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Nonadiabaticity of electron-tunneling-ionization processes in elliptical strong laser fields
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We theoretically investigate the electron-tunneling process for a helium atom irradiated by an elliptical strong
laser field. The momentum distribution for an electron ionized during the cycle when the laser intensity reaches its
maximum is captured, such that we can ignore the interference between the wave packets ionized in different laser
cycles and precisely determine the center of the momentum distribution. The quantum mechanical prediction of
the center position is further compared to the semiclassical single-trajectory simulation as well as the experimental
data. We find that the electron momentums along the minor axis of the laser polarization show good agreement
with the nonadiabatic semiclassical calculation for a wide range of laser intensities, indicating the existence of
a nonzero lateral momentum when the electron exits the barrier. On the other hand, the offset angles obtained
by our quantum mechanical approach for different laser intensities are larger than the nonadiabatic semiclassical
results, indicating the importance of the quantum effects during the electron’s under-the-barrier dynamics.
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I. INTRODUCTION

Electron ionization in an elliptically polarized strong laser
field has drawn a lot of attention in recent years for its
ultrashort-time measurement with attosecond resolution [1–3].
As the electron tunnels out of the barrier formed by the
laser field and the Coulomb potential, it is accelerated by the
laser field and then can return and recollide with the nucleus
[4,5]. However, this recollision process is suppressed for the
rotation of the electric vector in elliptical laser fields, especially
for large ellipticity, such that the photoelectron momentum
provides a direct probe of the electron-tunneling dynamics of
the laser-atom interaction [6].

Electron tunneling in strong laser fields can be described as
an adiabatic process, which means the neglect of the variation
of the laser field when the electron moves through the barrier.
It is commonly believed that the adiabatic model is valid when
the Keldysh parameter [7] γ = ω

√
2Ip/E satisfies γ � 1,

where ω is the laser frequency, Ip is the ionization potential,
and E is the electric amplitude of the laser field. The tunneling
process enters into the nonadiabatic regime when the Keldysh
parameter has the intermediate value γ ∼ 1 [8]. Besides
the tunneling process, multiphoton absorption dominates the
ionization process for weak laser intensity with γ � 1. For
an elliptical laser field, taking into account the electric field
perpendicular to the tunneling direction, Perelomov et al. [9]
and Mur et al. [10] proposed a nonzero momentum perpen-
dicular to the laser field when the electron exits the barrier.
Based on this nonadiabatic assumption, it has been found both
theoretically [11] and experimentally [12] that the ionization
probability in a circularly polarized laser field has selectivity to
the sign of the initial bound state’s magnetic quantum number.
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It is a hotly debated question of whether there is a
positive tunneling time that the electron spends inside the
binding barrier [13–18]. The experimental measurement of
the tunneling delay time is realized by the attosecond angular
streaking technique. The offset angle of the center of the
photoelectron momentum distribution (PMD) with respect to
the minor axis of the laser polarization can be obtained by
both experimental measurement and semiclassical calculation
such that the tunneling delay time can be extracted from the
deviation of these two approaches, as the latter approach does
not take into account the delay time. It has been reported that
the measured tunneling delay time is of the order of tens of
attoseconds, and it is compatible with the definition of Larmor
time [15]. However, the experimentally measured results are
based on the adiabatic laser-intensity calibration [13,14], while
several studies suggested that the initial transverse momentum
should not be neglected when the electron exits the barrier in
an elliptical laser field [19–23].

On the other hand, conflicting results about the tunneling
delay time were obtained by different theoretical approaches.
Torlina et al. found that the deviation of the offset angles
calculated by analytical R-matrix (ARM) method and
numerical ab initio simulations is within two degrees [16],
and they concluded that the tunneling process is instantaneous
for the hydrogen atom. Klaiber et al. proposed an improved
nonadiabatic model which includes a positive tunneling
delay time, and the calculated offset angles coincide with
experimental data [24]. In a recent paper, Ni et al. adopted
classical calculation to back propagate the photoelectron’s
trajectories to a preset criterion of tunneling, and they also
concluded that the tunneling delay time is close to zero [17].

The extraction of the tunneling delay time from PMD
relies on the photoelectron’s offset angle and the referenced
semiclassical model. Previously, both in experiments [14,18]
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and in numerical calculations [20], the offset angle is obtained
by a Gaussian fit of the angular momentum distribution
after a radial integration of the PMD. We note that the
radial integration mixes both the momentum distribution for
electrons ionized during different laser cycles and the angular
distribution for electrons with different energies.

In this paper, the momentum distribution for an electron
ionized near the peak of the laser pulse is captured by solving
the three-dimensional time-dependent Schrödinger equation
(TDSE), such that the center of the PMD can be precisely
determined. As the obtained momentum center represents the
most probable trajectory ionized at the peak of the laser pulse,
it is comparable to the semiclassical single trajectory (SCST)
calculation with or without nonadiabatic assumption. Through
the comparison of our quantum mechanical results and the
SCST results, the nonadiabaticity of the tunneling process is
validated.

