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The dynamical effects on electron-positron pair creation from a vacuum caused by the switching processes of a super-
critical well potential are investigated in detail. The results show that only when the switching on and switching off time
both increase will the final pair yield converge to the integer of embedded bound states nearly exponentially. But a single
adiabatic switching on or switching off cannot lead to an integer pair yield. If the potential is turned on abruptly, associated
with the discrete and embedded bound states, there is multi-frequency oscillation around the pair number’s saturation. The
slowly switching on can suppress the amplitude of this oscillation and reduce the final pair yield. The switching off can also
reduce the final pair number in the same order of magnitude. The evolution of a single-pair number shows a robust long
range correlation between particle and antiparticle. For an adiabatic switching case, the single-pair dominates the early pair
creation, their upper limit value is equal to the integer, and these single-pairs will totally disentangle during the switching
off.
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1. Introduction

The possibility of electron–positron pair creation from a
vacuum due to an extremely strong external field is an im-
portant prediction of quantum electrodynamics.[1] Pairs have
been generated by the relativistic heavy-ion collisions[2] or
the collision of an intense laser pulse and a 46-GeV electron
beam.[3] However, a direct conversion from energy to mat-
ter, i.e., electron–positron pair creation from pure intense laser
light, has not been observed yet. In light of the rapid advance
of laser technology,[4] a good theoretical understanding of the
pair creation in a strong field becomes highly desirable.

Theoretically, in a super-critical potential, electrons from
the negative continuum will fill the empty embedded bound
states (EBSs) once they are degenerated, and the Pauli princi-
ple will prevent further occupation. The holes left in the Dirac
sea are identified as positrons. The number of pairs created
should be the number of the EBSs. However, it was found that
in an abruptly turned on super-critical well potential, the final
pair number is not an integer, but is greater than the number
of the EBSs. The small excess amount was attributed to the
non-adiabatic turn on and partially occupied subcritical bound
states.[5–8] The authors addressed that if the potential is turned
on slowly enough the final pair number will be precisely equal
to the number of the EBSs; however, the dynamical behaviors
caused by the turn on or turn off of a super-critical potential

have not been studied in detail yet.
Experimentally the external field is always time depen-

dent, and the creation process must be treated with time effects
being taken into account. Similar to the charge resonance en-
hanced ionization of molecular physics,[9–11] bound states (for
example, supported by a super strong nuclear Coulomb field
characteristic of two colliding high-Z ions) play an important
role in the pair creation process.[12,13] Without losing gener-
ality, we choose a one dimensional well potential to study the
dynamical effects with bound states existed. This model, de-
fined by two Sauter potentials, can be realized in principle by
two localized electric fields that have identical intensities and
frequencies, but phases differ by a shift of π , though a possible
experimental set-up would be more complicated.

In this paper, for a supercritical well potential with fixed
holding on duration, we study how the turn on and turn off
determine the pair creation process. We examine whether and
how the pair number saturate to the integer when the potential
well is turned on or turned off slowly enough. Close atten-
tion is paid to the relation between pair number evolution and
the EBSs. The entanglement between a single electron and
positron pair is also studied for a better understanding. We use
the space–time resolved numerical method which has been in-
troduced recently (for a review see Ref. [14]). This method
works for arbitrary spacial and temporal field construction,
and provides information inside the interaction zone. It has
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contributed to the resolution of various conceptual problems
such as the Zitterbewegung,[15] the Klein paradox,[16] as well
as the fermion pair creation.[5–8,12]

This paper is organized as follows. In Section 2, we intro-
duce the model and numerical method. In Section 3, numerical
results are shown and discussed. First, the well-known adia-
batic limit is examined. Then the effects of turn on, turn off,
and their combinations are studied sequentially. We also ex-
amine the single-pair number evolution. In the last section we
give a brief summary and discussion.

2. Model and method
The Sauter-like well potential is defined as

V (z, t) =
V0 (t)

2

[
tanh

(
z−W/2

D

)
− tanh

(
z+W/2

D

)]
, (1)

where D is the extension of each edge, W is the total width.
The corresponding electric field is

E (z, t) =
V0 (t)

2D

[
sech2(

z−W/2
D

)− sech2(
z+W/2

D
)

]
.

