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Measure of bipartite correlation for quantum metrology

Haijun Xing ,1 Jinfu Chen,1,2 and Libin Fu1,*

1Graduate School of China Academy of Engineering Physics, Beijing 100193, China
2Beijing Computational Science Research Center, Beijing 100193, China

(Received 11 August 2019; published 9 October 2019)

Recently, researchers have found that not only entanglement but also quantum discord and even classical
correlation can enhance the precision of parameter estimation. Thus the correlation which contributes quantum
metrology should be treated as a new type of resource. In this paper, we directly construct a measure of the
resource named as the relative quantum Fisher information (rQFI). It quantifies the improvement of QFI caused
by correlations naturally. Operationally, rQFI quantifies the improvement of optimal precision achieved by joint
measurement on a composite system, instead of the local measurement on the subsystem. Furthermore, rQFI
itself is an alternative type of total correlation which captures effects of quantum entanglement, quantum discord,
and classical correlation. It reduces to an entanglement measure for pure states. A detailed study for general
two-qubit states is presented. Additionally, an alternative generalized discord measure can be extracted out of
the rQFI.
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I. INTRODUCTION

High-precision measurement of parameters is significant
in almost every branch of physics. In theoretical studies, it
relates to the detection of gravitational waves [1], permanent
electric dipole moment [2], local Lorentz invariance [3], etc.
In applications, it relates to biological magnetic field detec-
tion [4,5], global positioning systems, quantum gyroscopes,
etc. The theories of quantum parameter estimation [6,7] and
quantum metrology [8] show that quantum Fisher information
(QFI) sets the upper bound of the precision of quantum pa-
rameter estimation, and this bound can be improved from the
standard quantum limit to the Heisenberg limit with the help
of quantum entanglement. Therefore, entanglement is treated
as the main resource in quantum metrology. There are many
achievements in reaching larger QFI with highly entangled
states [9] and detecting entanglement via QFI [10–14].

Recently, researchers have found that “There is more to
quantum interferometry than entanglement” [15–17]: quan-
tum discord and even classical correlation contribute to the
enhancement of precision. Furthermore, there is no mono-
tonic relationship between QFI and entanglement measures.
Therefore, the correlations which can enhance the precision
of quantum parameter estimation are still an interesting topic
under study.

Specifically for state ρAB of bipartite system HA ⊗ HB,
two parametrization schemes are widely used. Figure 1(a)
exemplifies the standard quantum metrology scheme [8]: pa-
rameters to be estimated are “imprinted” into ρAB through
the product of the same rotations on every single particle.
Figure 1(b) exemplifies the other scheme [16–19]: parameters
to be estimated are imprinted into quantum state ρAB with
local rotations in a subsystem, e.g., HA. We use this scheme
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in this paper, for its convenience to construct a local invariant
measure.

In this paper, we define the correlation which can enhance
the precision of quantum parameter estimation as a new type
of resource, and construct a measure of it named as the relative
quantum Fisher information (rQFI) for bipartite systems. The
rQFI is defined with the difference of QFI between ρAB and
ρA ⊗ ρB, with the reduced density matrix ρA(B) = trB(A)(ρAB).
rQFI measures the enhancement of precision caused by cor-
relations between HA and HB. Furthermore, rQFI itself is
a measure of total correlation; classical correlation, discord,
and entanglement all contribute to rQFI, and rQFI reduces
to an entanglement measure for pure states. A detailed study
will be presented with the codistribution figure of rQFI and
entanglement for two-qubit cases. In addition, we will give
a discrimination about the total sensitivity, the contribution
of coherence, and correlation. Finally, a comparison between
quantum discord and rQFI will be presented. As a result,
a generalized discord (quantum correlation) measure is ex-
tracted out of the rQFI.

II. RELATIVE QUANTUM FISHER INFORMATION

We study state ρAB of a bipartite system HAB = HA ⊗
HB, where the dimension of system HA (ancillary HB) is
N (M). Subjecting the sensor to a local rotation U (G, θ ) =
exp(−iGθ ) generated by G ∈ HA, the state evolves to
ρAB(θ ) = U (G, θ )ρABU †(G, θ ). Thus one can infer the local
rotation by measure ρAB(θ ) and estimate the parameter θ . The
precision of θ ’s estimator θest is bounded by QFI via δ2θest �
1/[νF (ρAB, G)], where ν is the repetition and F (ρAB, G) ≡
tr[ρABL(ρAB)2] is the quantum Fisher information with the
symmetric logarithmic derivative (SLD) L(ρ) defined by
∂θρ = −i[G, ρ] ≡ [L(ρ)ρ + ρL(ρ)]/2 [6,7].

Naturally, the difference �F (ρAB, G) ≡ F (ρAB, G) −
F (ρA ⊗ ρB, G) measures the enhancement of optimal
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FIG. 1. Two schemes to study the contribution of correlations to
quantum metrology. (a) Standard quantum metrology scheme. The
parametrization process is the product of the same rotations on all
of the particles. (b) Our scheme. The parametrization process is
rotations on only one of those particles.

precision of θest contributed by correlations between A and
B. To quantify the correlation, a measure should only de-
pend on ρAB. We let G run over the generators {Ti|i =
1, . . . , N2 − 1} of the SU (N ) group, which imprints param-
eter �θ = (θ1, θ2, . . . , θN2−1) into ρAB via the corresponding
local rotation exp(−iT A

i θi ), with T A
i = Ti ⊗ IB. The relative

quantum Fisher information for a given state ρAB is defined as

�F (ρAB) ≡
∑

i

F
(
ρAB, T A

i

) −
∑

i

F
(
ρA ⊗ ρB, T A

i

)
. (1)

By summing up over all the generators of local rotations in
HA, rQFI represents a total enhancement of �θest’s precision in-
duced by correlations. From the perspective of measurements,
F (ρAB, T A

i ) sets the upper bound of 1/δ2θi,est over the set of
positive operator-valued measures (POVMs) on HAB [6,7,20].
But if only local measurement on HA is allowed, the precision
is bounded by F (ρA ⊗ ρB, T A

i ) = F (ρA, Ti ) from above (see
Appendix A). Therefore, �F (ρAB) quantifies the improve-
ment of the optimal precision of �θest by joint measurement
on composite system AB, instead of the local measurement on
subsystem A.

rQFI not only measures the effects of correlation, it is a
measure of total correlation by itself. Specifically, we prove
rQFI has the following properties (the proof is provided in
Appendix B).

(a1) �F (ρAB) � 0, where the minimum is reached
and only reached by product states. When M = N = D,
�F (ρAB) � 2(D − 1/D), the maximum is reached and only
reached by maximally entangled states.

