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Quantum step heights in hysteresis loops of molecular magnets
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We present an analytical theory on the heights of the quantum steps observed in the hysteresis loops of
molecular magnets. By considering the dipolar interaction between molecular spins, our theory successfully
yields the step heights measured in experiments, and reveals a scaling law for the dependence of the heights on
the sweeping rates hidden in the experimental data. With this theory, we show how to accurately determine the
tunnel splitting of a single molecular spin from the step heights and the sample geometry.
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[. INTRODUCTION tal data in terms of the scaled sweeping rdse® Fig. 3 As
a direct application of our theory, we show that the tunnel
Crystals of molecular magnets, such as;Bad Mny,,  splitting A’ measured with the LZ methddis not the true
have attracted much attention for their connection to macrotunnel splittingA of a single molecular spin. We find that the
scopic quantum tunneling and Berry phdséThey may ratio A’/A depends strongly on the sample geoméstyape
also have important applications in magnetic memory andind lattice structupe In our theory there are no adjustable
quantum computing?® The earliest and most spectacular ob- parameters.
servation on such a system is the quantum steps in the hys-
teresis loop of magnetization at low temperattres. Il. THEORY
These quantum steps are a manifestation of macroscopic . _
quantum tunneling, resulting from the tunneling between dif- e argue that nuclear spins do not appreciably affect the
ferent spin states of large molecular spir&=(10 for both  tunneling dynamics under a fast sweeping field except for a
Fe, and Mn,, S=9/2 for Mn,). This has become more ob- modification of the tunnel splitting. In the relaxation

vious in Refs. 6,7, where the hysteresis loop was found t@xperiment&L where the external field remains constant, the

converge under a very low temperature, reaching the pur[Lynneling is strongly affected by the nuclear spins as recog-

quantum tunneling regime. This tunneling phenomenon id11z€d by Prokof’ev and Stamig.However, in the sweeping
complicated by the interaction between spins and other erEQId experiments, the role of nuclear spins is marginalized
vironmental effects. Despite extensive effdttthere have PY the sweeping fields. This can be clearly seen in Fig. 6 of
been no successful theories that can explain any of the st ef. 7, where the relaxation with a constant external field is
features quantitatively. own to be much slower than the one with a sweeping field
In this paper we present a successful theory on the heigiftf the slowest rate applied 0.04 mT/s.
of the quantum steps in the hysteresis loop when the tem- e consider spin lattices, such as crystals of, Ren;,,
perature is low enough that the thermal effects can be ng"d Mn, in which the spins interact with each other through
glected. Since the height measures the tunneling probabilitie dipolar potential,

between different spin states, it is the most prominent feature Ep(1—3cog6)Q,

of the quantum step, and holds the key to understanding of d(r= - , (1)
the underlying tunneling dynamics. In Fig. 1, we have r

adapted the experimental data on; fem Ref. 6, and show

how the step height between spin stafs =10 changes 10+

with the sweeping rates. The data are compared to the . 08. A Experiment Fo®
Landau-ZenefLZ) model? which has been used to extract ' SR RPPPPR Landau-Zener Model

the tunnel splitting\ of a single molecular spin from the step 0.64 Our theory

height*°When we fit the LZ model with the data at the fast
sweeping regime, there is a dramatic difference at slow
sweepings: a two-third suppression.

By taking into account the dipolar interaction between
molecular spins, our theory successfully gives the step
heights measured in the experiment, as shown in Fig. 1. Two
physical mechanisms influencing step heights are identified:
spin shufflingin the evolving distribution of dipolar fields
andjammingamong spins in the resonance window. Further-
more, our theory reveals aw' A scaling law for the depen- FIG. 1. Comparison between the experimental data qf Fiee
dence of the heights on the sweeping ratef the external Lz model, and our theory. The normalized step height/2M is
field. This law is confirmed by the collapse of the experimen-the final fraction of up-spin&;, after one sweep.
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wherer is the displacement vector between the spihis 10— N

the angle between and the easy axis), is the unit-cell "\.‘\\ from up to down
volume, andEp = (2uo/4m)(Sgug)?/Q, gives the interac- 0-81 1200