We set D = 0.3λC and W = 4.55λC. λC is the Compton wave
length of electron, λC = 1/c. The atomic units (short as a.u.)
are used: m = h̄ = e = 1, c = 1/α . α is the fine-structure con-
stant. We choose the potential depth as V0 (t) = 2.53c2 f (t),
where f (t) is a piecewise function of time t:

f (t) = sin2
(

π

2Ton
t
)
, 0 < t < Ton,

f (t) = 1, Ton ≤ t ≤ T +Ton,

f (t) = cos2
(

π

2Toff
(t−T −Ton)

)
, T +Ton < t < Ttotal.
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Fig. 1. (a) The energy spectrum of the total Hamiltonian as a function of the
depth. The vertical blue line denotes V0 = 2.53c2. (b) V0(t) as a function of
time. Left and right empty triangles (at t1 and t4) mark the times when the
bound state dives and leaves the Dirac sea. Left and right filled triangles (at
t2 and t3) separate the three time regions.

The energy spectrum of the total Hamiltonian Ĥ = c𝜎1 ·
�̂�z + c2𝜎3 +V (z, t) for each depth of the potential are pre-
sented in Fig. 1(a). It was shown that when V0(t1) = 2.22c2 the

lowest bound state dives into the negative continuum and the
potential becomes super-critical. As shown in Fig. 1(b), there
are three time regions separated by the left and right filled tri-
angles (at t2 and t3). The first and third regions (Ton and Toff)
are the turn on and off processes. During the second region T ,
between t2 and t3, Ton ≤ t ≤ T +Ton, V0 = 2.53c2, there exists
one bound state embedded in the Dirac sea at E =−1.31c2. In
this paper we set T as a constant T = 0.012. The total time is
Ttotal = T +Ton +Toff.

In the following we will briefly review the numerical
method based on constructing a field operator by a single par-
ticle wave function of the Dirac equation. The field operator
Ψ̂(z, t) can be expressed in terms of the electron annihilation
and positron creation operators as[14]

Ψ̂ (z, t) = ∑
p

b̂pWp (z, t)+∑
n

d̂†
nWn (z, t)

= ∑
p

b̂p (t)Wp (z)+∑
n

d̂†
n (t)Wn (z) , (2)

in which Wp(n) (z) = 〈z|p(n)〉 is the solution of the field-free
Dirac Hamiltonian Ĥ0 =

[
c𝜎1 · �̂�z + c2𝜎3

]
, and the term ∑p(n)

denotes the summation over all states with positive (negative)
energy. In order to cut down computation costs, the Dirac ma-
trices are reduced to Pauli matrices since the spin is invari-
ant here. The time dependent single particle wave function
Wp(n) (z, t) can be obtained by introducing the time-evolution
operator

Û (t2, t1) = T̂ exp
[
− i

h̄

∫ t2

t1
dt ′Ĥ

(
t ′
)]

,

where T̂ denotes the Dyson time ordering operator. We
use the numerical split operator technique[17,18] to compute
Wp(n) (z, t) = Û (t, 0)Wp(n) (z). The number of electrons cre-
ated from the vacuum ( defined as b̂p ‖vac〉= 0, d̂n ‖vac〉= 0)
is obtained from the positive part of the field operator,

Nel. (t) =
∫

dz〈vac‖Ψ̂ (+)† (z, t)Ψ̂ (+) (z, t)‖vac〉

= ∑
p
〈vac‖ b̂†

p (t) b̂p (t)‖vac〉

= ∑
pn

∣∣Upn (t)
∣∣2 , (3)

where

Ψ̂
(+) (z, t) = ∑

p
b̂p (t)Wp (z) ,

Upn (t) =
〈
Wp (z) |Wn (z, t)

〉
=
∫

dzW ∗p (z)Wn (z, t) .

Because electron and positron are always generated in pairs,
the pair number N(t) and positron number Npo. (t) are equal
to the electron number Nel. (t). We should point out that each
N(t) is obtained by projecting the time dependent single par-
ticle wave functions |Wn (t)〉 onto the field-free positive eigen-
states

∣∣Wp
〉
, as a result N(t) is actually the pair number if the

field is turned off abruptly at time t.
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3. Dynamical effects of switching
3.1. Pair yield in the adiabatic limit

