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Abstract

The Josephson effects in two weakly linked Bose–Einstein condensates have been studied recently. In this Letter, we study
the equations derived by Giovanazzi et al., Phys. Rev. Lett. 84 (2000) 4521 focusing on the effects of the initial acceleration and
the velocity of the barrier on the “dc” current. We find that the dc current has lifetime which critically depends on the moving
velocity of the barrier. Moreover, the influence of the initial acceleration is also investigated. 2002 Elsevier Science B.V. All
rights reserved.

PACS: 03.75.Fi; 05.30.Jp; 32.80.Pj; 74.50.+r

The Josephson effects (JE’s) as a paradigm of the
phase coherence manifestation in a macroscopic quan-
tum system, have been observed in superconductors
[1], and demonstrated in two weakly linked super-
fluid 3He–B reservoirs [2]. Since magnetic and opti-
cal traps can be tailored and biased with high accuracy
[3–5], the weakly interacting Bose–Einstein conden-
sate (BEC) can provide a further context for JE’s and
reveal novel properties that might not be accessible
with other systems. Recently the dc and ac Josephson
effects in two weakly linked BECs have been exten-
sively studied [6,7]. These authors suggested that as
the barrier between the two trapped BECs moves adi-
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abatically across the trapping potential, a dc current of
atoms between two condensates can be found. In ana-
log of the voltage-current characteristic in supercon-
ducting Josephson junction (SJJ), there exists a criti-
cal velocity of the barrier, at which an abrupt transi-
tion from the dc to ac current occurs. In this Letter, we
study the model introduced in Ref. [6] focusing on the
effects of the initial acceleration and the velocity of
the barrier on the “dc” current. We find that the dc cur-
rent has lifetime which depends on the velocity of the
barrier and is sensitive on the choice of the initial con-
ditions. To consider the experimental observability of
this phenomenon, we investigate the influence of the
initial acceleration and find it plays a crucial role.

The interacting BECs in a trap at zero temperature
can be described by a macroscopic wave function
Ψ (r,t), having the meaning of an order parameter and
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satisfying the Gross–Pitaevskii equation

(1)ih̄
∂

∂t
Ψ (r,t) = [

H0 + g
∣∣Ψ (r,t)

∣∣2]Ψ (r,t),

whereH0 = − h̄2

2m∇2 + Vext(r,t) and g = 4πh̄2a/m

with m the atomic mass, anda the s-wave scattering
length of the atoms. Considering the system proposed
in Ref. [6], a double-well trap produced by a far
off-resonance laser barrier,Vlaser(z) = V0 exp[−(z −
l)2/λ2], which cuts a single trapped condensate into
two parts [3]. So, the external potential is given by
the magnetic trap and the laser barrierVext(r, t) =
Vtrap(r)+ Vlaser(z, t).

By solving variationally the GPE using the ansatz:
Ψ (r,t) = ψ1(t)φ1(r) + ψ2(t)φ2(r), where ψ1,2 =√
N1,2(t) e

iθ1,2(t) are complex time-dependent ampli-
tudes,N1,2(t) andθ1,2 are the number of atoms and
the phase of the two condensates, respectively. The
trial wave functionsφ1,2(r) are orthonormal and can
be interpreted as approximate ground state solutions
of the GPE of two well, respectively. Then the equa-
tions of the motion for the relative populationp(t) =
(N1(t)−N2(t))/N and phaseθ = θ2− θ1 between the
two condensates should be [6,7]

(2)θ̇ = −F l + Kp√
1− p2

cosθ +Cp,

(3)ṗ = −K

√
1− p2 sinθ,

whereK = − 2
h̄

∫
drφ1[H0 + gNφ2

1]φ2, C = gN
h̄

×∫ |φ1|4dr and F = 1
h̄

∫
dr [φ2

1 − φ2
2] ∂

∂l
Vlaser. These

equations describe the dynamics of the Bose–Joseph-
son junction (BJJ). For the convenience we set the
parameters as the same as in Ref. [6],K = 4.82 ×
10−4 ms−1,C = 1.23 ms−1 andF = 1.06 ms−1 µm−1.