tion strength. Our theory will be compared to the experiment, == Ja=05

mainly on crystals of Rewhere the experimental data on 067 \ '; :':'.-.jﬁ:;fg
step heights are the most abundahEor simplicity, we fo- R |
Cus on one step, that is, the tunneling between two spin states 0.4 “\\ '
(for example,S,= + 10 for Fg); it is rather straightforward
to extend our theory to study multistep tunneling. 0.2
1 1 00 T T T T T T
A. Evolution equation 10° 102 107 10° 10 10° 10° 10°
We now have a system of Ising spins sitting at each site of /A2

a lattice. In a sweeping magnetic field along the easy axis,

the spins will flip from one state to the other back and forth  FIG. 2. The flipping probability obtained with the nonlinear LZ
as a result of the tunneling driven by the sweeping. Howevernodel. JJA=0.0 corresponds to the linear LZ model. The flip-
at any given moment, only a small fraction of spins are ﬂip_ping probability is suppressed for positive and enhanced for
ping by being in the resonance window while the othershegativeJ.

remain static. This can be understood by first considering an

isolated spin in a sweeping field, which can be described=1—exp(—7A%2a). With the dipolar interaction, it is no
exactly with the LZ model. In the LZ model the flipping longer trivial to calculateP,,;,. During the tunneling time
occurs mainly in a tunneling time interval, when the Zeemardefined byA i,/ @, a spin inside the resonance window feels
energy bia5 y=2gupSuoH between the two spin states two kinds of dipolar fields: one from spins outside the win-
caused by the changing external field becomes very smaltjow, the other from spins inside the window and trying to
| v|<Ain/2. This tunneling time defines the resonance win-flip together. The former remains static during the short-time
dow, whose widthA i, is the tunnel splittingA at the adia-  flipping process; it merely defines the position of the reso-
batic limit and \2a (a=7%dy/dt) in the sudden limit*  nance window and does not affect the flipping probability. In
Similarly for a spin interacting with other spins in a lattice, contrast, the latter is changing with time, and will strongly

its resonance window is defined by affect Pyn .
To account for this effect, we use a mean-field theory,
ly+ &l<Auin/2, (2 treating each spin inside the resonance window equally. The

interaction is described by adding a nonlinear te
where¢; is the Zeeman energy of spircaused by the dipolar =(3/2)(|b]2=|a[?) into the Lyz mode? "

field from other spins. Since the dipolar fields felt by spins

are a distribution, only a small fraction of spins are in the A
resonance window at any given moment. Z+ 7 -
With this physical picture in mind, we can write down the dfa) 2 2 a 4
evolution equation for the fractioR of up-spins. If spins in 'E b/ A ¥ b/ (4)
the resonant window flip with probabilitp,,;,, we have 2 277"
d_F: (1= 2F)D(—=7,F)Pyin, 3) This nonlinear LZ model was first proposed in the context of

dy Bose-Einstein condensates in optical lattiteghe mean-
field interaction constand is proportional to the average

whereD(¢,F) is the normalized distribution of dipolar fields fraction of spins in the resonant window and is calculated as

with the fractionF of up-spins randomly located throughout

the lattice, andy=at represents the sweeping field. The B 2

combination (+2F)D(—y,F) is the difference between JA=Joy1+2alA°D(~y,F)(1-2F)%, (5

the fractions of up-spins and down-spins in the resonance - ) ! )

window. We want to solve Eq3) with the initial condition ~ Where Jo=2;d(r;) is the dipolar field when all the spins

F=0, that is, all the spins point downward at the beginning.P2int in the same direction. In the derivation of E§), we

The resultF;;,=F (y—) is the fraction of up-spins at the have taken advantage of the inverse cubic law of the dipolar
in -

end of the sweep, or the normalized heidi/2M 4 of the field. . ) , L

quantum step between the two spin states. However, we nee%The probabilityPy;, is then given by the flipping prob-

to first find whatP,,;, is, and how to calculate the distribu- 2Pility Pni; Obtained with this nonlinear model, which has
tion functionD(&,F). been solved numerically and plotted in Fig. 2. The flipping

probability is suppressed for positiveA and enhanced for
negativeJ/A, compared with the linear LZ probability. Fur-
thermore, we have found that the nonlinear LZ flipping prob-
Without the dipolar interaction, the flipping probability ability depends on only two parametersP,,
Pwin would be given by the LZ model, that i®,,i,=P), =P, ,(a/A%J/A), and it has an approximate expression,

