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Atomic excitation to excited states in strong laser field
is the key to high-order harmonic generation below ion-
ization threshold, yet remains unclear mainly due to
the lack of proper detection methods. We propose a
frequency-resolved photon-electron spectroscopy tech-
nique to reconstruct population of excited states with
the second delayed laser pulse. The technique utilizes
Fourier transformation to separate ionization from dif-
ferent excited states to different positions on the spec-
trum. With the advantage of separation, we provide a
scheme to reconstruct populations on different excited
states after the first pulse. The scheme is validated
by high-precision population reconstruction of helium
and hydrogen atoms. © 2018 Optical Society of America

OCIS codes: (020.2649) Strong field laser physics; (020.5780) Ryd-
berg states; (300.6350) Spectroscopy, ionization; (300.6300) Spectroscopy,
Fourier transforms.
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The interaction of an intense laser field with atoms has led
to many interesting phenomena, such as photoionization [1–6],
high-order harmonic generation (HHG) [7–9], and frustrated
ionization [10–12]. Based on the three-step model [2], strong
field approximation (SFA) can profoundly understand the phys-
ical processes that include above-threshold ionization [13, 14],
cutoff region of HHG [15], and high-energy plateau in the pho-
toelectron spectra [16–19]. However, since SFA neglects the ef-
fects of excited states, it can’t describe the phenomena that in-
volve excited states, such as Freeman resonance [20], multipho-
ton Rabi oscillations [21], below-threshold harmonics (BTHs)
[22], and the creation of Rydberg states [23]. The mechanism of
BTHs has been studied with techniques such as sum frequency
generation optical gating [24] in addition to being extensively
modeled [25, 26], but the role of excited state has yet to be fully
examined with energy resolution. Additionally, the observation
on the effect of excited state by means of observing momentum
distributions is now becoming available [27, 28], with the devel-
opment of laser technology and pump-probe spectroscopy. Re-
cently, in the experiment, the angular momentum component of
neon atom is resolved from the photoelectron momentum dis-

tribution by the pump-probe spectroscopy [29]. Moreover, the
coherent dynamics of superposition of two states in hydrogen
atom [30] and molecule H+

2 [31] are studied by theories.

On the experimental side, measurement methods of popu-
lation on excited states are developing. In the early days, de
Boer and Muller [11] used a long pulse (nanosecond probe
pulse) to ionize the excited atoms and guarantee different en-
ergy peaks in energy distributions derive from different excited
states. Then, the population can be obtained by calculating the
area probability of each peak. For the metastable state, due to its
long lived property, it can be detected at the microchannel plate
detector (MCP) after a long flight [10, 23, 32]. In addition to the
previous diligent effort to measure population on excited states,
we propose a frequency-resolved photon-electron (FRPE) spec-
troscopy, which is an analogy of two-dimensional Fourier spec-
troscopy [33–37] where two dimensions are all optical frequen-
cies without the information about photoelectron momentum
distribution as we have here. In the FRPE spectroscopy, one di-
mension is the photoelectron momentum distribution and the
other is the optical frequency. Note that the idea of FRPE is sim-
ilar to some pump probe photoelectron spectroscopy [38, 39], in
which the delay time between pump and probe pulses are trans-
formed to the frequency domain. And the Fourier transform
with respect to delay time has been demonstrated [40]. With
measured FRPE spectra of ejected electrons, we can reconstruct
the population on excited state with a good precision.

As a proof-of-principle study, we design a simple experi-
mental scheme with two subsequent laser pulses delayed by
a time interval Td, which is defined as the time interval be-
tween the end of the first pulse and the beginning of the sec-
ond pulse. The configuration is illustrated in Fig. 1(a). The
first pulse is used as a pump to prepare the superposition of
bound and continuum states after the atoms or molecules in-
teract with laser field, while the second pulse, as a probing
measurement, needs to be long enough to completely ionize
the electrons. A detector is set to measure the momentum dis-
tribution of the electrons. At the overall interaction ends, we
can obtain the final momentum distribution F(p, Td) by tun-
ing the delay time Td. In order to distillate the information
carried by momentum distribution, we apply Fourier trans-
form to obtain a momentum-frequency correlation spectrum
G(p, Ω) = (2π)−1

∫

F(p, Td) exp(−iΩTd)dTd. To demonstrate
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(a)

Sample

Fig. 1. (Color online) (a) Scheme of the simple 2-pulse
frequency-resolved photon-electron spectroscopy. The pulse
1 (in red) prepares the initial state of atoms and the pulse 2
(in blue) is used to probe the prepared state by detecting the
momentum distributions of the ejected electrons. The mea-
surement of momentum distributions F(p, Td) is repeated
with varying delay time Td. The Fourier transformation is per-
formed for measured spectrum F(p, Td) along Td axis to obtain
the final FRPE spectrum |G(p, Ω)|. A typical spectrum with
Helium as the sample is shown in subfigure (c), along with the
projection to the Ω axis by integration over the electron mo-
mentum p, namely

∫

dp|G(p, Ω)|2, is illustrated in (b).

the advantage of the current spectroscopic method, we will nu-
merically calculate the FRPE and show the explicit scheme to
reconstruct the population on bound states, along with the pop-
ulation obtained by direct calculation.