In this subsection, we study the combined effects of
slowly turn on and turn off, with Ton = Toff fixed. During
the second time region T , this super-critical field can trig-
ger the spontaneous creation of electron-positron pairs from
a vacuum. If the potential is turned on abruptly (Ton = 0, blue
curve in Fig. 2), as discussed in Ref. [5], the growth of the
pair number can be characterized by four distinct regimes in
time. In the fourth regime, t � 1/c2 +W/c, the pair number
undergoes an asymptotic behavior and saturates to a number
larger than the number of EBSs.[5–8] For potential parame-
ters in this work and the potential duration T = 0.012, this
number is N ≈ 1.259 when t = t3, point A on the blue curve
in Fig. 2. We also compute N(t) for different Ton = Toff: in
case B (Ton = Toff = 10/c2), C (Ton = Toff = 50/c2), and D
(Ton = Toff = 100/c2). Pair number N(t) at time points as
marked in Fig. 2 are listed in Table 1. From points A, B3,
C3, and D3, we can see that the turn on can reduce the pair
number. After B3, C3, and D3, the pair number N(t) decreases
in the turning off process. As shown in the last column of the
table, more slowly turning on and turning off, more closely the
final pair number reaches 1 (number of EBSs, no spin consid-
ered).
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Fig. 2. (color online) Pair number N(t) as a function of time for different
Ton = Toff. T = 0.012 is fixed. The empty and filled triangles mark the
moments t = t1, t2, t3, t4 in Fig. 1.

Table 1. Pair number N(t) at time points (use ’P’ for short in this table)
in Fig. 2.

P N(t) P N(t) P N(t) P N(t) P N(t)

– – – – A 1.259 – – – –
B1 0.098 B2 0.165 B3 1.145 B4 1.094 B5 1.030
C1 0.115 C2 0.452 C3 1.133 C4 1.054 C5 1.004
D1 0.124 D2 0.658 D3 1.131 D4 1.056 D5 1.001

The final pair number NF behavior as a function of Ton =

Toff is shown in Fig. 3. The pairs surviving the turn off can
converge to 1 nearly exponentially as Ton = Toff increases. So,

one can get a final pair number precisely equal to the integer of
EBSs by turn on and turn off both adiabatically. Another nu-
merical evidence is shown in Ref. [19]. There, more EBSs are
involved. A single quasi-adiabatic sinusoidal pulse can pro-
duce integer pairs. The abrupt changes of the final pair num-
ber locate at the critical depths or widths where each discrete
bound state dives into the Dirac sea.

                                              

T
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Fig. 3. (color online) log10(NF− 1) as a function of Ton = Toff. NF is the
value of N(t) at the end of Toff. T = 0.012 is fixed. When Ton = Toff =
200/c2, (NF−1) is 7.00×10−5.

3.2. Effects of slow turn on

In this subsection we fix Toff = 0 and analyze the effect of
the turn on process. A bound state dives into the Dirac sea and
the potential becomes critical at t = t1, indicated by the left
empty triangles in Fig. 2. Although the potential is subcriti-
cal before t = t1, N(t) are non-zero due to the time effect.[20]

Pair numbers are 0.098, 0.115, 0.124 (points B1, C1, D1) re-
spectively. The reason for this monotonic increasing behav-
ior is that for larger Ton the creation time is longer. We can
expect that N(t) can come to its halt within Ton if Ton is ex-
tremely large. When the potential is completely turned on, at
points B2, C2, D2, there are more pairs for larger Ton. The
four characterized time regimes for curve 𝐴 are destroyed if
Ton > 0. In the very early time regime, a quartic growth can
be observed, N = ∑n,p |〈n|V |p〉|2 t2 ∼ t4. The following pro-
cess within Ton depends on the function of turning on, which
is sin2 ((π/2Ton)t

)
here.

The potential hold on static during T , and pair numbers
approach to its final values NF at t = t3. NF decreases as Ton

increases. Now, we come to a question: when Ton is large
enough, can NF equal 1, the number of EBSs? The simula-
tion results are shown in Fig. 4. Strangely, as Ton increases,
NF converges to 1.131 quickly. Here T is fixed to a constant
T = 0.012. If we extend T , NF will get a larger value, as we
will discuss later for Fig. 5. The number 1.131 also depends
on the concrete parameters of the potential well. So the slow
turn on can reduce the pair number, but cannot get a pair num-
ber precisely equal to the integer of EBSs. In Refs. [5]–[8] the
excess amount is attributed to the partially populated discrete
bound states located in the gap. In our opinion, the excess
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amount is associated with the virtual particles which have no
time to annihilate, as discussed at the end.
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Fig. 4. (color online) log10(NF−1) as a function of Ton. NF is the value of
N(t) at the end of T . T = 0.012 and Toff = 0 are fixed. When Ton = 200/c2,
(NF−1) is 0.131.