B. Flipping probability inside resonance windows
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The details of these results can be found in Ref. 15. é g s|
& § — | il
C. Distribution of dipolar fields L . . N F LA

The remaining task is to calculate the distribution of local
fields. The dipolar field felt by a spin in the lattice, consists
of two parts: one is the demagnetization field from the spinsg
very far away; the other from the neighboring spins inside aé
ball B, of radiusr~(Ep/A)Y3. Since the demagnetization & 8}
&qm is contributed by the distant spins, it is independent of
the lattice structure and only depends on the sample shap <
and the fraction of up-spins. Our calculation shows that
&qm=2CEp(2F—1), where the constan€ is called the _ _ S _
shape coefficient and can be calculated theoreti&%l@n _ FIG. 4. Change of the internal field distribution in a sweeping
the other hand, the dipolar field from the neighboring spins idield. The results are calculated from a Monte Carlo simulation,

a distribution depending on the lattice structure. With its Cen_Where a triclinic lattice of Fegis used with 10 229 sites and a spheri-

ter shifted by the demagnetization field, the overall distriby-°2 Shape. Other parameters ai(2o=1, Ayin=0.1, andPy,
=1. The broadened vertical line represents the resonance window.

tion function is(see Appendix A for detai)s The dashed lines are calculated from EZ), showing an excellent
agreement with the solid line.

32% spin up A

300
o

200
200

D(§,F)=j%D(k,F)eik(§§dm), (7)
IIl. COMPARISON WITH EXPERIMENTS
where Combining Egs.(3)—(8), we can integrate the evolution
. B} ) Eqg. (3) with the initial conditionF=0. The results for the
D(k,F)=I[ [(1—F)e 'kd(}) 4 peikd(rj)], (8)  tunneling between the two spin stat8s- +10 of Fg are
rj#0 plotted in Fig. 3. With the horizontal axis taken @gA?, the

experimental data for three different isotopes of Eellapse
onto the curve given by our theory. This “collapse” is ex-
pected:A and « enter Eq.(3) only in the combination of
The above discussions indicate that the paramktalso a/A? throughP, . This remarkable scaling law, along' with

. - ) . the excellent agreement of our theory with the experiments,
consists of two partslo=2g d(r) +2CEp . The first partis  gyongly supports our previous argument that nuclear spins
only related to the crystal structure; for the triclinicsFeen-  do not appreciably affect the flipping dynamics of the mo-
tered tetragonal Mp, and hexagonal Mpits value is lecular spins, except for modifying the tunnel splitting

The distribution functions calculated with E/) are com-
pared to a Monte Carlo simulation in Fig. 4; there is an
excellent agreement.

3.9&,, 1.1%F,, and 12.68p, respectively. through hyperfine coupling. This scaling law is further con-
firmed by a set of new experimental data on a different sys-
' o ' tem, Mn, with S=2.19 By changing the transversal magnetic
0.31c . " Ezph::";z:?;ﬁ:z': ] field from O T to 0.085 T, the tunnel splitting of Mns
8 %%+ wansversal fields varied almost by an order of magnitude. Nevertheless, these
“ ’ data collapse perfectly onto a single curve, as seen in the
021 inset of Fig. 3.
uE
0.1+
IV. DISCUSSIONS AND PREDICTIONS
0.0 A. Jamming
» » ~ . One more important feature in Figs. 1 and 3 is the strong
10 0 10 10 suppression of the quantum step height, compared with the
o/A predictions of the LZ model. Two physical mechanisms are

FIG. 3. Comparison between our theory and experiments. Thg)ehlnd the suppression. One is the jamming among Spins in
experimental data on Fésotopes from Ref. 6, which have different (€ résonance window. Due to the sample spﬁiﬂed,w'th ,
tunnel splittingsA, collapse on the same curve, demonstrating theth€ shortest lattice vector being along the easy axis, the di-
alA? scaling law. The inset shows the collapse of the data foy Mn Polar interaction between spins in g~ very much ferro-

Ref. 10, whoseA is varied by changing the transverse field. The magnetic, yielding a positive coupling constaint-0. As
slight deviation in the adiabatic regimg A?<0.5 is likely caused ~seen in Fig. 2, the flipping probabilit,, is suppressed
by the “hole digging” mechanisniRef. 17. from P,, for this case.
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This jamming effect is more significant in the fast sweep- '
ing regime, where there are more spins in the resonance win- 141 = = -Mn,, Molecular Magnet 1
dow due to the broadened window width and narrow dipolar
field distribution. Our calculation finds suppression of up to
13% due to this mechanism. However, this does not account
for all the suppression, especially for the slow sweeping limit
where the resonant window is narrower and the distribution
function is wider.

