase, the light propagating always localizes at its
input cell, and propagates with unbounded intensity oscilla-
tions; see the right column in Fig. 4. Therefore, our numerical
simulations of the coupled-mode system (1) perfectly confirm
the BI-PT phase predicted by our analytical results.

IV. MANIPULATION OF GLOBAL PT SYMMETRY

In this section, we will explore how to manipu-
late the global PT symmetry via the periodic mod-
ulation. According to the Floquet theorem, similar to
the Bloch states, the Floquet states of the modulated
system (1) {ψ1(z), ψ2(z), ψ3(z), . . . , ψn(z)} = e−iεz{ψ̃1(z),
ψ̃2(z), ψ̃3(z), . . . , ψ̃n(z)}. Here, the propagation constant ε

is called the quasienergy, and the complex amplitudes

ψ̃n(z + T ) = ψ̃n(z) are periodic with the modulation period
T = 2π/ω. Then the quasienergies and eigenfunctions are
given by Fψ̃n(z) = εψ̃n(z), with the Floquet operator F =
−i d

dz + HN (z). In general, for arbitrary modulation frequency,
the quasienergies and their eigenfunctions can be numerically
calculated from the original Hamiltonian (2) by diagonaliz-
ing the one-periodic evolution operator ÛT = τ̂ e−i

∫ T
0 HN (z)dz

with τ̂ executing the time ordering [53], where ÛT satis-
fies ÛT ψ̃n(0) = e−iεT ψ̃n(0). Because in the high-frequency
regime, the high-frequency terms can be averaged and the
modulated system can be described by an effectively nonmod-
ulated one with rescaled parameters [46], the high-frequency
case is considered in the following.

Under the condition of (κ, κ1) 	 max[ω,
√|A|ω], one can

implement the high-frequency Floquet analysis. Under OBC,
by introducing the following transformation

c(1)
n = c̄(1)

n ,

c(2)
n = c̄(2)

n ,

c(3)
n = c̄(3)

n e−i
A
ω

cos(ωz)
,

c(4)
n = c̄(4)

n ei
A
ω

cos(ωz)
,

and averaging the high-frequency terms, one can obtain an ef-

fectively unmodulated system i ∂ c̄( j)
n

∂z = H eff
N c̄( j)

n . The effective
Hamiltonian can be written as

H eff
N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h̃1 σ̃+ 0 · · · 0 0 0
σ̃− h̃2 σ̃+ 0 · · · 0 0
0 σ̃− h̃3 σ̃+ 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 σ̃− h̃N−2 σ̃+ 0
0 0 · · · 0 σ̃− h̃N−1 σ̃+
0 0 0 · · · 0 σ̃− h̃N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

where

h̃n =

⎛⎜⎜⎝
iγ ν 0 κ J̃
ν −iγ κ J̃ 0
0 κ J̃ 0 νQ̃
κ J̃ 0 νQ̃ 0

⎞⎟⎟⎠,

σ̃− =

⎛⎜⎜⎝
0 0 0 κ1J̃
0 0 κ1J̃ 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠, σ̃+ =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 κ1J̃ 0 0

κ1J̃ 0 0 0

⎞⎟⎟⎠.

Similarly, under PBC, by introducing the following transfor-
mation

c(1)
q = c̄(1)

q ,

c(2)
q = c̄(2)

q ,

c(3)
q = c̄(3)

q e−i
A
ω

cos(ωz)
,

c(4)
q = c̄(4)

q ei
A
ω

cos(ωz)
,
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the correspondingly effective Hamiltonian in momentum
space can be written as

H eff (q) =

⎡⎢⎢⎣
iγ ν eiq 0 κaJ̃

ν e−iq −iγ κ∗
b J̃ 0

0 κbJ̃ 0 ν eiqQ̃
κ∗

a J̃ 0 ν e−iqQ̃ 0

⎤⎥⎥⎦. (9)

Here J̃ = J0(A/ω), Q̃ = J0(2A/ω), and J0(A/ω) is the zero-
order Bessel function. Therefore, the modulus of J̃ and Q̃
depend on the values of A/ω, and can change between zero
and one. In particular, the modulus |J̃| equals zero at some
specific values of A/ω (such as A/ω 
 2.4 and 5.52), and the
modulus |Q̃| equals zero at A/ω 
 1.2 and 2.76. Diagonal-
izing the effective Hamiltonian (9), the quasienergies ε are
given by

ε = ±
√

−X ± √
X 2 − 4Y

2
, (10)

with

X = γ 2 − ν2(1 + Q̃2) − 2J̃2D,

Y = −2J̃2ν2Q̃D + (ν4 − γ 2ν2)Q̃2 + J̃4D2.

From Eq. (10), we can see for a fixed γ , κ , and κ1, the
spontaneous global PT symmetry breaking transition can
be manipulated by tuning modulation parameter, because the
modulus |J̃| and |Q̃| periodically change from zero to one with
the modulation parameter A/ω.