II. CALCULATION METHOD

We use the generalized pseudospectral split-operator
method [25] to solve the three-dimensional TDSE for a helium
atom subjected in an elliptical laser field with single-active-
electron approximation. The model potential of He is taken
from Ref. [26]. The radial grid size is Rmax = 150 a.u., while
the maximum angular momentum quantum number is up to
lmax = 159, the angular grid number is 180 × 360, and the
time step is �t = 0.1 a.u. In order to eliminate the reflection
of the electron wave packet from the boundary and obtain the
momentum space wave function, the coordinate space is split
into the inner and the outer regions with the critical boundary
Rc = 50 a.u., and the electron wave function can be written as
[27,28]

�(r,t) = � in(t) + �out(t). (1)

The inner region wave function � in is propagated under the
full Hamiltonian numerically, while in the outer region, the
wave function is projected to momentum space for each 50
time steps:

C( p,ti) = 〈
�CV

p (ti)
∣∣�out(ti)

〉
. (2)

Here, �CV
p (t) is the Coulomb-Volkov state [29–32]. Then

the evolution of C( p,ti) to the end of the laser field is gov-
erned by the Volkov propagator UV (tf ,ti) = exp{− i

2

∫ tf
ti

[ p +
A(t ′)]2dt ′} [27], such that the ionized electron wave function
is obtained as

�( p) =
∑

i

UV (tf ,ti)C( p,ti). (3)

In the SCST simulation, we use the tunnel ionization in
parabolic coordinates with induced dipole and Stark shift
(TIPIS) model, which takes into account Stark shift and dipole
effects [3,33], to determine the initial tunneling position. In the
adiabatic model, the initial momentum is set to be zero, while in
the nonadiabatic model, a nonzero momentum perpendicular
to the laser field is given by

py0 = εE

ω

[
sinh(τ0)

τ0
− 1

]
, (4)

where τ0 = −iωt0, and t0 is the imaginary time of the
electron’s motion in the barrier [10,13].

The electric vector potential of the elliptical laser field used
in this paper can be written as

A(t) =
√

I0

1 + ε2

f (t)

ω
[−sin(ωt)x̂ + εcos(ωt)ŷ], (5)

where the laser frequency is ω = 0.062 a.u., the laser ellipticity
is ε = 0.87, and the laser intensity I0 ranges from 1.6 ×
1014 to 6 × 1014 W/cm2. The electric vector E(t) rotates
counterclockwise and reaches its maximum when it points
along the positive x axis at t = 0. The duration of the laser
pulse is τ = 7 fs, as used in the experiment [13]; the envelope
of the pulse has the form f (t) = cos2( πt

2.74τ
).

III. CENTER OF PHOTOELECTRON MOMENTUM
DISTRIBUTION

The electric field of the laser pulse and the photoelectron’s
final momentum distribution for laser intensity I0 = 2 ×
1014 W/cm2 are depicted in Fig. 1. In Fig. 1(b), the plotted
momentum distribution comes from an electron ionized during
the whole laser pulse. The multiphoton rings, which are
caused by the quantum interference between the wave packets
ionized during different laser cycles, can be clearly observed.
Unfortunately, the multiphoton rings mask the center position
of the momentum distribution for a multicycle laser pulse in
the numerical TDSE calculation.

In the single-trajectory calculation, the most probable
photoelectron trajectory when the electric field reaches its
maximum is taken into account. The comparable quantum
mechanical calculation should refer to the momentum distri-
bution for an electron ionized near the peak of the laser pulse.
So we restrict the summation of Eq. (3) to a time window of

FIG. 1. (a) Illustration of the electric vector of the laser field. (b)–
(d) The photoelectron momentum distribution in the x−y polarization
plane with pz = 0. In (b), the momentum distribution refers to an
electron ionized during the whole laser pulse. In (c) and (d), the
momentum distributions are for the electron ionized near the laser
peak, with the centers of the time window equal to 0.25T and 0.5T ,
respectively.
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one laser cycle,

| ti − tc |� 0.5T , (6)

where tc is the center of the time window, and T = 2π
ω

is
the laser period. The convergence of the calculation can be
verified by changing the parameter tc, as shown in Fig. 1(c)
(tc = 0.25T ) and Fig. 1(d) (tc = 0.5T ). The multiphoton
rings still can be observed at different positions in these two
figures; however, they do not exert influence to the momentum
distribution in the lower half plane. We choose tc = 0.5T in
the following calculation.

To find the momentum center in the x-y polarization
plane with pz = 0, a dense grid of azimuthal angle with
�θ = 0.1◦ is used. The momentum when |�( p)|2 reaches
its maximum is regarded as the center of the PMD. The
photoelectron’s momentum p = px x̂ + py ŷ and the offset
angle θ = arctan|px

py
| can be directly obtained.

