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Due to the boundary coupling in a finite system, the zero modes of a standard Su-Schrieffer-Heeger (SSH)
model may deviate from exact-zero energy. A recent experiment has shown that by increasing the system size or
altering gain or loss strength of the SSH model with parity-time (PT ) symmetry, the real parts of the energies
of the edge modes can be recovered to exact-zero value [Song et al., Phys. Rev. Lett. 123, 165701 (2019)]. To
clarify the effects of PT -symmetric potentials on the recovery of the nontrivial zero modes, we study the SSH
model with PT -symmetric potentials of different forms in both infinite and finite systems. Our results indicate
that the energies of the edge modes in the infinite size case decide whether or not the success of the recovery
of the zero modes by tuning the strength of PT -symmetric potential in a finite system. If the energies of the
edge modes amount to zero in the thermodynamic limit under an open boundary condition (OBC), the recovery
of the zero modes will break down by increasing the gain or loss strength for a finite system. Our results can
be easily examined in different experimental platforms and inspire more insightful understanding on nontrivial
edge modes in topologically non-Hermitian systems.

DOI: 10.1103/PhysRevA.101.013635

I. INTRODUCTION

Recently, non-Hermitian systems have been greatly studied
both in experimental and theoretical fields [1–55]. Specifi-
cally, traditional topological phases considered in closed sys-
tems described by Hermitian Hamiltonians have permeated
into open systems governed by non-Hermitian operators. The
non-Hermitian descriptions arise when the system interacts
with an environment [57,58]. It has been revealed that non-
Hermiticity can greatly alter the topological behaviors that
were established in the Hermitian cases, such as the failure
of the bulk-boundary correspondence [12–15,17,39,47,56],
the skin effect [7,10,13–15], the boundary-dependent spectra
[4,38,47,59,60], the non-Hermitian-induced topology [39,40],
and the edge modes influenced by gain and loss distributions
[61–69].

On the other hand, researching on topological states of
matter traced back to over three decades ago has attracted
considerable interest in many fields of physics, including
photonics [70–74], cold atomic gases [75,76], acoustic sys-
tems [77,78], and mechanics [79,80]. A topological insulator
exhibits an insulating bulk and gapless edge states under
open boundary conditions (OBC), which can be characterized
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by a topological invariant [81–83]. A series of landmark
topological models have been experimentally realized, such
as the Su-Schrieffer-Heeger (SSH) model [40,68,84–86], the
Haldane model [70,75], and the Hofstadter model [76]. Partic-
ularly, the one-dimensional SSH model may be the simplest
two-band topological system initially introduced to study the
polyacetylene [87]. The chiral symmetry of the SSH model
leads to nontrivial topology which can be probed by the
winding number and the presence or absence of two-fold
degenerate zero modes in the thermodynamic limit under
OBC. In fact, the experimental realization of the topological
systems is usually of finite size. Due to the boundary coupling
in a finite system, the zero modes will deviate from exact-zero
energy [88]. Song et al. [68] suggested that one can reduce the
coupling of the boundary modes and recover the zero modes
in a finite system by increasing the alternating gain or loss
strength in a one-dimensional parity-time (PT )-symmetric
SSH model.

An interesting issue that arises here is whether the topo-
logical zero modes can always be recovered by the PT -
symmetric potential in a small system case. To answer the
question, we consider the SSH model with different types of
PT -symmetric potentials and study the breakup and recovery
of the nontrivial zero modes by controlling the gain or loss
strength. We focus on the effect of PT -symmetric potentials
on the edge modes in both large and small size limits. Our
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results indicate that if the energies of the nontrivial edge
modes of a PT -symmetric SSH model amount to zero in a
large system, the modes shall not be recovered by tuning the
gain or loss strength in a finite system.

The paper is organized as follows. In Sec. II, we present the
Hamiltonian of a SSH model with PT -symmetric potentials
of different forms. In Sec. III, we study the edge modes of
the SSH model with an alternating gain or loss potential and a
pair of balanced gain and loss at two end sites in both large and
small size cases. In both cases, we find the zero modes can be
recovered by modulating the gain or loss strength. In Sec. IV,
we discuss the failure of the recovery of the edge modes
for the SSH model with another types of PT -symmetric
potentials in the small size limit. To further clarify our results,
we discuss the edge modes of a spin-orbit coupled SSH chain
with PT -symmetry in Sec. V. Finally, a conclusion is given
in Sec. V.

II. SSH MODEL WITH PT SYMMETRY

We consider a one-dimensional non-Hermitian SSH model
with alternating modulated hopping parameters whose imagi-
nary part is distributed in a manner that presents PT symme-
try, that is, the loss and gain potentials of different forms. The
Hamiltonian can be described as

Ĥ (β ) = Ĥ0 + Ĥ (β )
1 , (1)

with

Ĥ0 =
∑

j

(J−ĉ†
j,Aĉ j,B + J+ĉ†

j,Bĉ j+1,A + H.c.), (2)

and the PT -symmetric potentials Ĥ (β )
1 . For the conventional

SSH model, the Hamiltonian can be written as Ĥ (β ) with
β = a, and Ĥ (β )