Of course, it is possible to havé<0, which happens
when the easy axis of a molecular magnet is not along the
shortest lattice axis or when the sample crystal has a much 4 3 > 1 0 1 5
smaller dimension along the easy axis than the other two
dimensions. Once this is the case, we may call this effect
antijamming. FIG. 5. The dependence &f /A on the shape coefficienA is

the true tunnel splittingA’ is the tunnel splitting measured by the
B. Shuffling LZ method(Ref. 4.

The other mechanism _is t_he _shuffling of spins across th‘Elescribe the geometry of the sample: its shape and lattice
spectrum of the dipolar distributioD (¢,F). As other spins g4\, c1re. This asymptotic relation explains why theis not
flip, the dipolar fleldgi felt by spini is altered and thus gets necessarily the trua of a single molecule.
shuffled 'to a different part of the spgctrum. In particular, We have calculated the rati’/A and its dependence on
many spins that are yet to be brought into resonance can Ifle shape coefficier@ for three different molecular magnets

shuffled into the swept part of the spectrum, losing thelrF68 Mny,,* and Mny, as shown in Fig. 5. With this, one can

chances of flipping. This Is confirmed by our Monie Carlq obtain the real tunnel splitting from the corresponding step

simulation, where the position of the resonance window i$1eight gi he sh f th le. For th |
updated after the spins in the window are flipped with prob- eight given the shape of the sample. For thg sample

; ; i _ 18
ability P,;.. In Fig. 4, we show how the dipolar distribution \L,‘Vﬁgh ';'ietlzg A?}(Z?_f'g_‘?g_tihe shape  coefficienC =14,
function changes with the sweeping field in one simulation
with P,;,=1. Many spins in the main peak are shuffled into
the two right peaks. This dominant shuffling to the right is
related to the largely ferromagnetic character of the dipolar |n summary, we have studied the quantum step heights in
interaction between spins. A careful tracking in our simula-the hysteresis loop of crystals of molecular magnets. The
tion shows that about 50% of the spins are never brought int@nderlying physics is the spin tunneling in such systems un-
resonance and flip zero times, 28% flip once, and 12% fligler sweeping fields. We have identified two physical mecha-
twice. This shuffling mechanism gives an intuitive picture of nisms causing the strong suppression of step heights at low

Fe,Molecular Magnet

1.24~ ----Mn, Molecular Magnet

A'IA

Shape coefficient C

V. CONCLUSION

the physics hidden in the evolution EG). sweeping rates. They are the shuffling of spins across the
spectrum of the distribution of dipolar fields and the jam-
C. Shape effect ming among spins inside the resonance window. With an

With our theory, we can accurately determine the tunnef"m""lyti.Cal theory, we h'ave explgin_ed an experiment, revealed
’ a scaling law hidden in the existing experimental data, and

Zio;gtlﬁgiéh?f_?hzlrligzlemn;?rl]%célélﬁa:‘éogé?]eur::g fg r:gcgumiﬂit:? predicted the shape effect on the measurement of the tunnel
: splitting with the LZ method.

this, extracting an effective tunnel splitting’ from a step
height with F¢;,=1—exp(—mA’%2a). However, the effec-
tive splitting A’ is not necessarily the true splitting as the