(a2) �F (ρAB) is independent of the local generator’s rep-
resentation. Setting T ′A

i = UT A
i U †, i = 1, . . . , N2 − 1, where

U ∈ SU (N ) ⊗ IM is the local rotation in HA, we have
�F (ρAB) = �F ′(ρAB), with �F ′(ρAB) ≡ ∑

i �F (ρAB, T ′A
i ).

(a3) �F (ρAB) is invariant under local rotations in state
space, i.e., ∀U ∈ SU (N ) ⊗ SU (M ), we have �F (ρAB) =
�F (ρ ′

AB) with ρ ′
AB = UρABU †.

(a4) �F (ρAB) is not increased under the local completely
positive and trace preserving (CPTP) map IA ⊗ EB on subsys-
tem B, i.e., �F (ρAB) � �F[IA ⊗ EB(ρAB)].

Property (a1) shows that all the correlations have positive
contributions to rQFI, and the maximum of rQFI is obtained
by states with maximal entanglement. Property (a2) shows
that rQFI is well defined as a property of ρAB itself. Property
(a3) shows that rQFI satisfies one of the necessary conditions
that a correlation measure should satisfy. These properties
indicate that rQFI itself is an alternative type of total correla-
tion [21]. And by quantifying the enhancement of QFI, rQFI

is a natural measure of the bipartite correlation for quantum
metrology.

III. PURE STATES

In this section, we will show that rQFI reduces to an entan-
glement measure for pure states ρAB = |ψ〉〈ψ |. Based on the
local unitary invariance (a3), we can study the rQFI of |ψ〉 in
Schmidt decomposition form |ψ〉 = ∑D

a=1

√
da|a〉A|a〉B, with

the coefficient d |ψ〉 ≡ (d1, d2, . . . , dD), da � 0,
∑

a da = 1,
and D = min{M, N}. The rQFI of |ψ〉 is [22] (for details, see
Appendix C)

�F (|ψ〉〈ψ |) = 2
∑
a �=b

(
2dadb

da + db
+ dadb

)
. (2)

�F (|ψ〉〈ψ |) is Schur concave. This means �F (|ψ〉〈ψ |) �
�F (|φ〉〈φ|) iff the Schmidt coefficient d |ψ〉 is majorized by
d |φ〉, i.e., d |ψ〉 ≺ d |φ〉[23]. As a direct result of the Schur
concavity, the bound of �F (|ψ〉〈ψ |) is

0 � �F (|ψ〉〈ψ |) � 2(D − 1/D), (3)

where the lower bound is reached by product states with
d↓

|ψ〉 = (1, 0, . . . , 0), where ↓ indicates rearranging elements
in descending order; the upper bound is reached by maximally
entangled states with d |ψ〉 = (1/D, 1/D, . . . , 1/D).

With the above discussions, we can prove that
�F (|ψ〉〈ψ |) is a valid entanglement measure for pure
states by showing it fulfills the criteria proposed in [24].

Proof. (i) �F (|ψ〉〈ψ |) = 0, iff |ψ〉 is separable. This is
proved with Eq. (3), where the minimum zero is reached and
only reached by product states.

(ii) The local unitary invariance of �F (|ψ〉〈ψ |) has been
proved by (a3).

(iii) �F (|ψ〉〈ψ |) is not increased under local operations
and classical communication (LOCC). Nielsen’s theorem [25]
says that |ψ〉 transforms to |φ〉 using LOCC iff d |ψ〉 ≺ d |φ〉.
And the Schur concavity of Eq. (2) means d |ψ〉 ≺ d |φ〉 iff
�F (|ψ〉〈ψ |) � �F (|φ〉〈φ|). Therefore, �F (|ψ〉〈ψ |) is not
increased under LOCC. �

As an entanglement measure, �F (|ψ〉〈ψ |) is a monotone
increasing function of other entanglement measures for pure
states |ψ2〉 of the two-qubit system. For example,

�F (|ψ2〉〈ψ2|) = 3C2(|ψ2〉〈ψ2|), (4)

where �F (|ψ2〉〈ψ2|) = 12d1d2 is derived from Eq. (2), and
C(|ψ2〉〈ψ2|) = 2

√
d1d2 is the concurrence [26–28].

IV. TWO-QUBIT SYSTEMS

A general two-qubit state ρAB can be expanded as

ρAB = I
4

+ �n · �σ A + �m · �σ B +
∑

i j

β i jσi ⊗ σ j, (5)

with σ A
i = σi ⊗ I2, σ B

i = I2 ⊗ σi, i, j = 1, 2, 3. The generator
of rotation in HA is {σ A

i /2}. The analytic calculation of rQFI
for general two-qubit mixed states ρAB is too complex. We
study it numerically instead. By randomly generating 200 000
states in the form of Eq. (5), we get the codistribution of rQFI
and concurrence as shown in Fig. 2(a). To explore more details
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(a)

(b)

FIG. 2. rQFI (�F) vs concurrence (C). (a) Red dots are data of
random generated two-qubit states in the general form of Eq. (5).
The line AO2H is entangled pure states. GH is direct product states.
AEFGO1A is the bound of MS, where GO1A is the well-known
Werner states. (b) The tetrahedron T with four maximally entangled
states A, B,C, and D as its vertices shows the geometry of MS in the
barycentric coordinate system, and the coordinates of those points
are given. For simplification, we only denote the points satisfying
λ1 � λ2 � λ3 � λ4 in (b). Points in (a) and (b) with the same label
represent the same states.

for separable states, we remove the truncation in the definition
of concurrence to define

C(ρ) ≡ λ̃1 − λ̃2 − λ̃3 − λ̃4, (6)

where λ̃is are eigenvalues of R(ρ) = √√
ρρ̃

√
ρ in descending

order, and ρ̃ = σy ⊗ σyρ
∗σy ⊗ σy is the spin-flipped state

[26,27]. Surprisingly, the numerical data points are bounded
by some special class of states. Next we will study those
bounds in detail.

A. Upper bound and maximally mixed marginal states

The line AEFG in Fig. 2(a) is upper bound of the maxi-
mally mixed marginal states (MS) ρ ′MS

AB = I/4 + ∑
i j β

i jσi ⊗
σ j , which is local unitary equivalent to

ρMS
AB = I

4
+

∑
i

βiσi ⊗ σi (7)

via singular-value decomposition. ρMS
AB is diagonal in the Bell

basis, hence called Bell diagonal states [29–31] too. It is
widely used in the study of correlations such as entanglement
[29,30] and discord [31–33]. Its rQFI is (for details, see
Appendix D1)

�F
(
ρMS

AB

) = 3 − 2
∑
j �=i

λiλ j

λi + λ j
, (8)

where λ j = 1/4 + β − 2β j , j = 1, 2, 3, and λ4 = 1/4 − β

are the eigenvalues of ρMS
AB with β = ∑3

j=1 β j . �F (ρMS
AB ) ≡

f (λ) with λ = (λ1, λ2, λ3, λ4) is Schur convex, which means
that f (λ) � f (λ′) iff λ ≺ λ′.

