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We investigate Landau-Zener-Stückelberg-Majorana (LZSM) interferometry in a nonlinear two-level system
subjected to a sinusoidal driving field. A comprehensive analysis for the interference patterns is shown from
which we can analytically obtain the condition of constructive and destructive interferences in some cases. In the
presence of nonlinear interaction, the level structure is changed, which can lead to an asymmetric deformation
of the interference patterns and a significant position shift of the interference fringes. Our findings suggest
an application of the nonlinear LZSM interferometry in accurately calibrating the parameters characterizing a
nonlinear two-level system, as well as its coupling with the driven fields.
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I. INTRODUCTION

The quantum two-level (TL) model plays an important role
in describing various physical systems. The famous Landau-
Zener (LZ) transition is often known as the transition between
two levels at an avoided crossing [1,2]. When one imposes
strongly periodic driving on a TL system, a sequence of LZ
transitions occurs and the physical observables exhibit periodic
dependence on the phase (known as the Stückelberg phase)
accumulated between the transitions [3,4]. This periodicity
(illustrated by interference fringes) is called Stückelberg oscil-
lations, which provide the basis of Landau-Zener-Stückelberg-
Majorana (LZSM) interferometry [5–7]. The increasing atten-
tion is focused on LZSM interferometry because it can be
used to characterize qubit dephasing [8], probe the coherent
coupling of two dopants in a silicon nanowire [9], realize
ultrafast quantum control of a qubit [10], and so on. In the
last few decades, LZSM interference has been studied in a
number of physical systems and served as a textbook model
for quantum phenomena [5], such as the studies on related
LZSM interference or Stückelberg oscillations in semiconduc-
tor superlattices [11,12], superconducting quantum point con-
tacts [13], superconducting qubits [14], magnetic molecules
[15,16], molecular nanomagnets [17–19], nitrogen vacancy
centers in diamond [20,21], quasi-one-dimensional layered
materials [22,23], ultracold molecules [24,25], Rydberg atoms
[26], Bose-Einstein condensates (BEC) [27,28], etc. Recently,
the effects of quantum noise on LZSM interferometry [29],
the spatial LZSM interference [30], the pseudo-Hermitian
LZSM model [31], and the exactly solvable model for LZSM
interferometry [32] have been investigated.

Most of works on LZSM interferometry were addressed
with LZ theory considering either no particle-particle interac-
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tion or weak interaction. However, when we discuss LZSM,
for example, in atomic BEC systems, the many-body effect
of atom-atom interaction should be taken into account, and
this interaction in some cases is very strong. A variety of non-
linear interactions between particles may produce unexpected
quantum tunneling [33–35] and interference [36–38] features.
For instance, it was shown that the frequency shift of the
interference fringes strongly depends on the type and strength
of the particle interaction [38]. In this paper, we study the
influence of the nonlinear interaction on LZSM interferometry
by employing a nonlinear periodic driven two-level model
which can be used to describe a two-mode (or double-well)
atomic BEC system at a mean-field level [39,40]. It is found
that the symmetry, the position, the width, and the intensity
of the interference fringes are sensitive to the nonlinear
interaction and can be strongly modified by the nonlinear
interaction. These effects provide good opportunity to pre-
cisely measure the interaction between particles in many-body
systems and the coupling between such systems and external
control fields.

The paper is organized as follows. In Sec. II we describe the
model that we adopt, namely, the periodically driven nonlinear
two-level model. In Sec. III we present the main results of this
paper. The nonlinear LZSM interferometry is categorized into
four cases, namely, weak-coupling, strong-coupling, weak-
driving, and strong-driving limits. Finally, we briefly discuss
the experimental possibility of our theoretical findings and
summarize the results in Sec. IV.