The Josephson current is defined as the current of
atoms across the barrier, which isJ = Ṅ1 = −Ṅ2.
Considering the total number of atoms is constant,
we introduce the normalized currentj = J/N . From
Eq. (3), we have

(4)j = ṗ

2
= −K

2

√
1− p2 sinθ.

Firstly, let us review the properties of this sys-
tem for l is fixed [7]. For this case,p and θ are
canonically conjugate variable of a classical Hamil-
tonianH = C

2p
2 −K

√
1− p2 cosθ − F lp, with ṗ =

− ∂H
∂θ

, θ̇ = ∂H
∂p

. This system exhibits two qualitatively
different orbits: rotation and libration. In the rota-
tion regime,θ increases (or decreases) monotonically
and p oscillates with small amplitude. In the libra-
tion regime,θ and p oscillates around the equilib-
rium pointPe(pe, θe). The separatrix between the two
regimes determined by the saddle pointPs(ps, θs) with
Hs = H(ps, θs). For large energy(H > Hs) the orbit
is rotation, whereas for small energy(H <Hs) the or-
bit is libration. The equilibrium point and the saddle
point are obtained by equating the right-hand sides of
Eqs. (2) and (3) to zero, yieldingpe ≈ F l

C
, θe = 0 and

ps ≈ F l
C

, θs = π.

In the rotation regime, sinceθ is increasing (or
decreasing) monotonically with the angular frequency
proportion to

√
KC, from Eq. (4), we find thatj is

a fast oscillation current with frequency proportion to√
KC and the upper bound of the current, i.e., the so-

called critical currentjc ≈ K
2

√
1− p2

a wherepa is the
average ofp.

In the liberation regime, letp = pe + δp, consider-
ingC �K, from Eqs. (2) and (3) we can obtain a pen-
dulum equation:θ̈ +KC

√
1− p2

e sin(θ) = 0. Then,

we obtainθ = θp sin(ωt), δp = ωθp
C

cos(ωt) in which

ω = √
KC(1− p2

e) and θp is determined by the en-
ergy of the pendulum. So, one gets

δp = θp

√
K

C

(
1− p2

e

) ∼
√
K

C
≈ 10−2.

For this case, the Josephson current isj = −K
2 ×√

1− p2
e sin[θp sin(ωt)]. The critical current isjc =

K
2

√
1− p2

e sin(|θp|) or jc = K
2

√
1− p2

e when |θp| �
π/2.

From the above discussion, for a fixedl one can
only find the ac current in BJJ. These properties
exhibit the analog of the dc voltage case in SJJ.

As it has been suggested in Ref. [6], a dc current
can be induced by moving the laser barrier across
the trap with a constant velocityV = dl

dt
, and exhibit

the analog of the critical behavior in SJJ’s. Now the
question arises: can this system exhibit some new
properties which cannot find in SJJ? To answer this
question, let us review the case for SJJ. In SJJ, we
know that the densities of cooper pair in two side of
the junctions are equal to each other (if the materials
are the same) and should hardly change when the dc
current exists. This feature interpreting to the BJJ’s is



390 L.-B. Fu et al. / Physics Letters A 298 (2002) 388–392

that the change in the relative population is very small.
To see this feature clearly, let us assume the initial
relative populationp(0) = 0, since the change in the
relative population is very small, Eqs. (2) and (3) can
be approximated to

(5)ṗ = −K sin(θ),

(6)θ̇ = −FV t +Cp.

Differentiating the second of these equations and
replacing the first, we havëθ + KC sinθ = −FV ,
which is a driven pendulum equation. The first integral
of the equation gives the energy of this pendulum
E = 1

2 θ̇
2 − KC cosθ + FV θ , and the constantE =

1
2 θ̇ (0)

2 − KC cosθ [(0)] + FV θ(0). We define the
potential

(7)U(θ) = −KC cosθ + FV θ.