For the special value J̃ = 0, the quasienergies become
ε = ±Q̃ν and ±

√
ν2 − γ 2. In this situation, the system de-

couples N uncoupled PT symmetric dimers, and hence the
critical value of PT symmetry breaking transition is de-
termined by single PT symmetric dimer. Therefore, the
critical values of global PT symmetry breaking transition
under OBC or PBC both are γpbc = γobc = ν = 1. Similarly,
for the special value Q̃ = 0, the quasienergies become ε =
±

√
2DJ̃2+�±

√
�(4DJ̃2+�)

2 , where � = ν2 − γ 2. The critical val-

ues of global PT symmetry breaking transition under OBC
and PBC are the same, γpbc = γobc = ν = 1. Therefore, for
the special values J̃ = 0 or Q̃ = 0, the critical values of global
PT symmetry breaking transition are independent of parame-
ters κ , κ1, and the boundary condition. However, when J̃ �= 0
or Q̃ �= 0, the critical values γpbc and γobc can be manipulated
by modulation parameter A/ω. That is mainly divided into
the following two categories. (a) As A/ω increases from 0
to 1.2, the critical value γpbc can be adjusted from γ

(2)
pbc to

1, but the critical value γobc cannot be tuned, and always
is γobc = γ̃obc = 1. (b) When 1.2 < A/ω < 2.4, the critical
values γpbc and γobc can be simultaneously adjusted to less
than 1. This implies that the domain of the BI-PT phase
can be manipulated to be narrow and even disappears by
tuned A/ω.

To verify the above analytical results, we show the phase
diagram of global PT symmetry in the parameter plane
(γ , κ1) for different modulation parameters A/ω in Fig. 5.
As an example, we choose the unmodulated case in Fig. 2(b)
as a reference system. Obviously, the presence of periodic
modulation modifies the previous physical picture. First, it

FIG. 5. Phase diagram of the system in the parameter
plane (γ , κ1) for different modulation parameters (a) A/ω = 0.6,
(b) A/ω = 1, (c) A/ω = 1.5, and (d) A/ω = 2.4. Blue lines are
numerical results obtained from the effective Hamiltonian (9) under
PBC, and red lines are numerical results obtained from the effective
Hamiltonian (8) under OBC. The other parameters are chosen as
N = 20, κ = 0.5, ω = 10, and ν = 1.

clearly shows that the domain of the BI-PT phase can be
manipulated to be narrow and even disappears by tuning A/ω,
and hence the triple point also vanishes. Second, the domain
of the B-PT phase under parameter region of γ < 1 can be
an adjusted R-PT phase with the increase of A/ω. Then the
phase space (γ , κ1) only can be divided into two domains
consisting of R-PT and BPT for 1.2 � A/ω � 2.4, where
the critical values γpbc and γobc are independent of bound-
ary condition, and can be simultaneously adjusted, as shown
in Figs. 5(c) and 5(d). Especially, one can obtain a larger
parameter region of unbroken global PT symmetry that is
independent of boundary conditions by choosing zero points
of J̃ or Q̃, such as Fig. 5(d). To see clearly how the spectra
change in different phases with the increase of γ for different
modulation parameters A/ω, we show the imaginary parts of
the quasienergies as a function of γ for the system under
OBC and PBC. Typical examples are displayed in Fig. 6 by
choosing modulation parameters A/ω = 0.6, 1.5, and 2.4. It
clearly shows that the critical value γ̃obc ≡ 1 is independent
of modulation parameter A/ω, but the critical values γobc and
γpbc can be adjusted by tuning A/ω. The critical value γpbc can
change from γ

(2)
pbc to 1 as A/ω increases from 0 to 1.2, and γpbc

and γobc can be adjusted to be less than 1 for 1.2 < A/ω <

2.4. Therefore, when γpbc � γ̃obc for 1.2 � A/ω � 2.4, a pair
of isolated zero-energy edge states embed into bulk states, and
then the BI-PT phase disappears. This is why the BI-PT
phase can be manipulated by tuning the modulation parameter
in our system.

To show the parameter dependence of global PT symme-
try from another angle, we show the quasienergies |Im(ε)| as
a function of A/ω and γ for different coupling parameters
(κ , κ1) both for PBC and OBC. As examples, we choose three
sets of coupling parameters that initially are in the R-PT
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FIG. 6. Imaginary parts of the quasienergies of the system under
OBC and PBC as a function of γ for A/ω = 0.6 (top), 1.5 (middle),
and 2.4 (bottom). The other parameters are ω = 10, κ1 = 2.5, κ =
0.5, N = 20, and ν = 1.

phase (κ = 0.5, κ1 = 0.1), B-PT phase (κ = 0.5, κ1 = 1),
and BI-PT phase (κ = 0.5, κ1 = 2), as shown in Fig. 7. It
is clear that, whether or not the system has initial global PT
symmetry, the periodic modulation not only can restore the
broken global PT symmetry, but also can control it by tuning
modulation amplitude. Differently, the global PT symmetry
only can be adjusted to the critical value γobc = ν = 1 for
parametric region that initially is in the R-PT phase, B-PT
phase, and BI-PT phase of the system under OBC, whereas
it can be adjusted to γpbc > 1 for the parametric region that
initially is in the BI-PT phase of the system under PBC.
Therefore, for our modulated system with fixed γ , it is possi-
ble to observe the spontaneous global PT symmetry-breaking

FIG. 7. Imaginary parts of the quasienergies |Im(ε)| as a function
of A/ω and γ under PBC (top) and OBC (bottom) with different cou-
pling strengths κ1 = 0.1 (left), κ1 = 1 (middle), and κ1 = 2 (right).
The other parameters are chosen as N = 20, κ = 0.5, ω = 10,
and ν = 1.