1 = 0 and there are two sublattices in each
unit cell marked by A and B, which is shown in Fig. 1(a). ĉ j,α

is the annihilation operator for particles on the αth lattice in
the jth unit cell and J± = J (1 ± � cos θ ) are the alternating
hopping strengths with J = 1 being set as the unit of energy,
the dimerization strength is �, and θ denotes the tunneling
parameter. As shown in Fig. 1(a), the amplitude of intracell
tunneling J− is denoted by the green dashed line and the
purple solid line denotes intercell tunneling energy J+. For
convenience, we consider � ∈ [0, 1) and θ can vary from −π

to π . The non-Hermitian term Ĥ (β )
1 with β = {b, c} represents

the gain and loss potentials of different forms correspond-
ing to those shown in Figs. 1(b) and 1(c), respectively, to
keep the total Hamiltonian Ĥ carrying an additional PT
symmetry, PT Ĥ (PT )−1 = Ĥ . Here, the parity operator P
satisfies P{ j, α}P−1 = {N + 1 − j, ᾱ}, where N is the num-
ber of the unit cell and if α = A(B), ᾱ = B(A); and T is
the time-reversal operator which satisfies T iT −1 = −i. The
PT -symmetric potentials of different forms are described
as following: (b) Ĥ (b)

1 = ∑
j,α (−1)ηiγ ĉ†

j,α ĉ j,α and (c) Ĥ (c)
1 =∑

j,α iγ [(−1)ηδ j,nδα,α′ + (−1)η+1δ j,N−n+1δα,ᾱ′ ]ĉ†
j,α ĉ j,α with

γ being the gain or loss amplitude, n � N/2 and η = 0(1) for
A(B) sublattice. Here, case (b) corresponds to an alternating
gain or loss effect of the whole chain and case (c) corresponds
to two conjugated imaginary defect potentials to keep the SSH
model with PT symmetry. In Fig. 1, the gain (loss) strength

FIG. 1. (a) Schematic diagram of the conventional SSH model.
(b, c) Sketch of the SSH model with the gain and loss potentials of
different forms. Here J− is denoted by the green dashed line, J+ is
denoted by the purple solid line, the up (down) arrow represents the
gain (loss) at a lattice site with amplitude γ . (d) Energy spectrum
of SSH model changing with θ for J = 1, � = 0.5 and N = 100
under OBC. (e) Density distributions of two exact-zero modes for
J = 1, θ = 0, � = 0.5, and N = 100. (f) Density distributions of
two near-zero modes for J = 1, θ = 0, � = 0.5, and N = 8. Here
the horizontal coordinate is the position of the lattice site j̃ = 2( j −
1) + 1 for one on A sublattice in the jth unit cell and j̃ = 2 j for one
on B sublattice in the jth unit cell.

on the αth lattice in the jth unit cell which is represented by
up (down) arrow can be described as iγ (−iγ ).

In the absence of the non-Hermitian term [case (a), Ĥ (a)
1 =

0], the conventional SSH model as the simplest two-band
topological system describes a chiral chain of the BDI sym-
metry class which obeys 
Ĥ (a) = −Ĥ (a)
. Here the chi-
ral operator 
 = ⊕N

j=1 σz represents the z-component Pauli
operator σz acting on the internal Hilbert space of each
unit cell. The chiral symmetry in a one-dimensional system
supports a topologically nontrivial phase with the nontrivial
winding number W = 1 and doubly degenerate edge modes
for large-enough size under OBC. The topologically nontriv-
ial regime is θ ∈ (−π/2, π/2) for the SSH chain and the
nontrivial zero-mode edge states are found in such phases,
which are quite different from the bulk one with extended
distributions. However, there are no edge states in the regime
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θ ∈ [−π,−π/2) and (π/2, π ] corresponding to the trivial
winding number W = 0 seen in Fig. 1(d) with � = 0.5 and
N = 100. To study the edge modes under OBC, we consider
a single-particle state ψ (E ) = ∑

j,α ϕ j,α (E )ĉ†
j,α|0〉 with an

elementary excitation energy E and the Schrödinger equation
can be solved by using the transfer matrix method [81]. In the
thermodynamic limit, the energies of the edge modes E = 0.
For ϕ1,B(0) = 0, the wave function of sublattice A in the
jth unit cell is ϕ j,A(0) = (−ξ ) j−1ϕ1,A(0) and for ϕ1,A(0) =
0, ϕ j,B(0) = (−ξ )N− jϕN,B(0), where ϕ1,A(0)/ϕN,B(0) is the
initial probability amplitude of the wave function at the left
or right edge site with E = 0 and ξ = J−/J+. When J− = J+,
the zero modes are extended. For the J− �= J+ case, we must
restrict ξ < 1, the wave function of sublattice A (B) shall
be localized near the left (right) edge region. Specifically,
there is no distribution at sublattice B (A) for the left (right)
edge mode. Figure 1(e) shows the density distributions n j̃
of the edge modes for � = 0.5, θ = 0, and N = 100 where
j̃ = 2( j − 1) + 1 for sublattice A of the jth unit cell and
j̃ = 2 j for sublattice B of the jth unit cell. Both modes are
localized at the single-boundary sites. Due to the boundary
coupling in a small size system, the degenerate zero modes
deviate from the exact-zero energy and their densities have a
localized distribution at both boundaries which are shown in
Fig. 1(f) with N = 8.

For the SSH model with PT − symmetry in our cases,
it possesses pseudo-anti-Hermiticity 
Ĥ (β )† = −Ĥ (β )
 with
β = {b, c} which leads to nontrivial topology for non-
Hermitian cases [39,40,89–94] and a pair of conjugate
imaginary-energy edge states when the edge modes break
the PT symmetry. In the following, we consider the spectra
and size-dependent edge modes of SSH model subjected to
different gain and loss on-site potentials shown in Figs. 1(b)
and 1(c).