II. NONLINEAR TWO-LEVEL MODEL

The model Hamiltonian of a nonlinear two-level system
under temporally periodic driving reads (h̄ = 1) [33,34]

H (t) = �

2
σ̂x + γ (t) + c(|b|2 − |a|2)

2
σ̂z, (1)
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FIG. 1. Time evolution of the energy levels for different offsets:
(a) ε0 = 0 and (b) ε0 = 5. The time-dependent adiabatic energy levels
(i.e., � = 1) are plotted by the thick dashed-dotted or dashed lines,
while the diabatic energy levels (i.e., � = 0) are shown by the thin
solid lines. The parameters A = 10 and ω = 1 are used.

where a and b are the probability amplitudes, and σ̂l=x,z

denote the Pauli matrices. The Hamiltonian is characterized by
three parameters: the tunneling amplitude �, the monochro-
matic driving field γ (t) = ε0 + A sin ωt (with amplitude A,
frequency ω, and offset ε0), and the nonlinear parameter c

describing the dependence the level energy on the populations.
The dynamics of the system is governed by the dimensionless
Schrödinger equation

i
d

dt
φ(t) = H (t)φ(t), (2)

where φ(t) = [a(t),b(t)]T is the two-component vector. Here
we have adapted the natural basis for spin operators σ̂l ,
namely, the diabatic basis {|↑〉,|↓〉}, which is formed with
the eigenstates of σ̂z: σ̂z|↑〉 = +|↑〉, σ̂z|↓〉 = −|↓〉. It is noted
that these states would be the eigenstates of the Hamiltonian
if � = 0. The adiabatic basis consists of the instantaneous
eigenstates of the time-dependent Hamiltonian: H (t)|ϕj (t)〉 =
Ej (t)|ϕj (t)〉 with j = 1,2, . . . , where the eigenenergies Ej (t)
are determined by the quartic equation

4∑
l=0

αlEj (t)l = 0, (3)

with the coefficients α0 = −c2�2/16, α1 = −c�2/4, α2 =
(c2 − �2 − ε2

0 − 2Aε0 sin ωt − A2 sin2 ωt)/4, α3 = c, and
α4 = 1. The adiabatic energy levels of the system cor-
responding to the eigenenergies are illustrated in Fig. 1
with � = ω = 1 and A = 10. In the nonlinear case with
c/� = 3, the loop structures appear at the lower energy level
for both ε0 = 0 and ε0 = 5. In the loop structure regions, the
number of the eigenvalues Ej is more than two and thus the
corresponding eigenstates are not orthogonal to each other.
The avoided-level crossings or the loop structures occur
at times t1,2 + 2nπ/ω [with n being an integer, ωt1 =
arcsin(−ε0/A), and ωt2 = π − ωt1], where the minimum gaps
between the upper and lower adiabatic levels are �. At
these times, two diabatic energy levels cross and the system
undergoes sudden transitions.

FIG. 2. Population probability |a(t)|2 at time t = 50/� for an
initial preparation of the system in the state (a,b) = (0,1) at t0 = 0.
For numerical implementation, we have considered A/� = 2.5 with
different nonlinearities: (a) c/� = 0 and (b) c/� = 1.05.

III. NONLINEAR LZSM INTERFEROMETRY

For the driving system (1), we are interested in the time
dependence of the population probabilities in the upper and
lower energy levels. For n = 0 and n = 1, the model Hamilto-
nian H (t) describes a full cycle of the LZSM interferometry [5]
[see Fig. 1(b)], which includes three avoided-level crossings
at times t1, t2, and t3 = t1 + 2π/ω. Initially, if the nonlinear
system is prepared in the state |↓〉 [i.e., (a,b) = (0,1)] at time
t0 far from the left of t1, then the state splits twice at times t1,2

and recombines at time t3, and finally, we detect the occupation
probability, for instance, in the state |↑〉 (i.e., |a(t)|2) at time t

far from the right of t3.
The LZSM interference patterns can be destructive or con-

structive, which are determined by the relative phases (equal to
the areas between the upper and lower energy curves) acquired
during the two stages t ∈ [t1,t2] and t ∈ [t2,t3]. In Fig. 2, we
show the LZSM interference patterns formed by evolving the
system from t0 = 0 to t = 50/� with � = 1. For the linear
case [i.e., c = 0, see Fig. 2(a)], the interference pattern is of
axial symmetry structure. However, for the nonlinear case [i.e.,
c �= 0, see Fig. 2(b)], the axial symmetry of pattern is severely
damaged. This implies that the introduction of nonlinearity
in the system can strongly change the features of the LZSM
interferometry. Subsequently, we will divide our discussion
into four cases by comparing the characteristic frequency ω

of the driving field with A and � to explore the effects of the
nonlinearity on the interference properties.