Geometrically, the set of ρMS
AB can be represented by a 3-

simplex (tetrahedron) with the barycentric coordinate system
as shown by Fig. 2(b) [30,31,34] (for details, see Appendix
D2). The point with coordinates (λ1, λ2, λ3, λ4) represents the
MS with λ as its eigenvalues. We denote points correspond-
ing to A, E , F , and G in Fig. 2(a) with the same letters.
For MS, C(ρMS

AB ) = 2λmax − 1, where λmax is the maximum
element of λ. Finding the bound of �F (ρMS

AB ) for certain C

is an extremum problem in the intersection of plane λmax =
(C + 1)/2 with tetrahedron T . For the Schur convexity of
�F (ρMS

AB ), the upper (lower) bound is reached by the vertices
(center) of the intersection. For simplification, we set λ1 �
λ2 � λ3 � λ4. When λ1 decreases from 1 to 1/4 continu-
ously, the vertices move along AE , EF , and FG in Fig. 2(b)
successively, where E , F , and G are the center of the edge,
surface, and body, respectively. According to Eq. (8), the
corresponding upper bounds in Fig. 2(a) are

�FMS
max =

⎧⎪⎨
⎪⎩

2 + C2 C ∈ [0, 1]

16/(1 − C) − 9C − 14 C ∈ [− 1
3 , 0

)
−3(1 + 2C)2/C C ∈ [− 1

2 ,− 1
3

). (9)

The centers of those intersections lying in AG are
Werner states with λ = (λ1, (1 − λ1)/3, (1 − λ1)/3, (1 −
λ1)/3), 1/4 � λ1 � 1. Therefore, MS’s lower bound (AO1G)
is �FMS

min = (1 + 2C)2/(2 + C), C ∈ [−1/2, 1].
�F (ρMS

AB ) is invariant under rearranging elements of λ, and
T has tetrahedral symmetry T geometrically. This indicates a
single point in Fig. 2(a) representing several points of T . For
example, E in the codistribution figure corresponds to all the
middle points of six edges of T .

B. Lower bound and separable states

Pure state |ψ2〉 sets the lower bound AO2H of entangled
states (C > 0) with Eq. (4). And the lower bound GH for
separable states (C � 0) is given by direct product states. To
show this more vividly, we study a class of separable states

ρSS
AB = I

4
+ nσ A

z + mσ B
z + β3σz ⊗ σz. (10)

It is diagonal in product state basis |↑ ↑〉, |↓ ↑〉, |↑ ↓〉, and
|↓ ↓〉. ρSS

AB only contains classical correlations. Its rQFI is (for
details, see Appendix E)

�F
(
ρSS

AB

) = 8(λ1λ4 − λ2λ3)2

(λ1 + λ2)(λ3 + λ4)
, (11)

where λk = 1/4 + in + jm + i jβ3 with k = (5 − i)/2 − j,
i, j = 1,−1 are eigenvalues of ρSS

AB. �F (ρSS
AB) is non-negative

and vanishes iff ρSS
AB is product states (with λ1λ4 = λ2λ3).

Specifically, the states ρSS
AB locate on G (H) with

λ↓ = (1/4, 1/4, 1/4, 1/4) [(1,0,0,0)]. We mention that
ρSS

AB is a mixture of four product states with zero rQFI.
Therefore, ΔF (ρAB) is not convex in general cases. It is
consistent with property (a1), indicating classical correlation
has a positive contribution to rQFI. We take ρSS

AB with
λ2 = λ3 = 0 as an example, which is the mixture of |↑ ↑〉
and |↓ ↓〉. By measuring |↑〉b and |↓〉b in HB, one can
separate U (�θ )|↑〉a and U (�θ )|↓〉a in HA as conditional
states for the existence of classical correlation. This

042106-3



HAIJUN XING, JINFU CHEN, AND LIBIN FU PHYSICAL REVIEW A 100, 042106 (2019)

provides the QFI λ1
∑

i F (|↑〉aa〈↑ |, Ti ) +
λ4

∑
i(|↓〉aa〈↓ |, Ti ), which is larger than

∑
i F (ρA, Ti )

with ρA = λ1|↑〉aa〈↑ | + λ4|↓〉aa〈↓ |, hence a nonzero rQFI
is acquired.

Figure 2(a) shows that nonentanglement correlation
(NEC), which contains classical correlation and quantum
discord, contributes to rQFI. It has two signatures: separable
states on the left side of EH have nonzero rQFI, and pure
entangled states have the minimal rQFI when concurrence (C)
is fixed. The contribution of classical correlation is studied
above. A more general and formal study about quantum
discord will be presented with an additional section below.
Compared with NEC, entanglement is necessary to acquire
rQFI higher than 2, which is the upper bound of rQFI provided
by separable states. And the maximum of rQFI is reached
by states with maximal entanglement. We mention that MS
embodies the optimal combination of entanglement and NEC
to reach high rQFI: on one hand, MS of rank 2 has the
maximal rQFI when entanglement is fixed; on the other hand,
it costs the least entanglement to reach a certain rQFI (� 2).

V. SENSITIVITY, rQFI, AND COHERENCE

As the sum of QFI over the generator {T A
i }, F (ρAB) ≡∑

i F (ρAB, T A
i ) is a natural measure of ρAB’s “sensitivity” to

the local rotation (SLR) on the state space of HA, the SLR can
be decomposed as

F (ρAB) = �F (ρAB) + F (ρA), (12)

where the rQFI �F (ρAB) measures the contribution of cor-
relation, and F (ρA) ≡ ∑

i F (ρA, Ti ) measures the contribu-
tion of ρA’s coherence, with F (ρA, Ti ) as a measure of
ρA’s coherence between Ti’s eigenspaces [35,36]. For state
ρA = ∑

a da|a〉〈a| in diagonal form, we have F (ρA) = 2N −∑
ab 4dadb/(da + db); it is convex, its maximum 2(N − 1)

is reached by pure states with d↓ = (1, 0, . . . , 0), and its
minimum zero is reached by maximally mixed states with
d = (1/N, 1/N, . . . , 1/N ).

For the convexity of QFI, the SLR F (ρAB) is convex.
Together with Eq. (C8), the maximum of SLR is 2(N − 1/D),
reached by the maximally entangled states; its minimum zero
is reached by IA/N ⊗ ρB; and the states have no correlation
and no coherence in reduced density matrix ρA for any or-
thogonal complete basis of HA.