LZ model is inadequate to give the correct step height. We thank Wolfgang Wernsdorfer for stimulating discus-
Let us consider the fast sweeping limit, where the magnesjon, This project was supported by the NSF of the U.S., the

tization is very small. In this case, the dipolar field distribu-\yelch Foundation in Texas, and the NNSF of China.
tion Eq. (3) is a Lorentziah®
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Sl APPENDIX A: DISTRIBUTION OF DIPOLAR FIELDS
D(&,F)= (E— &)+ 6% © Consider a lattice of dipolar interacting Ising spins with
- fractionF of up-spins randomly scattered over the lattice. We
where §=2p d(r)+2CEp(2F-1) and 6 want to calculate the distributioR (£,F) of dipolar fieldsg
=(16mw23%?)EpF. With the new variablesf=F/P,,x felt by each spin in the lattice.
= y/EpP,,, one can rewrite Eq.3) and immediately notice We proceed by noticing that when the lattice is large

that the evolution equation in terms fondx is independent enough, N>100, this is equivalent to each spin having
of P,, andEp (see details in Appendix BIt means that, in a probability of F pointing upward. Therefore, with
the fast sweeping regime, the ratiex;,/P;, = (A’/A)? sj(=*1) denoting the spin at sifg we can write down the
tends to a constant depending only GrandJ,/Ep, which  distribution function as

224401-4



QUANTUM STEP HEIGHTS IN HYSTERESIS LOOPSH. . . PHYSICAL REVIEW B 65 224401

We notice that we have the freedom to shift the center of the
, distribution D(&,F) by a constant without changing the
physics. It leads us to

N N
D(§,F)=mE:O Fm(l—F)N’m{g 5( g—jgl s;d;

(A1)
wheredj=d(Fj) is the dipolar field generated by sginand D(y,F)= D(x,f), (B4)
the second summation is over all the possible configurations EoPi
that havem spins up. where
The distribution functionD(¢,F) can be calculated
through its Fourier transform 162
3 3572 fla
D(k,F)=f déD(£,F)e ke D(x,f)= To.2 |2 (BS)
_ 2
| " (x—4Cf) +< 357 f)
=S EM1_EIN-MS gmik, s
m§=:0 ( ) {g}:m = Along the other line, sincee—, we have
N 2
—ikd; ikd: 2 A
=[] [Fe i+ (1-F)ekd]. (A2) Pi,=1—exp(— wA%2a)~ ——, (B6)
j=1
Together with another Fourier transform and
dk _ JIA=Jo\1+2alA’D(—y,F)(1—2F)?
D(§,F)=J—D(k,F)6"‘§, (A3)
2m Jo 1
= 2 /" D(- _ 2
we have derived Eq7) in the main text. Ep 71-p3/2D( X, ) (1=2Ppf)" (B7)

I
WhenF<1, we have ‘

SinceJy*Ep, Jo/Ep is independent oEp . With the intro-
N ) duction of another scaled variable

5(k,F)~exp< —2F21 cogkd,) (A4)
=

o Jo —

j==7D(=x.1), (B8)
from which one can show th&i(¢,F) is a Lorentzian. Note Ep
that the distributionD(£,F) is normalized ”.d¢D(£,F)  we can rewrite Eq(6) as
=1, which can be verified easily with E¢AL).

APPENDIX B: FAST SWEEPING REGIME =1\ VP, (B9)
In this appendix, we solve the evolution equation where we have useB,,<1 and the notatio®=P,,/P,,.
Finally, the evolution Eq.B1) assumes the following
O 1= 2F)D(— 9 F) Py By o
d_‘y_( —2F)D(=v,F)Ppy; ;:K ) (B1)
in the fast sweeping regime— . ax_P(=xDP. (B10)

In this regime, only a very small portion of spins flip, that
is, F<1. As a result, during the whole sweeping process, thé&Vhat is remarkable of this equation is that it does not depend

distribution function is a Lorentziah on the two parameteiS, andP,. However, it does depend
on the geometry of the sample: shape thro@and lattice
ol structure throughly/Ep . Solving this equation gives us
D(§,F)=W, (B2
¢ Frn l—exp—mA'22a) [A')2
where  £=3gd(r)+2CEp(2F 1) and & =)= = 1—exp(— mA%2a) %(I
=(167%/3°)EpF. On the other hand, in this fast sweeping (B11)

regime, the nonlinear LZ flipping probabilify,,,<1 is very
small and is well approximated with E¢f).
We move on by introducing new variables,

Therefore, the ratidd’/A is independent of the sweeping

rates in the fast sweeping regime; this explains the saturation

of the measured tunnel splitting’ found in Refs. 6,7. On

the other hand, the ratio does depend on the sample geom-

f=F/IP,,, x= Y ) (B3)  etry, which can be verified by retooling the same sample to
EpP; different shapes.
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