A. Weak-coupling limit: � � ω

In the weak-coupling limit, the tunneling amplitude � is far
less than the driving frequency ω. Thus the adiabatic energy
levels at the cross points of the diabatic levels are nearly
degenerate. Under this condition, the tunneling between two
diabatic states |↑〉 and |↓〉 is weak enough to be neglected, i.e.,
|a(t)|2 � |a(t0)|2 and |b(t)|2 � |b(t0)|2. Based on this approx-
imation, we can transform the system from the Schrödinger
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FIG. 3. Time evolution of the population probability |a(t)|2 for
weak coupling with different nonlinearities: (a) c/ω = 0, (b) c/ω =
0.5, (c) c/ω = 1.0, (d) c/ω = 1.5, (e) c/ω = 2.0, and (f) c/ω = 2.5.
Olive solid lines indicate exact numerical results, while red dashed
lines are approximate analytical results. For implementation, we have
used A/ω = 10.5, �/ω = 0.05, and ε0/ω = 3.

picture to the Dirac picture by introducing the gauge transfor-
mation φ(t) = U (t)ϕ(t) with U (t) = exp{−i[ ε0

2 t − A cos ωt
2ω

+
c
2 (|b(t0)|2 − |a(t0)|2)t]σ̂z}, with ϕ(t) = [a′(t),b′(t)]T being the
new two-component vector of probability amplitudes. For the
initial state [a(t0),b(t0)] = [0,1], in the new basis the nonlinear
equation (2) becomes the linear form

i
d

dt
ϕ(t) =

(
0 �

�∗ 0

)
ϕ(t), (4)

with

� = �

2
eiθ(t), θ (t) = ε0t − A

ω
cos ωt + ct, (5)

where the symbol∗ indicates the complex conjugate.�denotes
the field-induced Rabi frequency which measures the effective
coupling between two diabatic states with a relative phase
θ . For a full cycle of LZSM interferometry, the accumulated
relative phase is approximate to

θd �
∫ t3

t1

(ε0 + c − nω)dt = 2π

ω
(ε0 + c − nω), (6)

(with n = 0,±1,±2, . . . ) which determines the properties of
the interference patterns. When θd = 2kπ for any integer
k, i.e., ε0 + c � (n + k)ω = mω (with m being an integer),
the interference patterns will be constructive. When θd �
(2k + 1)π , i.e., ε0 + c � (n + k + 1

2 )ω = (m + 1
2 )ω, the in-

terference patterns will be destructive. For example, in Fig. 3
we show the multicycle LZSM interference fringes. For c = 0,
1, and 2 [see Figs. 3(a), 3(c), and 3(e)], and the corresponding
ε0 + c = 3ω, 4ω, and 5ω, the constructive interference fringes
are seen. For c = 0.5, 1.5, and 2.5 [see Figs. 3(b), 3(d), and
3(f)], and the corresponding ε0 + c = (3 + 1

2 )ω, (4 + 1
2 )ω,

and (5 + 1
2 )ω, the destructive interference fringes are seen. It

should be mentioned that the exact results shown in Fig. 3
are obtained by numerical solving the nonlinear Eq. (2), while

the approximate solutions are given by directly calculating the
linear Eq. (4). We see that they are in good agreement for all
nonlinear cases.