FIG. 8. Panels (a) and (b) show the imaginary parts of the
quasienergies Im(ε) as a function of A/ω from the original Hamil-
tonian (2) and effective Hamiltonian (8), respectively. Panels (c) and
(d) show the total intensity Ia,b

total evolution of the top and bottom row
waveguides for (c) A/ω = 0 and (d) A/ω = 2. The other parameters
are chosen as N = 20, κ = 0.5, κ1 = 1, γ = 0.5, ω = 10, and ν = 1.

transition by tuning A/ω. Therefore, the global property of
transverse periodic structure of such an array can be manip-
ulated by only tuning modulation amplitude of longitudinal
periodic modulation.

Finally, to show the validity of the high-frequency Floquet
analysis, we compare the numerical results of the quasiener-
gies ε obtained from the original Hamiltonian with the
analytical ones obtained from the high-frequency Floquet
analysis. We will show the ω dependence of Im(ε). As an
example, we show the imaginary parts of the quasienergies
Im(ε) as a function of A/ω from the original Hamiltonian
(2) and effective Hamiltonian (8) in Figs. 8(a) and 8(b). It is
important to note that, in our system, under the condition of
ω/κ1 � 10 for a fixed κ � κ1, the analytical results obtained
from the effective Hamiltonian (8) via high-frequency Floquet
analysis agree very well with the numerical results obtained
from the original Hamiltonian (2). Especially, it is revealed
that the periodic modulation can not only restore the broken
global PT symmetry but also lead to periodical appearance
of higher-order exceptional points by tuning modulation am-
plitude. In order to show that the initial broken global PT
symmetry can be restored by using the periodic modulation,
we show the intensity evolution given by Eq. (1) for the un-
modulated and modulated cases in Figs. 8(c) and 8(d), where
Ia
total = ∑

n

∑
j=1,4 Ia

2n−s( j) and Ib
total = ∑

n

∑
j=2,3 Ib

2n−s( j) are
the total intensity of top and bottom row waveguides, respec-
tively. For the unmodulated case, the total intensity Ia,b

total shows
unbounded growing, which is a direct signature of the broken
global PT symmetry. For the modulated case with A/ω = 2,
the total intensity Ia,b

total shows stationary periodic oscillations
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along the propagation direction, which confirms the existence
of global PT symmetry.

V. CONCLUSION AND DISCUSSION

In summary, we have investigated the static and dy-
namical property of global PT symmetry in an array of
periodically modulated PT symmetric quadrimer waveg-
uides. For the unmodulated case with inhomogeneous inter-
and intraquadrimer coupling strength κ1 �= κ , in addition to
conventional global PT symmetric phases and PT symmetry
breaking phase, we find that there is an exotic phase where
global PT symmetry is broken under OBC, whereas it still is
PT symmetric under PBC. By comparing the energy spectra
and dynamics in the different phases, it is revealed that there
exists a pair of zero-energy edge states with purely imaginary
energy eigenvalues localized at the left boundary in the BI-
PT phase, whereas other 4N − 2 eigenvalues are real. The
parametric dependence of the spontaneous global PT sym-
metry breaking is analytically and numerically explored for
the modulated array. Because critical value γ̃obc is independent
of modulation parameter A/ω, and the critical value γpbc may
decrease by tuning A/ω, the domain of the BI-PT phase can
shrink and even disappear by tuning A/ω. More interestingly,
whether or not the array has initial global PT symmetry,
periodic modulation not only can restore the broken global
PT symmetry, but also can control it by tuning the modula-
tion amplitude. Therefore, the global property of transverse
periodic structure of an optical array can be manipulated by
only tuning the modulation amplitude of the longitudinal pe-

riodic modulation. Our results provide a promising approach
for designing and manipulating optical material.

With currently available techniques, it is possible to real-
ize our model and observe our theoretical predictions with
experiments. Our proposed structure can be demonstrated ex-
perimentally in numerous optical systems [9,13,54,55]. For
instance, in photonics, one can use the femtosecond direct
writing method [56] to realize an array of PT symmetric
photonic coupled waveguides. Periodic modulations can be
introduced by harmonic modulations of the real refractive
index or periodic curvatures along the propagation direction
[57–59]. For such an optical array with periodic modulation,
spontaneous global PT symmetry breaking transition may be
observed by adjusting the modulation parameter. In addition,
it is also possible to apply our model and method for designing
some optical devices, such as single edge-mode laser and
robust one-way edge mode transport.
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