When V < 0.559 µm s−1, i.e., FV/(KC) < 1, it is
a washboard potential, its local maximum appears at
θ = (2m − 1)π + arcsink, and the local minimum
appears atθ = 2mπ − arcsink, wherek = FV

KC
and

m is an integer. We restrict the initialθ in interval
[−π,π], then the motion ofθ is characterized by the
local maximumUc = KC

√
1− k2 + FV [arcsink −

π]. If E < Uc, the motion ofθ is an oscillation in the
interval [θmax, θmin] with the frequencyω ≈ √

KC,
whereθmax andθmin is the solution ofE = U(θ). If
E >Uc, the motion ofθ is a rotation, i.e.,θ decreases
monotonically, andθ̇ = √

2(E +KC cosθ − FV θ).
When V > 0.559 µm s−1, i.e., FV/(KC) > 1, the
potential is a titled-step potential,θ is also a rotation
with θ̇ ∼ −FV t. From (4), we know it is an ac current
whenθ is a rotation.

To investigate the case whenθ is in oscillation
regime, letp = pe(t) + δp wherepe(t) = FV

C
t , from

(6), we obtainδp ≈ θ̇
C

, so, we know thatδp is a small

term with δp ∼
√

K
C

≈ 0.02. Then from (4) we can
obtain a dc current (to zero order ofδp)

(8)j = FV

2C
.

From the above discussion, whenθ is in oscillation
regime, the current is a dc current with the relative
population increasing(p ≈ pe(t)); when θ is in
rotation regime, the current is an ac one. The motion
of θ is determined by the initial conditions and

the driven forceFV
C
. If sets the initial conditions:

θ(0)= θ̇ (0)= 0, one can obtain a critical velocity
Vc = 0.406 µm s−1. For V < Vc, thenE < Uc, it is
a dc current, but forV > Vc, thenE >Uc, the current
is in ac regime. This is a close analog of the critical
behavior in SJJ.

However, for the BJJ’s, the dc current must lead to
the change of the relative population. This feature will
give rise to new properties. Taking the change of the
relative population into account, the phase dynamics
is described by a nonrigid driven pendulum equation

(9)θ̈ +KC

√
1− p2 sinθ = −FV.

In analog to the above discussion, we get the potential

(10)U(p, θ) = −KC

√
1− p2 cosθ + FV θ.

This is also a tilted washboard potential forV < 0.559
µm s−1. The new feature is the local maximumUc(p)

will decrease with|p| increasing. If the motion ofθ
is an oscillation at the beginning(Uc(p) > E), we
will firstly find a dc current withUc(p) decreasing.
The oscillation ofθ will not keep whenUc(p) �E, at
this momentθ will start rotating, and then the current
will transition to an ac one. This means the dc current
does not keep for all the time, i.e., the dc current has a
lifetime. So one can have a straightforward definition
of lifetime of a dc current as: the lifetime of the
dc currentτc is the time at whichE � Uc(p(τc)).

This definition is consistent with the definition of the
critical velocity in SJJ’s.

The voltage-current characteristic is the most im-
portant property in SJJ’s. But in BJJ, the important
physical quantity should be the relative populationp

which can be directly detected. So, the critical be-
havior should be characterized by the change ofp

in BJJ. Whenθ is in oscillation regime, from the
above discussion the relative population is increas-
ing. Whenθ is rotating, if θ < (arcsink − π), θ̇ ≈√

2(E +KC cosθ − FV θ), δp is still a small term

with δpmax ∼
√

K
C

≈ 0.02, hence the relative popula-
tion is still increasing andp ≈ pe(t) (in the zero or-
der of δp). But if θ > (arcsink − π), θ̇ will decrease
monotonically,θ̇ ≈ −FV t , thenθ ≈ −1

2FV t2, the in-
tegral of the current:

∫ ∞
t0

K sin(1
2FV t2) dt ≈ 0.0175

where t0 is a finite time, sop should hardly in-
crease. This means that when the motion ofθ changes
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Fig. 1. The phase diagram relating to the critical onset in the
parameter space oft and the laser velocityV for the initial
conditions:l(0) = 0, p(0) = 0 andθ(0) = 0. The solid line is the
lifetime τp(V ), the dashed line isτc(V ).