B. Strong-coupling limit: � � ω

In this limit the coupling between two diabatic states is much
greater than the frequency of the driving field. This limit is
somehow equivalent to that of adiabatic evolutions Aω 
 �2.
Under this condition, the tunneling between the upper and the
lower adiabatic levels is small enough and can be neglected.
Consider the nonadiabatic regions in the vicinity of the points
t1,2, i.e., t = t1,2 + τ with ω|τ | 
 1, then the driving field γ

can be linearized as follows:

γ (t1,2 + τ ) � ±ατ, (7)

where the sweep rate of the control field α = Aω| cos ωt1,2| =
Aω

√
1 − (ε0/A)2. Applying this approximation and keeping

the notation t for the time instead of τ , the model Hamiltonian
(1) can be rewritten as

H (t) = �

2
σ̂x + αt + c(|b|2 − |a|2)

2
σ̂z. (8)

In order to show the efficiency of the above approximate
treatment for adiabatic evolutions, we solve the dynamical
equation (2) based on both Hamiltonian (1) and Hamiltonian
(8) for the initial state (a,b) = (0,1) from t0 = t1 − 0.02/α to
t = t1 + 0.02/α. The results demonstrate that the exact solu-
tions [obtained from Hamiltonian (1)] are coincident with the
approximate ones for all nonlinear cases [given by Hamiltonian
(8)] when the offset of the driving field is absent, i.e., ε0 = 0.
However, when the offset is nonzero, the consistency of the
two solutions is greatly reduced at the critical point c/� = 2.
Indeed, this critical point is determined by the condition that
the balance between the interaction energy and the tunneling
energy splitting is achieved [41].

When c/� < 2, the interaction energy is less than the
tunneling energy splitting and the harmonic Josephson os-
cillations between two diabatic states in the vicinity of the
avoided level crossings occur. When c/� > 2, the interaction
energy is larger than the tunneling energy splitting and the
macroscopic self-trapping phenomenon occurs, which implies
the time-dependent state of (1) is one-diabatic-state dominated
and thus the tunneling between two diabatic states is largely
suppressed [42]. In the adiabatic limit where �2 � α, for
weak nonlinearity (i.e., c/� 
 2) the fast and large population
transportation from one diabatic state to another at avoided-
level-crossing points leads to very weak transitions between
the adiabatic states. However, for strong nonlinearity (i.e.,
c/� > 2) the small population transportation between diabatic
states at avoided-level-crossing points results in apparent
transitions between adiabatic states and consequently, the
mixture of populations at avoided-level-crossing points makes
the nonadiabatic paths interfere.

C. Weak driving limit: A � ω

In the weak driving limit, we can employ
the Jacobi-Anger relation [43]: exp[±ix cos ωt] =∑∞

n=−∞ Jn(x)(±i)n exp[±inωt], where Jn(x) is the nth-order
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FIG. 4. LZSM interference patterns for weak driving with
different nonlinearities: (a) c/ω = 0, (b) c/ω = 3, (c) c/ω = 5,
(d) c/ω = 7, (e) c/ω = 9, and (f) c/ω = 11. Population probability
|a(t)|2 viewed as a function of �/ω and ε0/ω for A/ω = 0.05 from
the initial time t0 = 0 to t = 2π/ω.

Bessel function of the first kind with the argument x. By
substituting this relation back into Eq. (5) and adopting
the high-frequency approximation, Eq. (2) will be greatly
simplified. In fact, the contribution of the higher-order
Bessel functions is small enough and can be safely neglected
[44–46]. Thus we can only keep the dominating term (i.e.,
the zeroth-order Bessel function), and the field-induced Rabi
frequency is reduced to

� = �

2
J0

(
A

ω

)
ei(ε0+c)t . (9)

It must be mentioned that Eq. (9) is only valid under the con-
dition � 
 ω since we have used the approximation |b(t)|2 −
|a(t)|2 � |b(t0)|2 − |a(t0)|2 = 1. When �/ω → 0, we find
that the peaks of the resonances are located at the positions
ε0 = −c (see Fig. 4). Interestingly, in the linear case [see
Fig. 4(a)] for ε0 = 0 we see that the destructive interference
fringes are formed at � = kω. This relation describes the
multiphoton resonances, where the energy-level separation �

is a multiple of a photon energy ω. At the nonresonant points,
� = (k + 1

2 )ω and the constructive interference fringes are
formed. For ε0 �= 0, the interference pattern illustrates an axial
symmetry structure.