Taking helium as a sample, we show the first FRPE spec-
troscopy in Fig. 1 (c) and the corresponding projection to Ω-
axis in Fig. 1 (b). In the simulation, the ground state is se-
lected as the initial state and the intensities of the two pulses
are 1015W/cm2. We choose 150nm laser pulse with an opti-
cal cycle and 800nm laser pulse with 64 cycles as the first and
second pulses, respectively. The specific form of laser field
is given by E(t) = −∂t A(t) with vector potential A(t) =
E0/ω sin2 (πt/τ) cos(ωt), where E0 is the electric-field ampli-
tude of the laser pulse with duration τ and central frequency ω.
In the simulation, we obtain each slice of data F(p, Td) by solv-
ing the time-dependent Schrödinger equation of a single active
electron (in atomic units)

i
∂

∂t
Ψ(x, t) = [− 1

2

∂2

∂x2
− 1√

x2 + a2
+ xE(t, Td)]Ψ(x, t), (1)

with fixed Td and accumulate the full data set by scanning Td.
The second term in the right hand represents soft-Coulomb po-
tential between electron and nucleus, where soft-core parame-
ter [41] is chosen as a2 = 0.484 for the singly charged helium.

To obtain the momentum distribution F(p, Td), we employ
split-operator method [42] to numerically solve the Schrödinger
equation and split the space into the inner (|x| < xc) and outer

(|x| ≥ xc) regions with xc=800 a.u. by a smooth split function

F(xc) =



















0, if |x| < xc − xb,

1, if |x| ≥ xc,

cos4[ π(x−xc)
2xb

], otherwise,

(2)

where we set the width of crossover region xb=50 a.u.. The
wave function in the inner region Ψ(x, t)[1 − F(xc)] is propa-
gated under the full Hamiltonian numerically, while the wave
function in the outer region Ψ(x, t)F(xc) is propagated under
the Volkov Hamiltonian analytically [43]. In the calculation, N
= 8192 grid points with a spatial step of 0.25 a.u. and the time
step of 0.025 a.u. are used. The convergence is checked by com-
paring with the results of the more grid points, i.e., the smaller
spatial and temporal step. Note that the selection of the spatial
cutoff parameter xc is primarily determined by the amplitude
of free electrons in the alternating electric field α = E0/ω2 and
the convergence of xc has been confirmed numerically. Here,
we have chosen time delay from Td = 1000 a.u. to Td = 4530
a.u. with 2048 interval points. The large delay time Td > 1000
a.u. ensures enough free evolution time after the first pulse.
The Fourier transformation is performed after the simulation.
Clearly, the spectrum shows two pronounced structures: (1) the
horizontal lines at frequencies Ω = const, with constants match
the energy gap between two bound states, (2) the parabolic
curves Ω = p2/2+ const. Besides, the structures of the horizon-
tal lines Ω = const can also be seen from the result of frequency
distribution given by integrating the FRPE spectrum over the
momentum. We will show the physical origin of the two fea-
tures in the following discussion.

Fig. 2. Ionization diagram from the perspective of energy level
transitions. g and p depict the ground and continuum states,
respectively, while ε j labels the energy of j-th excited state. 1U

and 2U represent the entire system’s evolutionary operator in
the presence of the first and second laser pulses, respectively.

To understand the physical origin of the two features in the
FRPE spectroscopy, we consider the evolution process from the
perspective of energy level transitions. The atomic energy level

diagram is illustrated in Fig. 2, with bound states {
∣

∣

∣
ej

〉

}(j =

0, 1, 2, ...) and the continuum states |p〉. Here p is the momen-
tum of the ionized electron. The corresponding energy of the

bound state
∣

∣

∣
ej

〉

is denoted as ε j. After the first pulse, the state

of the system is |Ψ1〉 = 1U |Ψ0〉, where |Ψ0〉 = |g〉 is the ground
state and 1U is the evolution operator of the first pulse. In