Generally speaking, the local coherence is easier to ma-
nipulate than the quantum correlation. But with the help of
quantum correlation, one can attain a higher SLR. Exem-
plified with two-qubit states ρAB, the maximum of F (ρA)
is 2, and the maximal SLR contributed by the maximally
entangled states is 3. If there only exists classical correlation,
the maximum of �F (ρAB) is 2, attained by the state, e.g.,
(|↑ ↑〉〈↑↑ | + |↓ ↓〉〈↓↓ |)/2, which is equivalent to a pure
state of qubit A in SLR.

VI. rQFI AND QUANTUM DISCORD

Since classical correlation contributes to the SLR, the
free states of discord—the well-known classical states
χaB = ∑

a pa|a〉〈a| ⊗ ρB|a—may have nonzero rQFI, where
{|a〉} is an orthogonal complete basis of HA and pa � 0.

It depicts χaB’s “sensitivity” to the rotation generated by
the nondiagonal generator {T (i)

ab } in the basis {|a〉} with i =
1, 2 [22]. Apart from this difference, rQFI satisfies all other
established criteria to define a generalized discord (quantum
correlation) measure (GDM) listed in [37,38].

If one only focuses on the generator {T (3)
cc } diagonal in

an unknown orthogonal complete basis {|e〉} of HA [22], the
minimal contribution of correlation to SLR is characterized by
a GDM, which is defined as

δF (ρAB) = min
{|e〉}

∑
c

[
F

(
ρAB, T (3)A

cc

) − F
(
ρA, T (3)

cc

)]
, (13)

where T (3)
cc is generator diagonal in a basis {|e〉}, the sum-

mation is done over the set {T (3)
cc }, and the minimization is

done over all complete orthogonal bases of HA. δF (ρAB)
satisfies all of the necessary properties to define the GDM
given in [37,38]. Specifically, we have the following (the proof
is provided in Appendix F).

(b1) δF (ρAB) is invariant under local unitary operations
in state space, i.e., δF (ρAB) = δF (ρ ′

AB), with ρ ′
AB = (UA ⊗

UB)ρAB(U †
A ⊗ U †

B ).
(b2) δF (ρAB) is non-negative.
(b3) δF (ρAB) vanishes if ρAB is classical state χaB.
(b4) δF (ρAB) is not increased under the local completely

positive and trace preserving map IA ⊗ EB on subsystem B,
i.e., �F (ρAB) � �F[IA ⊗ EB(ρAB)].

Properties (b1)–(b3) are the necessary properties to define
a GDM given in [37,38]; property (b4) is also satisfied by
the “interferometric power” proposed by Girolami et al. [16].
Hence, we claim that δF (ρAB) is a qualified GDM.

VII. SUMMARY AND DISCUSSION

To summarize, we have proposed a measure named as rel-
ative quantum Fisher information to quantify the contribution
of correlation for quantum metrology. We have shown that
rQFI is a measure of total correlation. It can capture effects
of entanglement, quantum discord, and classical correlation.
rQFI reduces to an entanglement measure for pure states. A
detailed study with the codistribution of rQFI and concurrence
has been presented. Furthermore, a discussion about rQFI and
discord has been given. As a result, an alternative generalized
discord measure has been extracted out of the rQFI.

rQFI quantifies the contribution of bipartite correlation to
metrology. The comparison between rQFI and entanglement,
discord, etc., will help us to clarify the contributions of those
correlations in metrology. Experimentally, rQFI quantifies the
enhancement of SLR attained by joint measurements on a
composite system over the local measurements.

The composite system of sensor and ancillary is widely
used in the studies of black box estimation [16], non-
Markovianity of quantum dynamics [39], quantum error cor-
rection [40–42], etc. As an alternative figure of merit of
this setup, rQFI has an intrinsic connection with previous
studies. The comparison between rQFI and interferometric
power [16] is given above, and brief comments about rQFI
and quantum error correction are given in Appendix G. Apart
from those fields, rQFI has potential applications in the study
of quantum coherence [36,43], quantum speed limit [44,45],
asymmetry [35], etc., as QFI plays important roles in those
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fields, and rQFI measures the correlations’ contribution to QFI
quantitatively.
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APPENDIX A: PROOF OF F (ρA ⊗ ρB, T A
i ) = F (ρA, Ti )

For

−i
[
T A

i , ρA ⊗ ρB
] = −i[Ti, ρA] ⊗ ρB

≡ 1
2 {Li(ρA), ρA} ⊗ ρB

= 1
2 {Li(ρA) ⊗ IM, ρA ⊗ ρB}, (A1)

where [, ]({, }) denotes the commutation (anticommutation),
one can define Li(ρA ⊗ ρB) ≡ Li(ρA) ⊗ IM . It is a valid sym-
metric logarithmic derivative corresponding to generator T A

i .
Thus,

F
(
ρA ⊗ ρB, T A

i

) ≡ trAB
[
ρA ⊗ ρBL2

i (ρA ⊗ ρB)
]

= trA
[
ρAL2

i (ρA)
] ≡ F (ρA, Ti ). (A2)

APPENDIX B: PROOF OF THE PROPERTIES
OF �F (ρAB)

1. Proof of (a1)

a. �F (ρAB, G), �F (ρAB) � 0

Setting the parametrized state as ρAB(θ ) =
exp(−iGθ )ρAB exp(iGθ ), where G ∈ HA is the generator
of local rotation, and θ is the parameter to be estimated, we
have the inequality [20]

F (ρAB, G) � F c, (B1)

where F c = ∑
n(∂θ pn)2/pn is the classical Fisher information

of probability distribution pn = trAB[EnρAB(θ )], and {En} is
a set of POVM measurement operators in HAB. The equality
in Eq. (B1) holds over MAB, the set of all of these POVM
measurements. Similarly, F (ρA, G) sets the upper bound
of the classical Fisher information of qn = trA[ρA(θ )E ′

n] =
tr[ρAB(θ )E ′

n ⊗ I]. It is the bound of F c over MA, the set
of all local POVM measurements in the form {E ′

n ⊗ I}. For
MA ⊂ MAB, we have

F (ρAB, G) = maxMABF c � maxMAF c = F (ρA, G), (B2)

i.e.,

�F (ρAB, G) = F (ρAB, G) − F (ρA, G) � 0, (B3)

together with Eq.(A2). Replacing G with local rotation gener-
ator T A

j , then summing �F (ρAB, T A
j ) over all the generators,

we have �F (ρAB) � 0.

b. The upper bound of �F (ρAB) is reached and only reached
by maximally entangled states when N = M

For a mixed state ρAB = ∑
i pi|ψi〉〈ψi| in diagonal form

with pi > 0 and
∑

i pi = 1, we have

F (ρAB) =
∑

i

piF (|ψi〉〈ψi|) −
∑
k;i �= j

8pi p j

pi + p j
|〈ψi|T A

k |ψ j〉|2.