III. RECOVERY OF ZERO MODES

First, we consider the SSH model with an alternating gain
or loss shown in Fig. 1(b) and its Hamiltonian can be written
as Ĥ (b). The topologically nontrivial regime is shown in θ ∈
(−π/2, π/2). For the large size case, a pair of pure imaginary
edge modes emerges under OBC regardless of the value of
γ [62]. By applying transfer matrix method, we find in large
N limit, the nontrivial edge modes with energies E (b)

L/R = ±iγ
with the subscript L (R) representing the left (right) mode
emerge in the regime θ ∈ (−π/2, π/2) (see Appendix A). For
E (b)

L = iγ , the edge mode is localized at the left side with the
wave function ϕ j,B(iγ ) = 0 and ϕ j,A(iγ ) = (−ξ ) j−1ϕ1,A(iγ )
for j < N/2 and the wave function of the right-side edge
mode with the energy E (b)

R = −iγ is ϕ j,A(−iγ ) = 0 and
ϕ j,B(−iγ ) = (−ξ )N− jϕN,B(−iγ ) for j > N/2. Different from
the breakup of the zero modes in a finite Hermitian lattice,
one finds that the zero modes of the edge states can be
recovered by non-Hermitian degeneracies through gain and
loss modulations [68].

Next we consider the PT -symmetric SSH model with a
pair of complex conjugate potentials described by Hamilto-
nian (1) for case (c) as shown in Fig. 1(c). When n = 1, α′ =
A, i.e., Ĥ (c1)

1 = iγ ĉ†
1,Aĉ1,A − iγ ĉ†

N,BĉN,B, it is the SSH model
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FIG. 2. (a) Real part of the spectra of the SSH model with two
additional conjugated imaginary potentials at both ends as the func-
tion of θ . (b) Rescaling imaginary part of the spectra Im(E )/|E (c1)

L/R |
as the function of θ . Here J = 1, � = 0.5, γ = 0.5, and N = 100
under OBC.

with a pair of the gain and loss acting at the two end sites
which was numerically studied in [61–63]. In the topolog-
ically trivial regime, four imaginary energies’ bound states
emerge when γ > γc with γc being the critical point from
PT -symmetry unbroken to broken region, and the energies of
the four bound states are calculated in Appendix A. Here, the
bound states induced by the defects are located at the positions
of the two conjugated imaginary defect potentials and have
complex energies. The profiles of the bound states tend to
zero when | j̃ − j̃0| → ∞, i.e., lim| j̃− j̃0|→∞ |ϕ j̃ | → 0 with j̃0
being the position of the defect. The emergence of the bound
states is caused by the imaginary defect potentials, which is
similar to the Hermitian case with real defect potentials and
the positions of the bound states depend on the defects. In the
topologically nontrivial regime and large N limit, there are
two nontrivial edge modes with the imaginary energies (see
AppendixA)

E (c1)
L/R = ±

(
iγ + J2

+
iγ

) +
√(

iγ + J2+
iγ

)2 + 4(J2− − J2+)

2
, (3)

and 2N − 2 pure real bulk energies for arbitrary γ �= 0 [61]
and no bound states exist. The phase diagram of case (c)
with n = 1, α′ = A, and � = 0.5 is shown in Appendix C.
Figure 2(a) shows the real part of the spectrum of the SSH
model with two additional conjugated imaginary potentials at
both ends versus θ/π with � = 0.5, γ = 0.5, and N = 100.
The topologically nontrivial regime characterized by exact-
zero modes of the real part is influenced by the PT -symmetric
potentials under OBC. The nonzero imaginary energies of
the edge modes scaled by |E (c1)

L/R | are exactly equal to ±1
[Fig. 2(b)]. The nontrivial edge states in their real energy
spectra are degenerate to an exact-zero state for the arbitrary
potential amplitude γ in the large N limit.

We extend the above results and analyses to a finite system.
Figures 3(a) and 3(b) show the real and imaginary parts of the
mode spectra of two edge states with the energies EÃ and EB̃ as
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FIG. 3. The (a) real and (b) imaginary parts of two edge modes
EÃ and EB̃ of the SSH model with two additional conjugated imagi-
nary potentials at both ends as a function of θ in non-Hermitian cases
Ĥ (c1) with J = 1, � = 0.5, N = 8, and different γ in a finite system
and profiles of the two edge modes |ϕ (Ã)

j̃
| and |ϕ (B̃)

j̃
| for (c) θ = 0.4π

and (d) θ = 0 with J = 1, � = 0.5, γ = 0.05, and N = 8.

the functions of θ in a small N case (N = 8) with � = 0.5 and
different γ . The two edge modes in the Hermitian (blue curve)
with purely real values are detuned from zero. Take θ = 0,
γ = 0, and N = 8 as an example, |EÃ − EB̃| ≈ 4.0 × 10−4.
As seen in Fig. 3(a) for γ = 0.05, two edge modes merge to
exact-zero modes for the real part at θ ∈ (−0.371π, 0.371π ).
With the increase of γ , we can see that the regime of the two
edge modes in which their real parts tend to be zero enlarges
and it finally reaches θ ∈ (−0.5π, 0.5π ) when γ ≈ 0.9 [see
Fig. 3(a)]. Their imaginary parts split into two branches [see
Fig. 3(b)]. In Figs. 3(c) and 3(d), we show the profiles of the
edge modes |ϕ(Ã)

j̃
| and |ϕ(B̃)