an explicit way, such state is written as |Ψ1〉 = ∑j
1Ujg

∣

∣

∣
ej

〉

+
∫

dp1Upg |p〉, where 1Ujg = 〈ej|1U|g〉 and 1Upg = 〈p|1U|g〉
are the probability amplitude. The free evolution of atom
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during the delay time Td induces a phase to all the states as

|Ψ1 (Td)〉 = ∑j
1Ujge−iε jTd

∣

∣

∣
ej

〉

+
∫

dp1Upge−ip2/2 Td |p〉. After

the second pulse, the wave function |Ψ2〉 = 2U |Ψ1 (Td)〉 takes
the form

|Ψ2〉 = ... +
∫

dp(∑
j

2Upj
1Ujge−iε jTd + 1Upge−i

p2

2 Td )|p〉, (3)

where 2Upj = 〈p|2U|ej〉 represents evolutionary operator’s ma-
trix element of the whole system when atom interacts with the
second laser pulse. To get Eq. (3), we have chosen a sufficiently
long Td to ensure that the ionized electrons obtained by the first
laser pulse will not be affected by the second pulse. With Eq.
(3), the amplitude of electrons in particular momentum state is

F(p, Td) =

∣

∣

∣

∣

∣

∣

∑
j

2Upj
1Ujge−iε jTd + 1Upge−i p2

2 Td

∣

∣

∣

∣

∣

∣

2

= ∑
j

∑
m
|jΛpg||mΛpg|ei(θj−θm)e−i(ε j−εm)Td + |1Upg|2

+ ∑
j

[

jΛpg
1U∗

pge−i(ε j− p2

2 )Td + jΛ∗
pg

1Upgei(ε j− p2

2 )Td

]

,

(4)

where jΛpg ≡ 2Upj
1Ujg = |jΛpg| exp(iθj). The Fourier trans-

form leads to the spectrum in the frequency domain as

G(p, Ω) = ∑
j

∑
m

|jΛpg||mΛpg|ei(θj−θm)δ[Ω − (εm − ε j)]

+ |1Upg|2δ(Ω) + ∑
j

[

jΛpg
1U∗

pgδ[Ω + (ε j −
p2

2
)]

+jΛ∗
pg

1Upgδ[Ω − (ε j −
p2

2
)]

]

.

(5)

The first line of the above formula represents the bright lines
Ω = ε j − εm in the FRPE spectroscopy, while the second and

third lines show parabolic curve Ω = ±(ε j − p2/2). The current
theoretical derivation shows the physical correspondence of the
two main features in the Fig. 1 (c).

The separation of different processes in the spectrum pro-
vides advantages to extract further information of the ioniza-
tion process. One application is to reconstruct the population
on the bound states. With the advantage of labeling with energy

difference Ωjm =
∣

∣

∣
ε j − εm

∣

∣

∣
on the spectrum, we can get each

value |jΛpg||mΛpg| at Ωjm =
∣

∣

∣
ε j − εm

∣

∣

∣
(j 6= m) as

∣

∣

∣
G(p, Ωjm)

∣

∣

∣

. If there are n intermediate states, we can get C2
n equations

resulted from the interference between every two intermediate
states. In other words, as long as C2

n ≥ n, namely, n ≥ 3, we
arrive at the modulus |jΛpg|. So we can get modules |jΛpg|
by choosing three intermediate states and solving simultaneous
equations. Even if there are only two intermediate states (j and

m), we can solve the equations |jΛpg||mΛpg| =
∣

∣

∣
G(p, Ωjm)

∣

∣

∣
and

|jΛpg|2 + |mΛpg|2 = |G(p, Ω = 0)|. For the long pulse limit to

ionizing all the electrons on the bound state
∣

∣

∣
ej

〉

via the second

pulse, namely,
∫

|2Upj|2dp = 1, we can get the population on

the bound state
∣

∣

∣
ej

〉

as

|1Ujg|2 =
∫

|jΛpg|2dp. (6)

Table 1. Comparison between average results obtained from
the method of reconstruction with the actual value. The
reconstructed values are obtained via the reconstructed
scheme. The exact values are given by numerically solving
Eq. (1) for the first pulse.