IV. NONADIABATICITY OF ELECTRON-TUNNELING
PROCESS

In the attoclock experiment, the photoelectron’s final
momentum along the minor axis of the laser polarization
py is used to calibrate the laser intensity with adiabatic or
nonadiabatic assumptions [13]. In the theoretical study, there is
no need for the laser-intensity calibration, and we can directly
use py to validate the nonadiabaticity of the electron-tunneling
process, as shown in Fig. 2(a).

In the adiabatic model, an analytic prediction of the final
momentum py is given by

py = εE

ω
, (7)

while in the nonadiabatic model, with the existence of the
initial momentum of Eq. (4), the final momentum reads as
[10,13]

py = εE

ω

sinh(τ0)

τ0
. (8)

Taking into account the Coulomb effect after the electron exits
the barrier, the SCST results of the adiabatic and nonadiabatic
model are also shown in Fig. 2(a).

As can be seen in Fig. 2(a), the final momentums along
the minor axis obtained by solving the TDSE (blue solid
cycles) show a good agreement with the SCST results with the
nonadiabatic assumption (red dashed line) for a wide range
of laser intensities. We note that the discrepancy between the
predictions of the adiabatic model and the nonadiabatic one is
quite large (about 0.15 a.u. for the same laser intensity), while
other electron-tunneling parameters, such as the tunneling
delay time and the exit position, only show slight influences on
the final momentum py . So our numerical results confirm the
nonadiabaticity of the electron-tunneling process in elliptical
laser fields, even for large laser intensity with Keldysh
parameter γ < 1.

In Fig. 2(b), we show the offset angles obtained by the
TDSE approach for different laser intensities and the compar-
ison with the SCST results and the experimental data from
Ref. [13]. Generally speaking, our TDSE results reproduce
the decreasing trend of the offset angle with increasing laser

FIG. 2. (a) The final momentum along the minor axis of the
laser field and (b) the offset angle. The blue cycles are the TDSE
results obtained from the PMD for an electron ionized during
the peak laser cycle. The black and the red solid lines are the
analytical predictions of the adiabatic and the nonadiabatic models,
respectively, and the dashed lines are the corresponding SCST results.
In (b), the experimental results with the adiabatic (green squares) or
nonadiabatic (magenta squares) laser-intensity calibration are from
Ref. [13].

intensity, even though they are about 2–4 degrees smaller than
the experimentally measured angles. The possible reasons
for the discrepancy between our numerical results and the
experimental data may be the polarization of the atom [33]
and the multielectron effect [34], which are not included
in our calculation. Specifically, the decreasing trend appears
only for laser intensity 1.6 × 1014 < I < 2.4 × 1014 W/cm2.
It is important to point out that the experimental data with a
nonadiabatic laser-intensity calibration do show a decrease in
this laser-intensity range. On the other hand, the offset angles
show small variations for large laser intensities both in the
experimental data and in our TDSE results.

It seems that the TDSE results of the offset angle agree
with the adiabatic SCST results for large laser intensities
seen in Fig. 2(b). However, this agreement does not mean
the validity of the adiabatic model. One reason is that the
adiabatic model does not provide the correct final momentum
of the photoelectron, as has been depicted in Fig. 2(a). For
another reason, different from the final momentum py , the
offset angle is quite sensitive to the electron’s initial tunneling
parameters. For example, the ignorance of the initial lateral
momentum causes an overestimate of the the offset angle; on
the opposite side, the ignorance of the tunneling delay time
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leads to the underestimated results. So the agreement could
be caused by the compensation of both the ignorance of the
tunneling delay time and the initial lateral momentum in the
adiabatic model. We suggest that the nonadiabatic model rather
than the adiabatic one should be used as a reference to study
the electron-tunneling process.

The offset angles predicted by the nonadiabatic SCST
simulation are about 1.5◦ smaller than the TDSE results for
large laser intensities, and this discrepancy varies up to nearly
4◦ for smaller laser intensity. The electron’s under-the-barrier
movement is fully quantum mechanical, and the quantum
dynamics that are under the barrier causes the modification
of the initial conditions of the classical trajectory in the
continuum, including the shift of the tunnel exit coordinate
[24], the tunneling delay time [18], and the longitudinal mo-
mentum [35]. The difference of the nonadiabatic SCST results
and the TDSE results in Fig. 2(b) indicates the importance
of the under-the-barrier quantum effects, especially in the
intermediate laser-intensity region.

V. CONCLUSION

In conclusion, we studied the momentum distribution for
an electron ionized near the peak of the elliptically polarized
laser pulse. The calculated final momentums along the minor

axis of the laser polarization show good agreement with
the prediction of the SCST simulation with nonadiabatic
assumption, indicating the existence of a nonzero transverse
momentum when the electron tunnels through the Coulomb
barrier. Our numerical results reproduce the decrease of the
offset angle with increasing laser intensity; however, this
decreasing trend only appears in a quite narrow laser-intensity
range. The offset angles obtained by our TDSE approach are
larger than the nonadiabatic semiclassical results, indicating
the importance of the under-the-barrier quantum effects.
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