Fig. 2. The relative population after the dc current is destroyed.

Fig. 3. The lifetime of the dc current for different initialθ. The initial
relative population isp(0)= 0 andl(0) = 0.

from oscillation to rotation, the relative population will
still increase untilθ � (arcsink − π). So, the more
accurate definition of the lifetime of the dc current
in BJJ should be: the lifetimeτp is the time when
θ(τp) � (arcsink − π), within this time the relative
population is increasing, but after this time the relative
population will hardly increase and keep on average
fixed.

In Fig. 1, we show the phase diagram relating to
the critical onset in the parameter space oft and the
laser velocityV for the initial conditions:l(0) = 0,
p(0) = 0 andθ(0) = 0. The solid line is the lifetime
τp(V ), the dashed line is the lifetimeτc(V ). The
step structure implies that the transitions occur in
different cycle of the oscillation. The abruptly increase
is due to that the transition occurs near the peak of
the potential wherėθ ≈ 0. Fig. 2 plots the relative
population after the dc current is destroyed, the crosses
are the relative populationp at t = 2 s which are
obtained by integrating Eqs. (2) and (3), the solid line
is the theoretical result given byp = pe(τp), which
shows the theoretical estimation is consistent with the
numerical simulation.
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Fig. 4. (a) The lifetime for different initial accelerations. The solid
line is for V0 = 0.5 µm s−1 and the dashed line is forV0 = 0.4
µm s−1. (b) The relative phaseθ when the velocity reachesV0.

From the above discussion, we know that the
lifetime of a dc current is also determined by the
initial conditions. One knows that the initial relative
populationp(0) must be very close to the equilibrium
pe to obtain a dc current, but the initial relative phase
can be various. In Fig. 3, we plot the lifetime of the dc
current for different initial relative phaseθ(0), where
we let the initial populationp(0) = 0 andl(0)= 0.

Concerning a possible realization of the phenom-
enon described in this Letter, one should consider the
influence on the initial accelerations. We choose the
initial conditions as:l(0) = 0,p(0) = 0, θ(0) = 0 and
V (0) = 0. Let the barrier starts moving with a con-
stant initial acceleration. When its velocity reaches the
valueV0, we stop accelerating and then keep the ve-
locity. What we concern is the change on the lifetime
of dc current caused by the different initial acceler-
ation. Fig. 4(a) shows the lifetime for different ini-
tial acceleration, where the lifetime is the time dura-
tion of a dc current after the acceleration. The solid
line is for V0 = 0.5 µm s−1 and the dashed line is for

V0 = 0.4 µm s−1. We find that for a sudden change
of the initial barrier, the influence of the initial ac-
celerations can be negligible, whereas for slow ac-
celeration process the lifetime changes abruptly. The
reason can be given by the following analysis: for
a sudden acceleration, the time for accelerating is very
short. In this time period, the change ofθ is small,
so does the change of lifetime. On the contrary, in
a slowly acceleration process, theθ changes greatly
(see Fig. 4(b)). Because the lifetime is very sensitive to
the initial conditions, so the lifetime will change dra-
matically.

We note that the conserved conditions implies that
l must be less thanC

F
≈ 1.16 µm to ensurepe < 1. In

another aspect, to ensure the number of the condensed
atoms in one well beyond the minimum threshold,
l has to be less than this value. On the other hand,
although Eqs. (2) and (3) are obtained by solving
variationally the GPE (1) under the approximation
p � 1, it still remains a good approximation even for
p ≈ 0.4 [6]. So, the discussion in this Letter is accurate
at least under these constraints.
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