To understand the way in which N(t) approaches to its fi-
nal value NF at t = t3 and how it is affected by the slow turn on,
we refer to the energy spectrum. During T , the system has one
bound state embedded in the Dirac sea at E = −1.31c2, and
four discrete bound states in the gap−c2 <E < c2. The lowest
discrete bound state is at E =−0.84c2, see Fig. 1. Then oscil-
lation of N(t) with two frequencies can be expected: (i) from
each edge of the well, the electrons created at E = −1.31c2

with speed v= 0.85c, can reach another edge after a time of or-
der of W/v = 2.9×10−4, suppress the creation process there,
and then be reflected; and (ii) employing an effective two level
model,[21] the gap between the lowest bound state and the
Dirac sea upper limit (∆E =

(
−0.84c2

)
−
(
−c2

)
= 0.16c2) de-

termine another oscillation with period 2π/∆E = 2.1×10−3.
In Fig. 5(a), to clearly show how N(t) approach to its NF

in Fig. 2, we move curves B, C, D to make all right full trian-
gles located at the same point. Obviously, for Ton = 0, there
are two frequency oscillations with periods T1 = 3.2× 10−4

and T2 = 2.1× 10−3. The oscillation T1 matches the estima-
tion W/v = 2.9×10−4 with error about 10%. The error can be
attributed to the previous process when the EBS going down
to E =−1.31c2 from the Dirac sea upper limit E =−c2. The
oscillation T2 matches the estimation 2π/∆E = 2.1×10−3 pre-
cisely. As shown in the figure, the oscillation T1 can be sup-
pressed by slow turn on, because the electrons created earlier
have a significant proportion and their speeds cover from zero
to v = 0.85c. For larger Ton, the oscillation T2 is suppressed
too.

The long time behavior of the pair creation can be de-
scribed by an exponential saturation, which is determined by
the widths of the EBSs.[6] In all the simulations here, the expo-
nential saturation has no difference because the systems are the
same during the time region T . In Fig. 5(b), we plot NF−N(t)
as a function of time. The exponential decay of NF −N(t)
can be fitted by exp

(
−Γ t

)
, where Γ can be obtained from

the complex coordinate scaling technique.[6] Thus in a word
briefly, the pair number evolution at time region T can be char-
acterized by an exponential saturation accompanied by a two

frequency oscillation, and the oscillation can be suppressed by
the slow turn on while the exponential saturation remains ro-
bust.
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Fig. 5. (color online) (a) Curves B, C, D in Fig. 2 are moved to make their
right full triangles locate at the right full triangle of curve A for comparison.
(b) For every case the final pair number NF minus its N(t) is shown to il-
lustrate the exponential saturation. The empty and filled triangles mark the
moments as described in Fig. 1.

3.3. Effects of slow turn off

In this subsection we fix Ton = 0 and analyze the effect
of the turn off process. Pairs annihilate during Toff. It seems
that (NF−1) will vanish continuously as Toff increases. Actu-
ally, as figure 6 shows, the final pair number NF will converge
to 1.136 quickly in the same way as NF converges to 1.131 in
Fig. 4. Here 1.136 is approximately equal to the value 1.131.
No matter how long Toff is, an abruptly turned on potential well
can only provide a larger pair yield than the number of EBSs
which depends on the duration T and potential configuration
parameters.
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Fig. 6. (color online) log10(NF−1) as a function of Toff. NF is the value of
N(t) at the end of Toff. Ton = 0 and T = 0.012 are fixed. When Toff = 200/c2,
(NF−1) is 0.136.
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3.4. Combined effects of slow turn on and turn off

For different sets of (Ton,Toff), final pair numbers NF are
listed in Table 2. The decreased amounts caused by Ton or Toff

are in the same order of magnitude, and the table is on diago-
nal symmetry. Figure 3 shows asymptotic behavior along the
diagonal of the table. Up to the numerical precision, the fi-
nal pair number for (Ton, Toff) = (10,50), (10,100), (50,100)
are equal to that for (50, 10), (100,10), (100,50) respectively.
On the other hand, if the total time is fixed, we should set
Ton = Toff to get a reasonable pair yield. For example, when
Ton+Toff = 100, if (Ton,Toff) = (50,50), the final total number
is 1.003603, the deviation from 1 is no more than 0.4%, far
less than the 13% when (Ton,Toff) = (100,0) or (0,100).