j̃
| with � = 0.5, γ = 0.05, N = 8,

and different θ . The real parts of the edge modes at θ = 0.4π

are nonzero values whose profiles localize at both boundaries
due to the boundary coupling. When θ = 0, the exact-zero
modes present a single-boundary localized behavior due to
the breaking of PT symmetry. To clearly demonstrate the
recovery of zero modes, we plot diagrams of |Re(EÃ − EB̃)|
and |Im(EÃ − EB̃)| as the functions of N and γ with � = 0.5
and θ = π/3 shown in Fig. 4. |Re(EÃ − EB̃)| can tend to zero
with increasing N and γ and the corresponding |Im(EÃ − EB̃)|
approaches to finite values. This indicates that one can recover
the exact-zero modes by increase N and γ in such case.
However, it is not clear whether or not the nonzero edge
modes can always be recovered by the gain or loss strength
in a finite system. To answer this question we consider the
SSH model with PT -symmetric potentials of other forms in
the next section.

FIG. 4. (Left) |Re(EÃ − EB̃)| and (right) |Im(EÃ − EB̃ )| as func-
tions of N and γ with J = 1, � = 0.5, and θ = π/3 for the model
described by the Hamiltonian Ĥ (c1).

IV. FAILURE OF RECOVERY OF ZERO MODES

In this section, we consider case (c) for n = 1 and α′ = B
in large N limit. Figure 5 shows the real and imaginary parts of
the spectra of the SSH model subject to the potential described
by Ĥ (c2)

1 = −iγ ĉ†
1,Bĉ1,B + iγ ĉ†

N,AĉN,A as a function of θ/π

with � = 0.5, N = 50, and different γ . In the large N limit,
the real parts of the spectra have a similar feature as that

FIG. 5. The real and imaginary parts of the spectra of the
SSH model subjected to the non-Hermitian potentials described by
Ĥ (c2)

1 = −iγ ĉ†
1,Bĉ1,B + iγ ĉ†

N,AĉN,A as a function of θ/π with J = 1,
� = 0.5, N = 50, and different γ : (a) γ = 0.3, (b) γ = 0.6, (c) γ =
1, (d) γ = 3, and (e) γ = 4 under OBC. The left column represents
the real parts of the spectra and the right one shows the imaginary
parts.
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FIG. 6. |Im(EL − ER)| as a function of n with J = 1, N = 36,
γ = 1, � = 0.5, and θ = 0. Here, (a) α′ = A and (b) α′ = B.

of standard SSH model when γ < 2.4, i.e., there exist edge
modes with E = 0 in the topologically nontrivial regime. For
the weak imaginary defect potentials γ < 0.475 [Fig. 5(a)
for γ = 0.3], the whole imaginary parts of the spectra tend
to zero, even in the regime of J− < J+. When γ � 0.475,
four complex energies of the bound states first emerge at
θ = ±π . With the increase of γ , the regions of the PT
unbroken phase shrink in both regimes which is shown in
Fig. 5(b) with γ = 0.6. When γ � 0.71, the system totally
immerses into the PT -symmetry broken regime by rolling θ

from −π to π as seen in Fig. 5(c) with γ = 1. An interesting
observation is that when γ � 2.4, in addition to the zero
edge modes in θ ∈ (−π/2, π/2), additional modes can be
observed in the gap of the real parts. In Fig. 5(d) with γ = 3,
the energies of the bound states become purely imaginary in
θ ∈ (−0.84π,−0.16π ) and θ ∈ (0.16π, 0.84π ). When γ is
larger than 3.08, all bound states’ energies become purely
imaginary for θ ∈ [−π, π ] [see Fig. 5(e) with γ = 4]. All
complex modes shown in Fig. 5 coincide with the analytic
solutions in Appendix A. As a conclusion, the phase diagram
of this case with � = 0.5 is shown in Appendix C. According
to our numerical and analytic results, in this large N system,
two degenerate edge modes always exist for arbitrary γ in
the topologically nontrivial regime and four bound states are
shown in the PT -symmetry broken regime with energies
carrying nonzero imaginary part. The positions of the bound
states depend on the gain and loss positions shown in Ap-
pendix B which have no relation to the topological property.

The nontrivial edge modes for the cases of arbitrary
n and α′ in the thermodynamic limit need more careful
consideration. Figure 6 shows |Im(EL − ER)| as the
function of n for the SSH model subjected to one pair of
PT -symmetric defect potentials with different α′, N = 36,
γ = 1, and � = 0.5 in the topologically nontrivial regime
θ = 0. According to Fig. 6(b) with α′ = B and θ = 0, the

FIG. 7. (Left column) |Re(EÃ − EB̃)| and (right column)
|Im(EÃ − EB̃ )| as functions of N and γ with J = 1, � = 0.5 and
θ = π/3 for Ĥ (c) with (a) n = 1, α′ = B, (b) n = 2, α′ = B, and
(c) n = 2, α′ = A, respectively.