In the nonlinear cases [see Figs. 4(b)–4(f)], the asymmetry
of the interference patterns along the axis ε0 = 0 is seen and
the asymmetry can be enlarged as the nonlinearity increases.
For large � or c the tunneling between two diabatic states is en-
hanced so that the approximation |b(t)|2 − |a(t)|2 � |b(t0)|2 −
|a(t0)|2 = 1 cannot be applied. As a result, the nonlinear
terms c(|b(t)|2 − |a(t)|2) can strongly modify the interference
properties. To describe the asymmetric behavior quantitatively,
we calculate the nonlinear LZSM interference patterns for
ε0 = 0 with different nonlinearities and illustrate the results in
Fig. 5. Clearly, the oscillations can be divided into two types:
strong oscillations (i.e., |a(t)|2 ∈ [0,1]) and weak oscillations
(i.e., |a(t)|2 ∈ [0,0.2]). The boundary between these two kinds
of oscillations is given by c/� = 2, which corresponds to

FIG. 5. Nonlinear LZSM interference patterns for weak driving
at ε0 = 0. Population probability |a(t)|2 viewed as a function of �/ω

and c/ω for A/ω = 0.05 from the initial time t0 = 0 to t = 2π/ω.
Black dashed-dotted line (with slope 1/2) is plotted to denote the
boundary between strong and weak oscillations.

the critical point of self-trapping phase transition discussed
previously.

D. Strong-driving limit: A � ω

In this limit, the amplitude of the driving field A greatly
exceeds the driving frequency ω and the level splitting between
two adiabatic states such that the condition Aω � �2 is always
met. In this fast-driving case, we can write the field-induced
Rabi frequency as follows:

� = �

2

∞∑
−∞

Jn

(
A

ω

)
(−i)nei(ε0+c−nω)t . (10)

It is easy to find that the resonance condition in the limit
�/ω → 0 is given by ε0 = nω − c. To show the fast-driving
LZSM interferometry, we calculate the time-averaged upper
diabatic state occupation probability, i.e., 1

t−t0

∫ t

t0
|a(t ′)|2dt ′

with t0 = 0 and t = 50π/ω. The numerical results for A/ω =
50 with different nonlinear interactions are illustrated in
Fig. 6. When �/ω → 0 several multiphoton resonances at
ε0 = nω − c (with n = −4,−3, . . . ,4,5) are shown. When the
coupling between two diabatic states increases, we find that the
multiphoton-resonance peaks are broadened.

We emphasize that the introduction of the nonlinear inter-
actions not only changes the resonance positions for weak
coupling but also changes the shape of the resonant peaks.
To see the details of these two effects, we evolve the system
from t0 = 0 to t = 8.5π/ω with the same initial state used
previously. For A/ω = 10.5 and �/ω = 0.05, we show the
interference patterns in Fig. 7(a), which give the dependence
of the final upper diabatic state occupation probability |a(t)|2
on c/ω and ε0/ω. Moreover, we illustrate the profiles for
ε0/ω = 0 and ε0/ω = 6 in Figs. 7(b) and 7(c), respectively. In
Fig. 7(a) it is seen that the amplitudes of the resonance peaks are
different and the numbers for multiphoton resonance have an
upper limit (e.g., the maximum n for ε0 = 0 is 13). These two
features are very different from those observed in the time-
averaged interference patterns. For ε0/ω = 6 [see Fig. 7(c)]

013601-4



NONLINEAR LANDAU-ZENER-STÜCKELBERG-MAJORANA … PHYSICAL REVIEW A 98, 013601 (2018)

FIG. 6. LZSM interference patterns for strong driving with dif-
ferent nonlinearities: (a) c/ω = 0, (b) c/ω = 0.2, (c) c/ω = 0.4,
(d) c/ω = 0.6, (e) c/ω = 0.8, and (f) c/ω = 1. Time-averaged oc-
cupation probability 1

t−t0

∫ t

t0
|a(t ′)|2dt ′ (with t0 = 0 and t = 50π/ω)

viewed as a function of �/ω and ε0/ω for A/ω = 50.

the existence of the upper limit leads to the disappearance of
the resonances in the nonlinear region c/ω > 7. The resonant
peaks for ε0/ω = 6 [see Fig. 7(c)] are those for ε0/ω = 0
[see Fig. 7(b)] moved to the left with 6ω along the c axis. In
particular, a distinct deviation between the exact results based
on Eq. (2) and the approximate solutions given by Eq. (4) in
the strong nonlinear region [see Fig. 7(b)] is shown, which is
caused by applying the approximation of c(|b(t)|2 − |a(t)|2) �
c(|b(t0)|2 − |a(t0)|2).