(B4)
Based on the Schur concaveness of Eq. (C8), we have the
inequality

F (|ψi〉〈ψi|) � 2(D − 1/D), (B5)

with D = M = N , where the equality holds and only holds
by maximally entangled states. Hence, straightforwardly, the
maximum of Eq. (B4) is reached by maximally entangled
states. The remaining question is whether the mixture of
maximally entangled states can reach the upper bound of
F (ρAB). Next, we will show it is false.

Two maximally entangled states |ψi〉 and |ψ j〉 with
〈ψi|ψ j〉 = 0 can be formalized as

|ψi〉 = D−1/2
∑

a

|a〉A|a〉B (B6)

and

|ψ j〉 = UA ⊗ UB|ψi〉 = U ′
A ⊗ IB|ψi〉 (B7)

with (U ′
A)ba = ∑

c(UA)bc(UB)ac. One can verify that∑
k

|〈ψi|T A
k |ψ j〉|2 > 0, (B8)

for U ′
A is neither 0 nor the identity matrix. It decreases the

F (ρAB) by contributing the last term of Eq. (B4). Hence
the upper bound of F (ρAB) is reached and only reached by
maximally entangled states.

Furthermore, the reduced density matrix ρA of a maximally
entangled state is a maximally mixed state with F (ρA) = 0.
Hence, the rQFI

�F (ρAB) � max[F (ρAB)] − min[F (ρA)]

= 2(D − 1/D) − 0, (B9)

where the equality is held and only held by maximally entan-
gled states. This completes the proof.

c. �F (ρAB) = 0 iff ρAB is a product state

The sufficiency [�F (ρAB) = 0 ← ρAB is a product state]
is easy to verify with the definition of �F (ρAB).

To prove the necessity [�F (ρAB) = 0 → ρAB is a product
state], we study state ρAB with the reduced density matrix
ρA = ∑

a pa|a〉〈a|.
Set the generator as

T (1)
ab = 1

2 (|a〉〈b| + |b〉〈a|), 1 � a < b � N,

T (2)
ab = 1

2i (|a〉〈b| − |b〉〈a|), 1 � a < b � N,

T (3)
aa = 1√

2a(a − 1)
(|1〉〈1| + |2〉〈2| + · · · + |a − 1〉〈a − 1|

+ (1 − a)|a〉〈a|), 2 � a � N. (B10)
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For �F (ρAB, T A
i ) � 0, then �F (ρAB) > 0, if there exists at

least one generator Ti such that �F (ρAB, T A
i ) > 0. We will

prove this is true when ρAB is not a product state.
(a) If ρAB is coherent in the orthogonal complete basis

{|a〉} of HA, where ρA is diagonal, there exists at least
one pair of states |a〉, |b〉 ∈ {|a〉}, such that 〈a|ρAB|b〉 �= 0.
Through the linear composition over the set {T (3)

aa }, one
can always construct an operator T ′(3)

ab = (|a〉〈a| − |b〉〈b|)/2,
such that [ρAB, T ′(3)

ab ⊗ IB] �= 0 for ρAB with a nonzero ele-
ment 〈a|ρAB|b〉. This indicates the QFI F (ρAB, T ′(3)

ab ⊗ IB) �
−2tr([

√
ρAB, T ′(3)

ab ⊗ IB]2) > 0 according to [46]. Further-
more, one can always find an alternative representation of
{Ti} with T ′(3)

ab as an element in it. And Eq. (B23) reveals
that rQFI �F (ρAB) is independent of the representation of the
generator. Hence if ρAB is coherent in the basis {|a〉}, where
ρA is diagonal, the rQFI �F (ρAB) is nonzero.

(b) If ρAB is incoherent in the orthogonal complete basis
{|a〉} of HA, ρAB can be represented as [43,47–49]

ρAB =
∑

a

pa|a〉〈a| ⊗ ρB|a. (B11)

Performing a POVM measurement {EB
i } on system B, one

can acquire state ρi = trB(EB
i ρAB)/qi with probability qi =

trAB(EB
i ρAB). ρi is diagonal in basis {|a〉}, and the reduced

density matrix ρA = ∑
i qiρi. Then perform the optimal mea-

surement {EA
i, j} on ρi according to the result of the first

measurement, and the probability of acquiring correspond-
ing results is qi, j = trA(ρiEA

i, j ). Summing up the two mea-
surements, the whole POVM measurement is {EA

i, jE
B
i }, the

corresponding probability is pi, j = trAB(ρABEA
i, jE

B
i ) = qiqi, j ,

and the classical Fisher information about θ—the parameter
imprinted by local rotation e−iGθ —is

F c =
∑
i, j

(∂θ pi, j )2

pi, j
=

∑
i

qi
(∂θqi, j )2

qi, j

=
∑

i

qiF (ρi, G) � F (ρA, G). (B12)

Taking G as a first class generator T (1)
ab , the corresponding QFI

is

F
(
ρA, T (1)

ab

) = (pa − pb)2

pa + pb
≡ f (pa, pb). (B13)

f (pa, pb) is strictly convex, i.e.,

∑
i

qiF
(
ρi, T (1)

ab

)
� F

(∑
i

qiρi, T (1)
ab

)
, (B14)

where the equality holds and only holds by �abρi�ab =
λ�abρ j�ab for all i, j, and λ > 0, �ab = |a〉〈a| + |b〉〈b|. But
for ρAB, which is a nonproduct state, there exists at least one
pair of states ρ

(a)
B �= ρ

(b)
B with pa pb �= 0; therefore, one can al-

ways find a POVM {EB
i } satisfying �abρi�ab �= λ�abρ j�ab,

hence

∑
i

qiF
(
ρi, T (1)

ab

)
> F

(∑
i

qiρi, T (1)
ab

)
= F

(
ρA, T (1)

ab

)
.

(B15)

Together with the quantum Cramer-Rao inequality
F (ρAB, T (1)

ab ) � F c(pi j, T (1)
AB ) and Eq. (B12), the rQFI for

a nonproduct state ρAB is

�F
(
ρAB, T (1)

ab

) = F
(
ρAB, T (1)

ab

) − F
(
ρA, T (1)

ab

)
> 0. (B16)

We have thus proved both sufficiency and necessity.