system possesses the PT symmetry for small gain or loss,
in which case the energies of nontrivial edge modes are
purely real. As seen in Appendix A for α′ = B cases, when
(−ξ )N−n → 0 for J− < J+, the energies of topologically
nontrivial edge modes are E = 0 for arbitrary γ and the
wave functions of the edge modes on the two ends are
ψL(0)=[ϕ1,A(0), 0,−ξϕ1,A(0), 0, (−ξ )2ϕ1,A(0), 0, . . . ]T and
ψR(0) = [. . . , 0, (−ξ )2ϕN,B(0), 0, −ξϕN,B(0), 0, ϕN,B(0)]T ,
respectively. However, for α′ = A as shown in Fig. 6(a), the
situation is changed. Two imaginary energies corresponding
to edge modes emerge in the small n case, and with
the increase of n, |Im(EL − ER)| ∝ e−n/0.455, sharing an
exponential decay for θ = 0 and � = 0.5. The authors of
[65] gave the critical point γc from PT -symmetry unbroken
to broken region in the thermodynamic limit. For α′ = A,
the minimum γc in region θ ∈ [−π/2, π/2] tends to zero in
small n, and grows with the increase of n, while for α′ = B,
the minimum γc is finite which corresponds to our results
and the phase diagrams of case (c) with small n shown
in Appendix C. It concludes that the energies of the two
nontrivial edge modes for α′ = B case always amount to
exact-zero for an arbitrary value of γ in the large N limit and
for α′ = A, our numerical calculation elucidates that in the
small n case the balanced gain and loss can strongly affect the
energies of the edge modes.

We calculate |Re(EÃ − EB̃)| and |Im(EÃ − EB̃)| as the
functions of system size N and the gain or loss strength γ

to reveal the recovery of zero modes in Fig. 7 with � =
0.5, θ = π/3 for different n and α′. For n = 1 and α′ = B
shown in Fig. 7(a), the values of |Re(EÃ − EB̃)| are finite
for arbitrary γ in the small N limit and the imaginary part
of EÃ − EB̃ always approaches zero. One can recover the
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edge modes only by increasing the system size N in such a
case. We find that Fig. 7(b) with n = 2 and α′ = B exhibits
similar behaviors as shown in Fig. 7(a). The recovery of zero
modes by adding the PT -symmetric potential at α′ = B is
unsuccessful in the small N limit. However, when we locate
two additional conjugated imaginary on-site potentials at α′ =
A, the situation returns to the case (b). As shown in Fig. 7(c)
with n = 2 and α′ = A, |Re(EÃ − EB̃)| can recover to zero and
|Im(EÃ − EB̃)| breaks to finite values by increasing either N
or γ . This implies that the recovery of exact-zero modes by
increasing γ depends on the type of PT -symmetric potential.
If the zero modes are free from the influence of the additional
PT -symmetric potentials in large N limit, the recovery shall
be failed by only increasing γ .

V. EDGE MODES IN A SPIN-ORBIT-COUPLED SSH CHAIN
WITH PT SYMMETRY

To further clarify our conclusions, we consider a toy model
which is a spin-orbit-coupled SSH chain with Hamiltonian

ĤSOC =
∑

j

(ψ̂†
j,AR(1)ψ̂ j,B + ψ̂

†
j,BR(2)ψ̂ j+1,A + H.c.), (4)

where ψ̂
†
j,α = (ĉ†

j,α,↑, ĉ†
j,α,↓) and ĉ†

j,α,σ creates a fermion
with spin σ =↑,↓ in the jth unit cell. The hopping matri-
ces have the form R(1) = ±i(J−σz + κσy) and R(2) = J+I ±
iκσy, along the ±x̂ direction, respectively, where κ controls
the spin-orbit coupling strength, σy(z) is the Pauli matrix of
the y(z) component and I is the 2 × 2 identity matrix. The
diagonal terms of R describe spin-conserving hopping and
the off-diagonal terms describe spin-flipping hopping between
the nearest neighbors. To simplify the discussion, we set
J = 1 and � = 0.5. Figure 8(a) shows the topological phase
diagram of the Hamiltonian (4) as the function of θ and κ .
Phase “TNP” denotes the topologically nontrivial phase with
the winding number W = 2 where four zero edge modes can
be detected, while phase “TTP” is the topologically trivial
regime with W = 0. We can find that with the increase of
κ , the topologically nontrivial regime shrinks. Figures 8(b)
to 8(e) show the density distributions n j̃,σ of the four edge
modes with N = 60, J = 1, � = 0.5, θ = 0, and small κ =
0.5 under OBC. We mark the edge modes localized at the
left boundary as A1 and A2 modes in Figs. 8(b) and 8(c),
respectively, and the B1 and B2 modes are localized at the
right boundary, which is shown, respectively, in Figs. 8(d) and
8(e). For the A1 (B1) mode, the profile of spin-↑ (↓) at j̃ = 1
is dominant. And for the A2 (B2) mode, |ϕA2

2N,↑| � |ϕA2
2N,↓|

(|ϕB2
2N,↑|  |ϕB2

2N,↓|) in the large N limit. However, when the
system size becomes finite, the four edge modes deviate from
exact-zero energy with two-fold degeneracy and the two-fold
degenerate edge modes are coupled together.

To study the recovery of the edge modes in the small
N limit, additional PT -symmetric potentials are consid-
ered, and the total Hamiltonian can be described as
Ĥ (β )

SOC = ĤSOC + Ĥ (β )
2 , where Ĥ (β )

2 is the PT -symmetric non-
Hermitian term. In this section, three cases are consid-
ered as follows: (a) Ĥ (a)

2 = iγ (ĉ†
1,A,↑ĉ1,A,↑ − ĉ†

N,B,↓ĉN,B,↓),

(b) Ĥ (b)
2 = iγ (ĉ†

1,A,↓ĉ1,A,↓ − ĉ†
N,B,↑ĉN,B,↑), and (c) Ĥ (c)

2 =
iγ

∑
σ (−1)σ̃ (ĉ†

1,A,σ ĉ1,A,σ − ĉ†
N,B,σ ĉN,B,σ ), where σ̃ = 1(2) for

FIG. 8. (a) Topological phase diagram of Hamiltonian (4) as the
function of κ and θ with J = 1, � = 0.5. (b)–(e) Density distribu-
tions n j̃,σ of the four edge modes with N = 60, J = 1, � = 0.5,
θ = 0, and κ = 0.5 under OBC.