FIG. 7. (a) Nonlinear LZSM interference patterns. Final occupa-
tion probability |a(t)|2 (with t = 8.5π/ω) viewed as a function of
c/ω and ε0/ω for A/ω = 10.5 and �/ω = 0.05. We also show the
profiles of (a) with different ε0: (b) ε0/ω = 0 and (c) ε0/ω = 6. Olive
solid lines indicate exact numerical results, while red dashed lines are
approximate analytical results.

IV. DISCUSSION AND CONCLUSION

Our nonlinear LZSM interferometry may be realized
in double-well BEC systems. Under the mean-field ap-
proximation, these systems can be well described by the
Gross-Pitaevskii (GP) equation ih̄ ∂�(r,t)

∂t
= [− h̄2∇2

2m
+ V (r) +

g0|�(r,t)|2]�(r,t), where g0 = 4πh̄2asN

m
with as , N , and m

respectively being the s-wave scattering length, the total
number, and mass of the atoms. For the double-well potential,
the wave function can be expressed as a superposition of
the two states that localize in each well separately [39,40],
i.e., �(r,t) = α(t)ψ1(r) + β(t)ψ2(r). Indeed, the spatial wave
functions can be obtained by using the symmetric and anti-
symmetric stationary eigenstates of the GP equation, and they
satisfy the condition

∫
ψ∗

i ψjdr = δi,j with i,j = 1,2. When
consider a weakly linked BEC, the dynamics of the system is
governed by the following Hamiltonian:

H (t) =
(

ε1 + U |α|2 �

� ε2 + U |β|2
)

, (11)

where ε1,2 denote the zero-point energies for two wells, �

stands for the coupling strength between two wells, and U =
g0

∫ |ψ1|4dr � g0
∫ |ψ2|4dr describes the interaction between

atoms. It is easy to see that the Hamiltonian (11) is similar
to the model (1) for a correspondence between (�ε,�,U )
and (γ,�,c), with �ε = ε1 − ε2 being the energy bias. For
example, we consider the experiment with 87Rb BEC in
[47]. The coupling strength is determined by the spacing
between two wells or the height of the barrier. The atom-atom
interaction can be flexibly adjusted by employing a Feshbach
resonance technique. According to our theoretical proposal,
when one modulates the tilt of the double wells periodically,
the nonlinear LZSM interference fringes will be observed. By
measuring the position shift of the fringes in the strong-driving
limit, one can obtain the interaction strength and further obtain
the s-wave scattering length due to the proportional relations
between the three quantities.

Note that double-well BEC systems are not the only systems
one can use to realize our nonlinear LZSM interferometry.
Solid-state quantum devices or cold atoms in optical lattices are
also the systems as possible candidates. For superconducting
qubits [48–51], a nitrogen vacancy center in diamond [52], a
single hole confined in a gated double quantum dot [53], and
an atomic BEC in an optical lattice (with a two-band mini-
band structure) [54], the existing experiential results focused
mainly on the weak-coupling and strong-driving regimes.
However, in these systems, the nonlinear interaction between
particles is usually weak and can be ignored. Therefore, to
observe the effects of nonlinearity on LZSM, the systems
of atomic BEC in a double-well potential would be a good
choice.

In conclusion, we have investigated the nonlinear LZSM
interferometry and shown that both the nonlinear interaction
and the periodic driven field play an important role in the
formation of interference fringes. For high-frequency driving,
we have obtained the condition both of the constructive
interference and the destructive interference. It is found that
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the nonlinear interaction can change the level structure and
result in asymmetric deformation of the interference patterns
and a significant position shift of the interference fringes. Our
present work provides the basis for accurately calibrating the
parameters characterizing a nonlinear two-level system as well
as its interactions with the external driven fields by applying
the LZSM interferometry.
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