2. Proof of (a2): rQFI is independent of representation

Two equivalent unitary representations of local rotation
generators {T A

i } and {T ′A
i } can be connected through a unitary

transformation U as

T ′A
i = UT A

i U † =
∑

j

R jiT
A
j , (B17)

where U ∈ SU (N ) ⊗ IM is a local rotation in HA, and R is
the corresponding unitary transformation in the tangent space
of HA. The definition of SLD creates a linear map between
Li(ρAB) and T A

i , and we have

−i
[
UT A

i U †, ρAB
] = 1

2

⎧⎨
⎩

∑
j

R jiL j (ρAB), ρAB

⎫⎬
⎭, (B18)

where {, } denotes the anticommutation. For T ′A
i , a generator

in the alternative representation, one can define a new SLD
L′

i (ρAB) with

L′
i (ρAB) =

∑
j

R jiL j (ρAB), (B19)

which satisfies

−i
[
UT A

i U †, ρAB
] ≡ 1

2

{
L′

i (ρAB), ρAB
}
. (B20)

Furthermore,
∑

j L j (ρAB)2 is invariant in that

∑
i

L′
i (ρAB)L′

i (ρAB) =
∑
i jk

R jiR
−1
ik L j (ρAB)Lk (ρAB)

=
∑

j

L j (ρAB)Lj (ρAB). (B21)

Hence F (ρAB) is invariant in that

F (ρAB) ≡
∑

i

F
(
ρAB, T A

i

)
=

∑
i

F
(
ρAB, T ′A

i

) ≡ F ′(ρAB). (B22)

Using the same argument, one can prove that F (ρA) =
F ′(ρA). Hence,

�F (ρAB) = �F ′(ρAB). (B23)

3. Proof of (a3): rQFI is invariant under local rotations

The definition of SLD −i[T A
i , ρAB] = 1

2 {Li(ρAB), ρAB} cre-
ates a linear map between T A

i and Li(ρAB), and

−i
[
UT A

i U †, ρ ′
AB

] = 1
2 {ULi(ρAB)U †, ρ ′

AB}, (B24)
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where ρ ′
AB = UρABU †, and U = UA ⊗ UB is a local rotation

in HA ⊗ HB. According to Eq. (B17), we have

ULi(ρAB)U † =
∑

j

R jiL j (ρ
′
AB), (B25)

where R is unitary transformation corresponding to UA, and
Lj (ρ ′

AB) is a SLD defined by

−i
[
T A

j , ρ ′
AB

] = 1
2 {Lj (ρ

′
AB), ρ ′

AB}. (B26)

Corresponding to Eq. (B21), Eq. (B25) implies∑
i

UL2
i (ρAB)U † =

∑
i jk

R jiRkiL j (ρ
′
AB)Lk (ρ ′

AB)

=
∑
i jk

R jiR
−1
ik L j (ρ

′
AB)Lk (ρ ′

AB)

=
∑

j

L j (ρ
′
AB)Lj (ρ

′
AB). (B27)

And we have an invariance under the rotation:

tr

[∑
i

L2
i (ρAB)ρAB

]
= tr

[∑
i

UL2
i (ρAB)U †ρ ′

AB

]

= tr

[∑
i

L2
i (ρ ′

AB)ρ ′
AB

]
, (B28)

i.e.,
∑

i F (ρAB, T A
i ) = ∑

i F (ρ ′
AB, T A

i ), with ρ ′
AB = UρABU †.

Using the same argument, one can prove
∑

i F (ρA, Ti ) =∑
i F (ρ ′

A, Ti ), hence �F (ρAB) = �F (ρ ′
AB). We have thus

proved the local invariance of rQFI.

4. Proof of (a4): rQFI is not increased under the completely
positive and trace preserving map on subsystem B

The CPTP map EB on subsystem B can be expressed as

IA ⊗ EB(ρAB) = trC (IA ⊗ UBCρAB ⊗ ρCIA ⊗ U †
BC ), (B29)

where ρC is a density matrix of an ancillary system C, and
UBC is a unitary operation in state space of composite system
BC. Then for any local rotation generator GA and state ρAB,
we have

F (IA ⊗ EB(ρAB), GA ⊗ IB)

= F (trC (IA ⊗ UBCρAB ⊗ ρCIA ⊗ U †
BC ), GA ⊗ IB)

� F (IA ⊗ UBCρAB ⊗ ρCIA ⊗ U †
BC, GA ⊗ IBC ) (B30)

= F (ρAB ⊗ ρC, IA ⊗ U †
BC (GA ⊗ IBC )IA ⊗ UBC )

= F (ρAB ⊗ ρC, GA ⊗ IBC )

= F (ρAB, GA ⊗ IB), (B31)

with the reduced density matrix ρA = trB(ρAB), where the line
(B30) is proved with Eq. (B3). Subtracting F (ρA, GA) on both
sides of Eq. (B31), we have

�F (IA ⊗ EB(ρAB), GA ⊗ IB) � �F (ρAB, GA ⊗ IB). (B32)

Taking GA as the generator T A
i , then summing the inequality

Eq. (B32) over all the generators, we have thus proved that the
rQFI is not increased under the CPTP map on subsystem B.

5. rQFI under the local CPTP map on subsystem A

Brodutch and Modi have proposed a set of necessary
criteria that a total correlation measure should satisfy [37].
According to those criteria, in order to prove �F (ρAB) is a
measure of total correlation, we need to prove the following
property in addition to properties (a1)–(a4): �F (ρAB) is not
increased under local CPTP operation as

�F (ρAB) � �F[EA ⊗ EB(ρAB)], (B33)

where Ei is a CPTP map on state space of Hi with i = A, B.
Together with EA ⊗ EB = (EA ⊗ IB)(IA ⊗ EB), we need to
prove

�F (ρAB) � �F[EA ⊗ IB(ρAB)], (B34)

in addition to property (a4). Whether it is valid for general
cases is still in question. But it is true at least when reduced
density matrix ρA is a maximally mixed state I/N and EA is a
random unitary operation

ERU
A ⊗ IB(ρAB) =

∑
i

piU
A
i ρABU A†

i , (B35)

with the probability pi � 0, and
∑

i pi = 1, where U A
i = Ui ⊗

IM is a unitary operation in the state space of HA.
Since ERU

A (IA) = IA, we have

F
[
ERU

A (ρA)
] = F (ρA) (B36)

with ρA = IA/N . Based on the invariance Eq. (B28) and the
convexity of QFI, we have

F (ρAB) =
∑

i

piF
(
U A

i ρABU A†
i

)
=

∑
j

∑
i

piF
(
U A

i ρABU A†
i , T A

j

)

�
∑

j

F
(
ERU

A ⊗ IB(ρAB), T A
j

)
≡ F

[
ERU

A ⊗ IB(ρAB)
]
. (B37)

It is straightforward to prove Eq. (B34) is valid when ρA is a
maximally mixed state and EA is a random unitary operation
in the state space of HA. We mention that this method has
been used to prove the property of Wigner-Yanase skew
information in [19].

APPENDIX C: rQFI OF PURE STATES

We will study rQFI for pure states in Schmidt decomposi-
tion form as

|ψ〉 =
D∑

a=1

√
da|a〉A|a〉B, (C1)

with the reduced density matrix ρA = trB(|ψ〉〈ψ |) =∑D
a=1 da|a〉〈a|. We take the generators {Ti} as Eq. (B10).