σ =↑ (↓). The additional PT -symmetric term is not expected
to alter the topological phase of such model. Taking J = 1,
� = 0.5, θ = 0, small κ = 0.5, and γ = 1 as an example, we
numerically calculate the energies of the four edge modes of
the three cases. For case (a) proposed in this section in the
large N limit, only modes A1 and B2 are influenced by Ĥ (a)

2 and
the energies of modes A2 and B1 are exact-zero. When we turn
to a finite system size, taking N = 5 as an example, |Re(EA1 −
EB2 )| can be recovered to zero and |Re(EA2 − EB1 )| = 0.0256
for γ = 1. When Ĥ (b)

2 term is considered, the energies of
modes A2 and B1 become imaginary and modes A1 and B2

keep zero in the large N case. Correspondingly, for a small
N by increasing γ , modes A2 and B1 can be recovered and
the recovery of modes A1 and B2 breaks down. For the
infinite system with the Hamiltonian Ĥ (c)

SOC, we find that all
the four edge modes break the PT symmetry and become the
imaginary energy states. In the small size case, we can recover
all the edge modes by increasing the gain or loss strength γ

of Ĥ (c)
SOC. Our results indicate that if balanced gain and loss are

localized on the sites with nonzero distributions for the edge
modes, the edge states will break the PT symmetry which
can induce the recovery of the real parts of the edge modes to
exact-zero value in small system size.

VI. CONCLUSION

In conclusion, we studied the fate of zero modes of PT -
symmetric SSH models subject to the non-Hermitian on-site
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potentials of different forms in large and small N limits,
respectively. The topologically nontrivial zero modes will de-
viate from exact-zero energy in a finite system and some types
of PT -symmetric potentials may recover the near-zero modes
to exact-zero ones, which is closely related to the results in
large N limits. For a standard SSH model, the probabilities
of edge modes are staggered decreasing from the boundaries,
and the distributions at sublattice B (A) for the left (right)
edge mode are zero. The influence of the gain and loss on the
edge states is remarkable for small n and α′ = A. By adding
PT -symmetric potentials on the sites with the nonvanishing
distribution probabilities, it will lead to PT -symmetry break
down [65,95]. When the edge modes break the PT symmetry
the energies of edge states become a conjugate imaginary pair
in both large and small system size limits. However, when
the PT -symmetric potentials are localized on the sites with
vanishing distribution probabilities of the edge modes, the
recovery of the zero modes break down by modulating γ in
a finite system since the edge states are hardly affected by the
PT -symmetric potentials. Our results can be easily simulated
in a silicon waveguide platform with controlled gain or loss.
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APPENDIX A: SOLUTIONS OF THE EDGE MODES AND
BOUND STATES IN INFINITE SYSTEMS

In this Appendix, we solve the spectrum for the cases
Ĥ (b,c) shown in Figs. 1(b) and 1(c) in the main text. For the
non-Hermitian part of the Hamiltonian described as Ĥ (b)

1 =∑
j (iγ ĉ†

j,Aĉ j,A − iγ ĉ†
j,Bĉ j,B) which can keep the total Hamil-

tonian behaving as a PT symmetry under both OBCs and
PBCs, we can employ the transfer matrix method to gain in-
sight into the properties of the edge modes of the system under
OBCs. For a single-particle state ψ (E ) = ∑

j,α ϕ j,α (E )ĉ†
j,α|0〉

with an elementary excitation energy E , we can solve the
Schrödinger equation and obtain the difference equations as
follows:

(E − iγ )ϕ1,A = J−ϕ1,B,

(E − iγ )ϕ j,A = J−ϕ j,B + J+ϕ j−1,B j ∈ (1, N],

(E + iγ )ϕ j,B = J−ϕ j,A + J+ϕ j+1,A j ∈ [1, N ),

(E + iγ )ϕN,B = J−ϕN,A. (A1)

In the large N limit, the energies of the edge modes are
E (b)

L/R = ±iγ in the regime J− < J+ where L (R) represents
the left (right) mode. In the topologically nontrivial regime,

for E (b)
L = iγ , the edge mode localized at the left side with

ϕ j,B = 0 and ϕ j,A = (−J−/J+) j−1ϕ1,A. For the right-side edge
mode E (b)

R = −iγ and the wave function is ϕ j,A = 0 and
ϕ j,B = (−J−/J+)N− jϕN,B.