Table 2. The final pair number NF for different sets of (Ton, Toff).
T = 0.012 is fixed.
XXXXXXXXToff/c2 Ton/c2

0 10 50 100

0 1.259156 1.150411 1.137880 1.136583

10 1.145043 1.030028 1.016886 1.015523

50 1.132511 1.016886 1.003603 1.002187

100 1.131215 1.015523 1.002187 1.000746

3.5. The single electron-positron pairs

To get a deeper insight of the pair number evolution, we
compute the single electron-positron pair number,[5,15,22]

P1(t)≡
∫∫

dxdy |Φ (x,y, t)|2 ,

where Φ (x,y, t)≡ 〈vac‖Ψ̂ (+) (x, t)Ψ̂ (+)
c (y, t)‖vac〉 is the sin-

gle electron-positron pair wave function and the subscript c
denotes the charge conjugation operation. In the early pro-
cess, Φ (x,y, t) contains all the information about creation. The
single-pair number P1(t) is equal to the total pair number N(t).
As time increases, multiple pairs are created, and single-pair
number P1(t) becomes less than total pair number N(t).[22]

If the potential is quickly turned on, for example, see curves
Ton = 0 (as discussed in Ref. [5]) and Ton = 10/c2 in the above
panel of Fig. 7, P1(t) even suffers a shrink because some elec-
trons become disentangled with corresponding positrons.

For larger Ton, P1(t) comes to a halt in time region T .
As Ton increases, the single-pair will dominate the pair cre-
ation on an even longer time scale within Ton, and multiple
pairs are created much later. Since the electrons are trapped in
the well and positrons are ejected, this also illustrates a robust
long range correlation between particle and antiparticle. The
halt number of P1(t) approaches to 1 (number of EBSs) for
extremely large Ton, as Ton = 2000/c2, shown in Fig. 7.

In time region Toff, single-pairs cannot survive. The dis-
entanglement makes P1 decrease, and finally shrink to zero.

Then the accompanied pair annihilation lead to that N(t) ap-
proach to 1. Therefore, the decreasing of total pair number
N(t) in time region Toff is associated with the disentangling
process of the single-pair and the consequent annihilation of
particle-antiparticle pairs.
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Fig. 7. (color online) P1 as a function of time for different Ton = Toff. (a)
Ton = Toff = 0, 10/c2, 50/c2, and 100/c2. (b) Ton = Toff = 500/c2, 1000/c2,
1500/c2, and 2000/c2. The field duration is always T = 0.012. The empty
and filled triangles mark the moments as described in Fig. 1.

4. Summary and discussion

In summary, using a space–time resolved numerical
method, we have studied the dynamical effects of electron-
positron pair creation caused by switching processes of super-
critical well potential with bound states embedded in the Dirac
sea. Due to the single-pair disentanglement and electron–
positron annihilation process, the final pair number can con-
verge to the integer of embedded bound states nearly exponen-
tially as Ton and Toff both increase. In the adiabatic limit, all
early pairs are created in the form of single electron–positron
pairs, and the single-pair number will approach to the number
of embedded bound states during the holding on of the poten-
tial. We also have found that the decreased amounts of final
pair number caused by Ton and Toff are in the same order of
magnitude, and the oscillations which were superposed on the
pair number’s exponential saturation can be suppressed by Ton.

Finally, let us review the definition of the pair number in
Eq. (3). The time-dependent operator and the initial field free
operator are connected through the Bogoliubov transforma-
tion, similar to the quantum kinetic theory (QKT) based on the
quantum Vlasov equation.[23,24] The total pair number N(t)
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here, as in QKT, is actually a mixture of real and virtual exci-
tation at finite time. It is presently still an unresolved concep-
tual problem to distinguish real and virtual excitation as long
as the field is non-vanishing in various theoretical approaches.
Here in this model, in light of the well-known knowledge of
the adiabatic limit, i.e., the convergence of the pair yield to
the integer of embedded bound states, an estimation of virtual
excitation is feasible. It is the excess amounts more than the
integer, one order of magnitude smaller than the real excitation
in this case, and it can be suppressed by slow switching.
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