According to the definition of rQFI, we need to calculate∑
i F (|ψ〉〈ψ |, T A

i ) and
∑

i F (ρA, Ti ), respectively.
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1. Calculation of
∑

i F (|ψ〉〈ψ|, T A
i )

The QFI of pure state |ψ〉 is [20]

F
(|ψ〉〈ψ |, T A

i

) = 4〈ψ |(T A
i

)2|ψ〉 − 4〈ψ |T A
i |ψ〉2

= 4tr
(
ρAT 2

i

) − 4tr
(
ρATi

)2
. (C2)

Summing the first term over generators {Ti}, we have∑
i

tr
[
ρAT 2

i

] = N − 1

2
+ N − 1

2N
= (N2 − 1)

2N
, (C3)

with∑
a<b

[
T (1)

ab

]2 =
∑
a<b

[
T (2)

ab

]2 = 1

4

∑
a<b

(|a〉〈a|+|b〉〈b|)= N − 1

4
IN ,

(C4)

and
N∑

a=2

[
T (3)

aa

]2 =
N∑

a=2

1

2a(a − 1)
[|1〉〈1| + |2〉〈2| + . . .

+ |a − 1〉〈a − 1| + (1 − a)2|a〉〈a|]

=
N∑

b=1

[
(1 − b)2

2b(b − 1)
+

N∑
a=b+1

1

2a(a − 1)

]
|b〉〈b|

= N − 1

2N
IN . (C5)

For ρA diagonal in basis {|a〉}, we have

tr
[
T (1)

ab ρA
]2 = tr

[
T (2)

ab ρA
]2 = 0, (C6)

and ∑
i

tr[TiρA]2 =
N∑

a=2

tr
[
T (3)

aa ρA
]2

=
N∑

a=2

1

2a(a − 1)

[
a−1∑
b=1

db + da(1 − a)

]2

= 1

2

N∑
a=1

d2
a − 1

2N
. (C7)

According to Eqs. (C2), (C3), and (C7),

F (|ψ〉〈ψ |) = 2

(
N2 − 1

N
−

N∑
a=1

d2
a + 1

N

)

= 2

(
N −

N∑
a=1

d2
a

)
. (C8)

2. Calculation of
∑

i F (ρA, Ti )

In this subsection, we will calculate QFI for ρA =∑
a da|a〉〈a| according to [50]. Specifically,

F
(
ρA, T (1)

ab

) = F
(
ρA, T (2)

ab

)
=

∑
e, f

2(d f − de)2

(d f + de)

∣∣〈 f |T (1)
ab |e〉∣∣2 = (da − db)2

da + db
,

F
(
ρA, T (3)

aa

) =
∑
e, f

2(d f − de)2

d f + de

∣∣〈 f |T (3)
aa |e〉∣∣2 = 0. (C9)

Thus the summation over all the generators is

F (ρA) =
∑

i

F (ρA, Ti )

= 2
∑
a<b

[
(da + db) − 4dadb

da + db

]

= 2N −
∑
a,b

4dadb

da + db
. (C10)

Together with Eq. (C8), the rQFI for pure states Eq. (C1) is

�F (|ψ〉〈ψ |) = F (|ψ〉〈ψ |) − F (ρA)

=
∑
a,b

4dadb

da + db
− 2

∑
a

d2
a

= 2
∑
a �=b

(
2dadb

da + db
+ dadb

)
. (C11)

APPENDIX D: rQFI OF MAXIMALLY MIXED
MARGINAL STATES

1. Calculation of �F (ρMS
AB )

We study the rQFI of maximally mixed marginal states in
the form

ρMS
AB = I

4
+

∑
i

βiσi ⊗ σi. (D1)

The symmetric logarithmic derivative corresponding to gen-
erator σ A

x /2, σ A
y /2, and σ A

z /2 is

Lx = 4(4β1β2 + β3)

16β2
1 − 1

σy ⊗ σz − 4(4β1β3 + β2)

16β2
1 − 1

σz ⊗ σy,

Ly = 4(4β2β3 + β1)

16β2
2 − 1

σz ⊗ σx − 4(4β1β2 + β3)

16β2
2 − 1

σx ⊗ σz,

Lz = 4(4β1β3 + β2)

16β2
3 − 1

σx ⊗ σy − 4(4β2β3 + β1)

16β2
3 − 1

σy ⊗ σx,

(D2)

respectively. Thus the sum of quantum Fisher information is

F
(
ρMS

AB

) =
∑

i

F
(
ρMS

AB , T A
i

) = tr
[(

L2
x + L2

y + L2
z

)
ρAB

]

= 3 − 4
∑
i> j

λiλ j

λi + λ j
, (D3)

where λi are eigenvalues of ρMS
AB with

λ1 = 1/4 − β1 + β2 + β3, λ2 = 1/4 + β1 − β2 + β3,

λ3 = 1/4 + β1 + β2 − β3, λ4 = 1/4 − β1 − β2 − β3.

(D4)

ρMS
A = trB(ρMS

AB ) is a maximally mixed state, hence the sum of
QFI F (ρMS

A ) = ∑
i(ρ

MS
A , Ti ) is zero. Together with Eq. (D3),

the rQFI of ρMS
AB is

�F
(
ρMS

AB

) = 3 − 4
∑
i> j

λiλ j

λi + λ j
. (D5)
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FIG. 3. Barycentric coordinate system.

2. Barycentric coordinate system and the bound
of maximally mixed marginal states

The barycentric coordinate system (BCS) is usually de-
fined on a simplex. We exemplify it with the tetrahedra in
Fig. 3, where the four vertices are denoted by Ai, where
i = 1, 2, 3, 4, respectively. Put particles on each of the ver-
tices, and set the mass of particle on Ai as λi with λi � 0
and

∑
i λi = 1. The coordinate (λ1, λ2, λ3, λ4) locates the

mass center of the four particles. Alternatively, one can de-
fine the BCS with vectors. For the point P with coordinate
(λ1, λ2, λ3, λ4) and an arbitrary point O, we have

−→
OP =∑

i λi
−→
OAi.

Furthermore, the surface with λ1 = c, 0 � c � 1 is a
plane parallel to the plane A2A3A4, and the distance satisfies
T2T1/A1T1 = c.