The SSH model with the PT -symmetric potentials Ĥ (c)
1

is shown in Fig. 1(c) in the main text. When n = 1, α′ = A,
it shows a pair of imaginary potential at two ends, Ĥ (c1)

1 =
iγ ĉ†

1,Aĉ1,A − iγ ĉ†
N,BĉN,B. We construct the transfer matrix rep-

resentation of the recursion relation as follows:

(E − iγ )ϕ1,A = J−ϕ1,B,

Eϕ j,A = J−ϕ j,B + J+ϕ j−1,B j ∈ (1, N],

Eϕ j,B = J−ϕ j,A + J+ϕ j+1,A j ∈ [1, N ),

(E + iγ )ϕN,B = J−ϕN,A. (A2)

E = 0 no longer represents the edge modes in Eq. (A2). We
eliminate A and B sublattices in Eq. (A2), respectively, and
obtain

(E2 − iγ E − J2
−)ϕ1,A = J−J+ϕ2,A,

(E2 − J2
− − J2

+)ϕ j,A = J−J+(ϕ j−1,A + ϕ j+1,A) j ∈ (1, N ),(
E2 − E

E + iγ
J2
− − J2

+

)
ϕN,A = J−J+ϕN−1,A,

(
E2 − E

E − iγ
J2
− − J2

+

)
ϕ1,B = J−J+ϕ2,B,

(E2 − J2
− − J2

+)ϕ j,B = J−J+(ϕ j−1,B + ϕ j+1,B) j ∈ (1, N ),

(E2 + iγ E − J2
−)ϕN,B = J−J+ϕN−1,B. (A3)

Equation (A3) can be written into matrix form as follows:
(

ϕ2,A

ϕ1,A

)
= T1

(
ϕ1,A

ϕ0,A

)
,

(
ϕ j+1,A

ϕ j,A

)
= T

(
ϕ j,A

ϕ j−1,A

)
j ∈ (1, N ),

(
ϕN−1,A

ϕN,A

)
= T2

(
ϕN,A

ϕN+1,A

)
,

(
ϕ2,B

ϕ1,B

)
= T3

(
ϕ1,B

ϕ0,B

)
,

(
ϕ j−1,B

ϕ j,B

)
= T

(
ϕ j,B

ϕ j+1,B

)
j ∈ (1, N ),

(
ϕN−1,B

ϕN,B

)
=T4

(
ϕN,B

ϕN+1,B

)
, (A4)

where

T =
(

μ −1
1 0

)
, T1 =

(
ν1 −1
1 0

)
, T2 =

(
ξ2 −1
1 0

)
,

T3 =
(

ξ1 −1
1 0

)
, T4 =

(
ν2 −1
1 0

)
, (A5)

with μ = (E2 − J2
− − J2

+)/J−J+, ν1 = (E2 − iγ E −
J2
−)/J−J+, ν2 = (E2 + iγ E − J2

−)/J−J+, ξ1 = (E2 −
E

E−iγ J2
− − J2

+)/J−J+, and ξ2 = (E2 − E
E+iγ J2

− − J2
+)/J−J+.
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We can diagonalize the transfer matrix D = U −1TU with

D =
(

λ− 0
0 λ+

)
, U =

(
λ− λ+
1 1

)
,

U −1 = 1√
μ2 − 4

(−1 λ+
1 −λ−

)
, (A6)

and λ± = (μ ±
√

μ2 − 4)/2. First, we consider the left edge
mode and the amplitudes of the wave function near the right
side tends to zero in the large N limit. Under OBCs with
ϕ0,A = ϕ0,B = 0, we can rewrite Eq. (A4) as

(
ϕ j+1,A

ϕ j,A

)
= 1√

μ2 − 4
U

(
(λ+ − ν1)λ j−1

−
(ν1 − λ−)λ j−1

+

)
ϕ1,A,

(
ϕ j+1,B

ϕ j,B

)
= 1√

μ2 − 4
U

(
(λ+ − ξ1)λ j−1

−
(ξ1 − λ−)λ j−1

+

)
E − iγ

J−
ϕ1,A.

(A7)

The necessary conditions for the existence of the edge modes
in the topologically nontrivial regime are |λ−| > 1, λ+ = ν1

and λ+ = ξ1 for the localized left edge. The energy of the left
edge mode is

E (c1)
L =

(
iγ + J2

+
iγ

) +
√(

iγ + J2+
iγ

)2 + 4(J2− − J2+)

2
. (A8)

We can also obtain the energy of the right edge mode

E (c1)
R = −

(
iγ + J2

+
iγ

) +
√(

iγ + J2+
iγ

)2 + 4(J2− − J2+)

2
. (A9)

However, in the topologically trivial regime, when γ > γc

with γc being the transition point from the PT -symmetric
region to the spontaneously broken PT -symmetry region,
there exists four bound states with energies

E (c1)
BS = ±

(
iγ + J2

+
iγ

) ±
√(

iγ + J2+
iγ

)2 + 4(J2− − J2+)

2
. (A10)

For α′ = B, the transfer matrix method is applied with an
elementary excitation energy E and the difference equations
as follows:

Eϕ1,A = J−ϕ1,B,

Eϕ j,A = J−ϕ j,B + J+ϕ j−1,B j ∈ (1, N], j �= n,

Eϕ j,B = J−ϕ j,A + J+ϕ j+1,A

j ∈ [1, N ), j �= N + 1 − n,

(E + iγ )ϕn,B = J−ϕn,A + J+ϕn+1,A,

(E − iγ )ϕN+1−n,A = J−ϕN+1−n,B + J+ϕN−n,B,

EϕN,B = J−ϕN,A. (A11)

We consider N is large enough to make (−ξ )N−nϕ1,A → 0
and (−ξ )N−nϕN,B → 0 in the topologically nontrivial regime
with ξ = J−/J+, so the energies of the edge modes E = 0.
The wave function of the left edge mode is ψL(E = 0) =
[ϕ1,A, 0,−ξϕ1,A, 0, (−ξ )2ϕ1,A, 0, . . . ]T , and the wave func-
tion of the right edge mode can be written as ψR(E = 0) =