Samples

Population States

ground
first

excited

second

excited

third

excited

He

150nm

1cycle

Method(%) 63.58 11.88 15.17 1.944

Exact(%) 63.42 11.55 15.58 1.911

Relative Error(%) 0.2470 2.904 2.627 1.727

100nm

2cycles

Method(%) 45.93 40.56 7.450 0.3070

Exact(%) 45.94 38.96 7.418 0.2892

Relative Error(%) 0.03193 4.108 0.4269 6.270

H

150nm

1cycle

Method(%) 31.82 54.39 3.578 2.291

Exact(%) 31.50 53.15 4.407 2.886

Relative Error(%) 1.028 2.329 18.83 20.63

100nm

2cycles

Method(%) 67.66 23.40 0.2840 3.231

Exact(%) 67.22 22.66 0.2840 3.769

Relative Error(%) 0.6643 3.257 0.00128 14.26

With the reconstructed scheme, we compare the recon-
structed populations on different bound states with the actual
populations at the end of the first pulse from the exact numer-
ical calculation. The details of the comparison are shown in
Table 1 for both helium and hydrogen where the soft-core pa-
rameter in Eq. (1) is chosen as a2 = 2 for the singly charged
hydrogen. Table 1 shows the populations of four bound states
for a total of four samples including two atoms and two laser
pulses. Here we only choose 4 lowest levels as an example, the
distribution of the remaining populations is mainly in the con-
tinuum states and partly in higher lying bound states. Owing to
the property of Discrete Fourier Transform, the frequency gap
after Fourier Transform is ∆Ω = 2π/(N△Td) = 2π/(4530 −
1000) = 0.00178 a.u., where N and △Td represent the number
of sampling points and sampling interval, respectively. Addi-
tionally, the results of reconstruction are the average of C3

4 = 4
situations because we can solve the populations for every three
states. In the simulation, we do not consider any decay of
the bound states, noticing that the lifetime (10−9s) of excited
states in atoms and molecules is far longer than the time scale
of the current scheme (10−13s). From the table, we know that
all the results of more populations are accurate, where most
of the relative errors are below 5%. Moreover, the reconstruc-
tion of hydrogen is not as accurate as helium. The only reason
is the ionization potential of H (IP = 0.5a.u.) is smaller than
He (IP = 0.9a.u.), leading to less effective points IP/∆Ω in the
range of the ionization potential.

In view of the deviation of the result, we further study its ac-
curacy. Taking the first sample as an example, namely, helium
atom exposed to a 150nm laser pulse with 1 optical cycle, we
plot the reconstructed populations in Fig. 3 (a) where the mod-

ulus
∣

∣

∣
G(p, Ωjm)

∣

∣

∣
is chosen as the maximum value in the neigh-

bor of Ωjm =
∣

∣

∣
ε j − εm

∣

∣

∣
. Obviously, the populations of ∆Ω =

0.00178 a.u. are more concentrated around the actual value than
∆Ω = 0.00712 a.u., whereas the results of ∆Ω = 0.00356 a.u. are
spread out, as shown in Fig. 3 (a). This is entirely due to the fact
that the function δ[Ω − (εm − ε j)] is discrete rather than contin-

uous. Additionally, taking the area of the |G(p, Ω)|2 instead of
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a point, we reselect
∣

∣

∣
G(p, Ωjm)

∣

∣

∣
as the 0.5th power of the sum

of the square of a left point and a right point of Ωjm, that is,
∣

∣

∣
G(p, Ωjm)

∣

∣

∣
=

√

∣

∣

∣
G(p, Ωjmleft)

∣

∣

∣

2
+

∣

∣

∣
G(p, Ωjmright)

∣

∣

∣

2
. The corre-

sponding reconstructed populations are plotted in Fig. 3 (b).
Compared with the results of Fig. 3 (a), the populations are
more concentrated around the average values. More impor-
tantly, the accuracy is getting better with the decreasing ∆Ω.
Consequently, it’s indeed an effective way to improve accuracy
by increasing the effective delay time length to reduce the fre-
quency gap ∆Ω.
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Fig. 3. The reconstructed populations of the first sample for
three different frequency gap ∆Ω, 0.00712 (green), 0.00356
(blue), 0.00178 (red) a.u.. The points represent the average val-
ues, while the error bar represents the maximum and mini-
mum values. The dashed lines depict the exact values given

by numerically solving Eq. (1). The modulus
∣

∣

∣
G(p, Ωjm)

∣

∣

∣
is

chosen as the maximum value in (a) and the mean value in (b).

In summary, we designed the frequency-resolved photon-
electron spectroscopy to detect the population on the excited
states for atoms under impact of the strong laser pulse. With the
numerical simulation, we showed the typical FRPE spectrum
with two main features for helium, and explained their physical
origins. With the spectrum, we presented the detailed scheme
to reconstruct population, and validated the scheme with He-
lium as the example. The current scheme shows a good agree-
ment between reconstructed value and the exact value. How-
ever, to experimentally demonstrate the Fourier transform, it’s
important to establish the phase stability between two pulses.
Currently, the stable phase between different color pulses in the
experiment [36, 37, 44] have been achieved for weak fields.
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