APPENDIX E: rQFI OF SEPARABLE STATES

In this section, we study the rQFI for states

ρSS
AB = I

4
+ nσ A

z + mσ B
z + β3σz ⊗ σz. (E1)

The symmetric logarithmic derivatives of ρSS
AB corresponding

to generators σ A
x /2, σ A

y /2, and σ A
z /2 are

Lx = 4(4β3m − n)

1 − 16m2
σy ⊗ I2 + 4(4mn − β3)

1 − 16m2
σy ⊗ σz,

Ly = 4(n − 4β3m)

1 − 16m2
σx ⊗ I2 + 4(β3 − 4mn)

1 − 16m2
σx ⊗ σz,

Lz = 0, (E2)

respectively. Hence the sum of QFI for ρSS
AB is

F
(
ρSS

AB

) =
∑

i

F
(
ρSS

AB, T A
i

) = tr
[
ρSS

AB

(
L2

x + L2
y + L2

z

)]

= 32
(
β2

3 − 8β3mn + n2
)

1 − 16m2
. (E3)

The eigenvalues of the reduced matrix

ρSS
A = I2

2
+ 2nσz (E4)

are 1/2 − 2n, 1/2 + 2n. Substituting it into Eq. (C10), the
sum of QFI for reduced matrix ρSS

A is

F
(
ρSS

A

) =
∑

i

F
(
ρSS

A , Ti
) = 32n2. (E5)

Hence, the rQFI for ρSS
AB is

�F
(
ρSS

AB

) = F
(
ρSS

AB

) − F
(
ρSS

A

)
= 32(β3 − 4mn)2

1 − 16m2
= 8(λ1λ4 − λ2λ3)2

(λ1 + λ2)(λ3 + λ4)
, (E6)

where λ1 = 1/4 + n + m + β3, λ2 = 1/4 − n + m − β3,
λ3 = 1/4 + n − m − β3, and λ4 = 1/4 − n − m + β3 are
eigenvalues of ρSS

AB.

APPENDIX F: PROPERTIES OF δF (ρAB)

In the main text, we build a measure δF (ρAB) to char-
acterize the contribution of discord to the enhancement of
sensitivity:

δF (ρAB) = min
{|a〉}

∑
c

[
F

(
ρAB, T (3)A

cc

) − F
(
ρA, T (3)

cc

)]
, (F1)

where {|a〉} is an unknown orthogonal complete basis of
subspace HA. T (3)

cc is the diagonal generator defined with
Eq. (B10) in basis {|a〉}. The summation is done over the set
of these diagonal generators. The minimization is done over
all bases of HA.

Next, we will show δF (ρAB) satisfies the established nec-
essary properties to be defined as a measure of generalized
discord.

(b1) δF (ρAB) is invariant under local unitary operations in
state space. For arbitrary bipartite state ρAB and local unitary
operation UA ⊗ UB, we have equality F (ρ ′

AB, T ′(3)A
cc ) =

F (ρAB, T (3)A
cc ) with O′ = (UA ⊗ UB)O(U †

A ⊗ U †
B ), O =

ρAB, T (3)
cc . Based on that, if δF (ρAB) = F is reached

with generator {T (3)
cc } diagonal in basis {|a〉}, we have

δF (ρ ′
AB) = F reached with generator {T ′(3)

cc } diagonal in the
basis {UA|a〉}.

(b2) δF (ρAB) is non-negative. It is straightforward
with Eq. (B3), which says the difference F (ρAB, T (3)A

cc ) −
F (ρA, T (3)

cc ) is non-negative for bipartite state ρAB and local
rotation generator T (3)A

cc .
(b3) δF (ρAB) vanishes if ρAB is a classical state. The

classical state χaB = ∑
a pa|a〉〈a| ⊗ ρB|a is invariant under the

local rotations generated by {T (3)
cc }, the generators which are

diagonal in basis {|a〉}. Hence the corresponding QFI is zero,
and δF (ρAB) vanishes.

(b4) δF (ρAB) is not increased under local CPTP maps on
subsystem B. Equation (B31) shows that, for each diagonal
generator T (3)

cc , F (ρAB, T (3)A
cc ) − F (ρA, T (3)

cc ) is not increased
under CPTP maps on subsystem B, nor is δF (ρAB).

Since δF (ρAB) satisfies those criteria, we can take it as a
valid generalized discord measure.

APPENDIX G: rQFI AND QUANTUM
ERROR CORRECTION

The mechanism of enhancing the precision of parameter
estimation through correlations is similar to quantum error
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correction. We will show it below with a toy model of a
two-qubit system.

Suppose we aim to prepare state |1〉 ∈ HA, but the spin-flip
error happens with probability p. The state we prepared is
ρ1 = (1 − p)|1〉〈1| + p|0〉〈0|. The parameter to be estimated
is imprinted into ρ1 with rotation Ui(θi ) = e−iσi/2θi , where
i = x, y, z, respectively, which gives us the parametrized
state ρ1(θi ) = Ui(θi )ρ1U

†
i (θi ). As proposed in the main text,

the sensitivity of ρ1 to the local rotation is measured by∑
i F (ρ1, σi/2). We can see the error decrease the sensitivity

from 2 to 2(1 − 2p)2.
Now suppose there is an ancillary qubit initialized to

state |1〉, we aim to prepare state |11〉. The spin flip error
happens with probability p. It can be recorded by the ancillary
qubit through a controlled-NOT gate |0〉〈0| ⊗ σx + |1〉〈1| ⊗ I2.
The state we prepared is ρ2 = (1 − p)|11〉〈11| + p|00〉〈00|.
Parametrize this state with local rotation U A

i (θi ) ≡ Ui(θi ) ⊗
I2 and state ρ2(θi ) = U A

i (θi )ρ2U
A†
i (θi ) is obtained, with i =

x, y, z, respectively. Now, perform projective measurement
{|1〉〈1|, |0〉〈0|} on qubit B. If result |1〉 is acquired, the con-
ditional state of qubit A is pure state Ui(θi )|1〉. If result |0〉
is acquired, we know that the error happened, and the state
of system A is Ui(θi )|0〉. With this knowledge, a different

schedule to estimate the parameter θi can be applied accord-
ingly. With the overall scheme, the “sensitivity,” measured
by

∑
i F (ρ2, σ

A
i /2), is 2, which equals to the sensitivity of

a pure state of qubit A, e.g., state |1〉. From this point of view,
the error is corrected. And the enhancement of “sensitivity”
contributed by this “error correction scheme” is measured by
rQFI as

�F (ρ2) =
∑

i

F
(
ρ2, σ

A
i /2

) −
∑

i

F (ρ1, σi/2)

= 8p(1 − p). (G1)

To summarize, the error creates new components in a state
of sensor system A. If there are correlations between system
A and ancillary system B, one may recognize the error com-
ponents through measurement on ancillary system B. Then
a different estimation schedule can be applied conditionally.
The overall “precision” may be enhanced by this protocol.
In this manner, the error is corrected with the help of the
ancillary system and correlation. And rQFI is a measure of
the enhancement of SLR contributed by this “error correction
scheme.”
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