[. . . , 0, (−ξ )2ϕN,B, 0,−ξϕN,B, 0, ϕN,B]T . It indicates that for
α′ = B, the energies of the nontrivial edge modes approach
to zero in the large N limit. We take n = 1, α′ = B as a
concrete example. In the large N case, (−ξ )N−1ϕ1,A → 0 and
(−ξ )N−1ϕL,B → 0 for J− < J+, thus the zero edge modes can
be detected in the system. With the increase of γ , additional
complex modes emerge corresponding to the bound states for
E �= 0. The equations for A sublattice become

ν1ϕ1,A = ϕ2,A,

ξ3ϕ2,A = ϕ3,A + E

E + iγ
ϕ1,A,

μϕ j,A = ϕ j−1,A + ϕ j+1,A j ∈ (2, N ),

χ2ϕN,A = ϕN−1,A, (A12)

and for B sublattice are

χ1ϕ1,B = ϕ2,B,

μϕ j,B = ϕ j−1,B + ϕ j+1,B j ∈ (2, N ),

ξ4ϕN−1,B = ϕN−2,A + E

E − iγ
ϕL,B,

ν2ϕN,B = ϕN−1,B, (A13)

where ξ3 = (E2 − J2
− − E

E+iγ J2
+)/J−J+, ξ4 =

(E2 − J2
− − E

E−iγ J2
+)/J−J+, χ1 = (E2 + iγ E − J2

− −
J2
+)/J−J+ and χ2 = (E2 − iγ E − J2

− − J2
+)/J−J+. We can

follow the same procedure as the case shown in Fig. 1(b). For

0 20 40 60 80 100
0

0.5

1
E

L

E
R

20 40 60 80 100
0

0.2

0.4

0.6 E=-0.3614+1.4585i
E=0.3614+1.4585i
E=-0.3614-1.4585i
E=0.3614-1.4585i

0 20 40 60 80 100
0

0.5

1
E=0.7987i
E=2.0197i
E=-0.7987i
E=-2.0197i

(a)

(b)

(c)

FIG. 9. Profiles of (a) the zero modes and (b, c) the bound states
with J = 1, γ = 3, N = 50, and different θ under OBC. (a, b) θ = 0,
(c) θ = 2π/3. Here n = 1 and α′ = B.
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0

0.5

0 20 40 60 80 100
0

0.5

(a)

(b)

FIG. 10. Profiles of the bound states with J = 1, θ = 0, γ = 3,
N = 50 under OBC. (a) n = 6, α′ = A and (b) n = 15, α′ = B.

the bound states near the left side, the necessary condition is

|λ−| > 1, λ+ = χ1, λ+ν1 = ξ3ν1 − E

E + iγ
. (A14)

Hence the energies of the left bound states can be obtained by

E3 + iγ E2 − (J2
− + J2

+)E + J2
−J2

+
iγ

= 0 (A15)

and the roots should satisfy the necessary condition Eq. (A14).
For the bound states near the right side, the necessary condi-
tion is

|λ−| > 1, λ+ = χ2, λ+ν2 = ξ4ν2 − E

E − iγ
. (A16)

The energies of the right-side bound states satisfy

E3 − iγ E2 − (J2
− + J2

+)E − J2
−J2

+
iγ

= 0, (A17)

and also the necessary condition Eq. (A16).

APPENDIX B: BOUND STATES FOR CASE (c)

In this section, we consider the profiles of the bound states
for Ĥ (c)

1 . First, we consider n = 1, α′ = B case. As seen in the
main text, when γ � 0.475, the bound states with complex
energies emerge. Take γ = 3 as an example. Figure 9 shows
the profiles of the zero modes and the bound states with
γ = 3, N = 50, and different θ under OBC. For θ = 0, two
degenerate zero modes are localized at the left and right
boundaries of the lattice shown in Fig. 9(a). Four additional

0 0.5 1
0

0.5

1

1.5

0 0.5 1
0

0.5

1

0 0.5 1
/

0

0.5

1

0 0.5 1
/

0

0.2

0.4

0.6

(a) (b)

(c) (d)

FIG. 11. Phase diagrams as the functions of γ and θ with J = 1,
� = 0.5, and different n and α′. (a) n = 1, α′ = A, (b) n = 1, α′ = B,
(c) n = 2, α′ = A, and (d) n = 2, α′ = B.

bound states are shown in Fig. 9(b) with the energies being
complex. In the topological trivial regime shown in Fig. 9(c)
for θ = 2π/3, the number of the bound states with imaginary
energies remains four, but the topologically nontrivial zero
modes disappear in this regime. Figure 10 shows the profiles
of the bound states with θ = 0, γ = 3, N = 50, and different
n and α′ under OBC. There are four bound states in both
Figs. 10(a) and 10(b). The positions of the peaks of the bound
states are determined totally by the positions of the gain and
loss, which is quite different from the case of edge modes.

APPENDIX C: PHASE DIAGRAMS OF CASE (c) FOR
SMALL n

We further present here the γ -θ phase diagram of case (c)
for different α′ in the small n limit and the results are symmet-
ric with respect to θ = 0. As shown in Fig. 11 with J = 1 and
� = 0.5, six phases emerge. For phase I, all the energies of
the bulk states are real except for two imaginary-energy edge
modes shown in the topologically nontrivial region. Phase
III (II) denotes the PT -symmetry (un)broken regime with
the topologically trivial property. Phase V (IV) denotes the
PT -symmetry (un)broken regime with a pair of real-energy
edge modes in the topologically nontrivial region. In phase VI,
both the bulk and boundary parts are PT -symmetry broken.
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